Склад кафедри

Гефтер Сергій ЛеонідовичГефтер Сергій Леонідович Гефтер Сергій Леонідович доцент кафедри фундаментальної математики, в.о. зав. кафедри, кандидат фізико-математичних наук

Дубовий Володимир КириловичДубовий Володимир Кирилович Дубовий Володимир Кирилович професор кафедри фундаментальної математики, доктор фізико-математичних наук

Кадець Володимир Михайлович Працював: 2015-2023 р.Кадець Володимир Михайлович Працював: 2015-2023 р. Кадець Володимир Михайлович Працював: 2015-2023 р. професор кафедри фундаментальної математики, доктор фізико-математичних наук

Фаворов Сергій ЮрійовичФаворов Сергій Юрійович Фаворов Сергій Юрійович професор кафедри фундаментальної математики, доктор фізико-математичних наук

Шепельський Дмитро ГеоргійовичШепельський Дмитро Георгійович Шепельський Дмитро Георгійович доктор фізико-математичних наук

Ямпольський Олександр ЛеонідовичЯмпольський Олександр Леонідович Ямпольський Олександр Леонідович професор кафедри фундаментальної математики, доктор фізико-математичних наук

Вишнякова Ганна Марківна Працювала: 2015 - 2023 р.Вишнякова Ганна Марківна Працювала: 2015 - 2023 р. Вишнякова Ганна Марківна Працювала: 2015 - 2023 р. професор кафедри фундаментальної математики, доктор фізико-математичних наук

Горькавий Василь ОлексійовичГорькавий Василь Олексійович Горькавий Василь Олексійович доктор фізико-математичних наук, доцент

Резуненко Олександр ВячеславовичРезуненко Олександр Вячеславович Резуненко Олександр Вячеславович професор кафедри фундаментальної математики, доктор фізико-математичних наук

Фастовська Тамара БорисівнаФастовська Тамара Борисівна Фастовська Тамара Борисівна доцент кафедри фундаментальної математики, кандидат фізико-математичних наук, доцент

Гиря Наталія ПетрівнаГиря Наталія Петрівна Гиря Наталія Петрівна доцент кафедри фундаментальної математики, кандидат фізико-математичних наук

Заварзіна  Олеся  ОлегівнаЗаварзіна  Олеся  Олегівна Заварзіна Олеся Олегівна доктор філософії, доцент кафедри фундаментальної математики, доцент

Каролінський Євген ОлександровичКаролінський Євген Олександрович Каролінський Євген Олександрович доцент кафедри фундаментальної математики, кандидат фізико-математичних наук

Петров Євген В’ячеславовичПетров Євген В’ячеславович Петров Євген В’ячеславович кандидат фізико-математичних наук, старший викладач

Селютін Дмитро ДмитровичСелютін Дмитро Дмитрович Селютін Дмитро Дмитрович доктор філософії

Гавриленко  Ігор ОлеговичГавриленко  Ігор Олегович Гавриленко Ігор Олегович

Гончарук  Анна  БорисівнаГончарук  Анна  Борисівна Гончарук Анна Борисівна

Давидова Вікторія ВіталіївнаДавидова Вікторія Віталіївна Давидова Вікторія Віталіївна інженер 1-ї категорії

Кац Ірина ВолодимирівнаКац Ірина Володимирівна Кац Ірина Володимирівна провідний інженер

Горькавий Василь Олексійович

доктор фізико-математичних наук, доцент

Обрані публікації

Gorkavyy V. One integral inequality for closed curve in Euclidean space // C. R. Acad. Sci., Paris, Ser. I, v.321 (1995), №12, p.1587-1591,

Доведено деякі інтегральні нерівності для старших кривин замкнутих кривих в багатомірному евклідовому просторі.

Ключові слова: closed curve, curvature, Fary-Milnor inequality

Горь­ка­вий В. О. Ана­лог гpа­с­с­ма­но­ва об­p­а­зу для підмноговидів у сфе­рі // Ма­те­ма­ти­чний збірник , T.187 (1996), № 9, т.25-44,

Доведено необхідні та достатні умови для відновлення сферичного підмноговиду за заданим образом Гауса-Обати.

Горь­ка­вий В. О. Відновлення тривимірних підмноговидів евклідового простору з великою комірністю за грасмановим образом // Ма­те­ма­ти­чні нотатки, Т.62 (1997), №5, с.694-699,

Доведено необхідні та достатні аналітичні умови для відновлення тримірного підмноговиду з великою ковимірністю в багатомірному евклідовому просторі за наперед заданим грасмановим образом.

Горь­ка­вий В. О. Теорема редукції в задачі відновлення підмноговидів евклідового простору за заданим гpасмановим образом // Ма­те­ма­ти­чна фі­зи­ка, ана­ліз, гео­ме­т­p­ія, T.4 (1997), № 3, с.309-333,

Доведено, що відновлення n-мірного підмноговиду з точковою ковимірністю l в (n+m)-мірному евклідовому просторі за наперед заданим k-мірним грасмановим образом локально зводиться до відновлення k-мірного підмноговиду з точковою ковимірністю в (k+l)-мірному евклідовому просторі за наперед заданим k-мірним грасмановим образом.

Горь­ка­вий В. О. Деформованість поверхонь F2 E4 зі збереженням грассманового образу //

Описані загальні та спеціальні (конформні, ізометричні, еквіареальні) перетворення двомірних поверхонь в чотиримірному евклідовому просторі зі збереженням грассманового образу. Встановлено ряд характеризаційних теорем для спеціальних класів поверхонь, наприклад - мінімальних або ізотермічних.

Gorkavyy V. On pseudo-spherical congruencies in E4 // Ма­те­ма­ти­чна фі­зи­ка, ана­ліз, гео­ме­т­рія, Т.10 (2003), № 4, с.498-504,

Розглянуто аналог псевдосферичних геодезичних конгруенцій у чотиримірному евклідовому просторі. Доведено теорему типу Беклунда про псевдосферичність двомірних поверхонь в Е4, повязаних псевдосферичною геодезичною конгруенцією.

Амі­нов Ю.­А., Горь­ка­вий В. О., Свя­то­вец А.В. Про відновлення спеціальних замкнутих поверхонь в Е4 за замкненим грассмановим образом // Ма­те­ма­ти­чна фі­зи­ка, ана­ліз, гео­ме­т­рія, T.11 (2004), № 1, с.3-24,

Доведені теореми про відновлення спеціальних замкнутих двомірних поверхонь обертання в чотиримірному евклідовому просторі за наперед заданим грасмановим образом.

Горь­ка­вий В. О. Конгруенції Б'янки двовимірних поверхонь у Е4 // Математичний збірник, Т.196 (2005), № 10, с.79-102,

Описано двомірні псевдосферичні поверхні в чотиримірному евклідовому просторі, що дозволяють перетворення типу Біанкі.

Gorkavyy V. On pseudo-spherical surfaces in E4 with Grassmann image of prescribed type // Журнал ма­те­ма­ти­чної фі­зи­ки, ана­ліза, гео­ме­т­рії, T.2, (2006), № 2, с.138-148,

Відповідно до класифікації Ю.А. Амінова, в грасмановому многовиді G(2,4) є три типи поверхонь, що називаються гиперболічними, параболічними або еліптичними відповідно. Доведено, що в Е4 існують псевдосферичні поверхонь, чий грасманів образ є гіпреболічним, параболічним або еліптичним.

Горь­ка­вий В. О. Про конформне перетворення поверхонь у просторі Мінковського із збереженням грассманова образу // № 7 (2006), с.13-24,

Описано двомірні поверхні в багатомірному просторі-часі Мінковського, що допускають конформні перетворення зі збереженням грасманового образу. Встановлено геометричну характеризацію спеціальних світло-подібних поверхонь К. Іл'єнка, що разом з нуль-лінійчатими поверхнями можуть розглядатися як світло-подібні агалоги поверхонь нульової середньої кривини.

Gorkavyy V. On minimal lightlike surfaces in Minkowski space-time // Differential Geometry and its Applications, V.26 (2008), №2, p.133-139,

Описано двомірні світло-подібні поверхні в просторі-часі Мінковського, що допускають ізометричні перетворення зі збереженням грасманового образу.

Горь­ка­вий В. О. Про псевдосферичні конгруенції у просторах постійної кривини // Доповіді Національної Академії Наук України, (2008), №6, c.13-18,

Розглянуто поняття псевдо-сферичної геодезичної конгруенції в сферичному та гіперболічному просторах. Доведена теорема типу Беклунда про псевдо-сферичність поверхонь, пов'язаних псевдосферичними геодезичними конгруенціями.

Gorkavyy V.O, Nevmerzhytska O.M. Ruled surfaces as рseudo-sрherical congruencies // Журнал математичної фізики, аналіза, геометрії, Т.5 (2009), № 3, с. 359-374,

Описано лінійчаті поверхні в просторах сталої кривини En, Sn, Hn та в просторах-добутках SnxR1, HnxR1, для яких відображення зсуву вздовж прямолінійних твірних може породжувати псевдосферичну геодезичну конгруенцію.

Горькавий В. О., Мілка А.Д. Вигинання правильних багатогранників зі збільшенням об'єму // Збірник праць Інституту математики НАН України, Т.6 (2009), № 2, с.152-182,

Побудовані спеціальні лінійні згинання правильної прямої піраміди, що призводять до збільшення об'єму. Як наслідок, для кожного опуклого правильного багатогранника побудоване спеціальне ітераційне лінійне згинання, що призводить до збільшення об'єму, та посилено попередні результати Д. Блікера. Досягнуте відносне збільшення об'єму сягає 1.44+ для тетраедра, 1.24+... для куба, 1.13589+ для октаедра, 1.09723+ для додекаедра, 1.04272+ для ікосаедра.

Горькавий В. О., Мілка А.Д., Соболєва А.М. Лінійні згинання призм із збільшенням об'єму // Рroc. Intern. Geom. Center dω, V.2 (2009), №1, р.7-26,

Побудовані та проаналізовані спеціальні ітераційні лінійні згинання зі збільшенням обєму для правильних прямих призм.

Gorkavyy V. On inflating closed mylar shells // Comptes Rendus. Mecanique, V.338 (2010), №12, p.656-662,

Наслідуючи ідеї В. Паульсена, проаналізовано спеціальні короткі деформації зі збільшенням обєму для широкого класу замкнутих поверхонь обертання.

Горькавий В. О., Невмержицька О. М. Аналог перетворення Біанки для двовимірних поверхонь у просторі S3 x R1 // Ма­те­ма­ти­чні нотат­ки, T.89 (2011), №6, с.833-845,

Побудовано аналог класичного перетворення Біанки для двомірних поверхонь в просторі - добутку S3 x R1.

Горькавий В.О. Приклад перетворення Біанки на E4 // Журнал математичної фізики, аналіза, геометрії, T. 8 (2012), № 3, c. 240–247,

Побудовані приклади двомірних псевдосферичних поверхонь, що дозволяють перетворення Біанкі, в чотиримірному евклідовому просторі.

Gorkavyy V., Nevmerzhitska O. Pseudo-spherical submanifolds with degenerate Bianchi transformation // Results in mathematics, V. 60 (2011), №1, p.103-116,

Класифіковано псевдо-сферичні підмноговиди, що допускають вироджене в лінію перетворення Біанкі, в просторах сталої кривини

//