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ON THE STRONGLY SPHERICAL SASAKIAN METRIC
OF A SPHERICAL TANGENT BUNDLE

A. L. Yampol’skii UDC 514

Let M " denote an n-dimensional Riemannian manifold. its metric is called v -strongly spherical if at every
point Q € M" there exists a v -dimensional subspace £4" C ToM" such that the curvature operator of the
metric of M "satisfies R(X, W Z = k(<Y,Z > X < X, Z > Y¥), where k = const > bredy X zZe
ToM". The number v is called the index of sphericity and kthe exponent of sphericity. The following theo-
rems are proved in the paper. THEOREM 1. Let the Sasakian metric of T:M" be v -strongly spherical with
exponent of sphericity k. The following assertions hold: aj v = 1 if and only if M*has constant Gaussian
curvature K # 1 and k = K2/4: b} v = 3 if and only if M % has constant curvature K = | and k = 1/4; ¢}
v = 0, otherwise. THEOREM 2. Let the Sasakian metric of T,M" (n = M") be v -strongly spherical with
exponent of sphericity k. Ifk > 1/3 and k # 1, then v = 0. Let us denote by (M", K) a space of constant
curvature K. THEOREM 3. Let the Sasakian metric of T, (M", K) (n = 3) be v-strongly spherical with
exponent of sphericity k. The following assertions hold: a) v = 1 if and only if K = 1/4; b) v = 0, other-
wise. In dimension n = 3 Theorem 2 is true for k & {1/4, 1}.

Introduction. Let M "denote an 7n1-dimensional Riemannian manifold. Its metric is called v -strongly spherical if at
every point 0 € M™ there exists a v -dimensional subspace 339" C TQM" such that the curvature operator of the metric of
M " satisfies

R{X, Y)Z=k (<Y, Z>X~<X, Z>Y), k=const>0 , (1)

for every ¥ € EQ" and any X, Z € ToM". The number v is called the index of sphericity and & the exponent of sphericity.

For k = 0 the metric is called v -strongly parabolic.

As is known [1], if vis constant on M "(and we consider only this case), then subspaces ZF* form an integrable
distribution on M "and its integral submanifolds are v -dimensional, totally geodesic submanifolds in M "of constam
sectional curvature K.

Riemannian manifolds whose tangent bundle with Sasakian metric have a constant index of strong parabolicity were
considered in [2]. It was proved that if v is the index of strong parabolicity of the Sasakian metric of TM ™, then V is even
and metrically M? = M,"~*2 x E*'2 and TM" = TM,"~"? x E*.

Borisenko conjectured that an analogous result does not hold for T 1M" (n = 3). That is, a strongly spherical distribu-
tion on T,M", for n = 3, is trivial. We prove this conjecture under certain constraints on the exponent of sphericity.

Thus, the goal of this paper in to describe manifolds the Sasakian metric of whose spherical tangent bundle has
censtant index of sphericity v .

In dimension n = 2 it is known that if M "is the standard sphere S?, then 7,5 has constant sectional curvature 1/4
[3]. This means that in the sense of definition (1) v = 3 and k = 1/4. In this paper we prove

THEOREM 1. Suppose that the Sasakian metric of TyM" is v -strongly spherical with exponent of sphericity &. The
following assertions hold:
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a) v = 1 if and only if M?has constant Gaussian curvature K # 1and k = K2/4;

b) v = 3 if and only if M”has constant curvature K = | and k = 1/4;

¢) v = (, otherwise.

THEOREM 2. Suppose that the Sasakian metric of TiM™ (n = 3)is v-strongly spherical with exponent of spherici-
ty k. If £ > 1/3 and k#1, then v = 0.

REMARK. In dimension n = 3 Theorem 2 is true assuming that k & {1/4, 1}.

Let us denote by (M", K) a space of constant curvature K.

THEOREM 3. Suppose that the Sasakian metric of Ti(M", Ky (n = 3) is v-strongly spherical with exponent of
sphericity k. The following assertions hold:

a)v=lifandonly if K = 1, k = 1/4:

b) v = 0, otherwise.

L. Preliminary Information and Results.

Let (M", g) be a Riemannian manifold. The linear element of the Sasakian metric of TM "has form ds2 = gindqdgt
+ gaD¥E'dE*, where (¢!, ..., ¢") are the local coordinates on M*, E‘are the coordinates of the tangent vectors in natural
basis (3/dg;), and dt' = dt' + I';'Edq". Introducing the notation dg = dg'd/a¢, ¢ = £'3/dg', we can rewrite the formula for
the linear element of the Sasakian metric as

de*=<dq, dg>+<Dg, DE>, (2)

where <-, -> denotes scalar vector product in metric g.

Let O = (g%, ... ¢, £ = {£!, .., £"} be an arbitrary point of TM ™. An arbitrary tangent vector Xto TM ™at (0,
£) has the form X = X'9/aq’ + X"*13/8£'. Two mappings . Tip 4 TM" = ToM™ and K:Typ 1 TM" > TuM® acting in local
coordinates in the following way are defined [4): ILX = Xa/aq, KX = (X+f + I, /XiE53/dg'. The decomposition
Teo.)TM" = HpnTM" & V@, £)TM", wllere H o ¢y = KerK, holds with respect to these mappings.

Accordingly, any tangent vector Xto TM "is represented as X = X# + UV, where X, U € ToM" and X €
Hig yyTM", UY € Vg 1y TM", moreover, in local coordinates X = X'3/ag' — Ty Xigkaiat!

If we denote by «,»the scalar product of vectors tangent to TM "in Sasakian metric, the we can easily obtain from
(2)

X, Pr=<IlX, N.¥>+<kX, 2¥> Q)

H(% g and ¥ 4 are called, respectively, a horizontal and a vertical subspace at (Q, ) and since X¥ € Hig ey U= Viosr
X "is called the horizontal lift of vector Xand U/ ¥the vertical lift of vector Uat (Q, £). Vertical vectors are tangent to the
fiber while horizontal vectors are orthogonal to it.

The tangent bundle of the unit vectors of T;M" is subbundle TM "defined by <£, £> = 1. The metric on M is
defined as a metric of a hypersurface in TM".

The unit normal to T,M "at every (Q, ) € T{M" is the vector £V,

Thus, X € Ty 5 TM™ is tangent to T;M” at the same point if and only if <KX, £ > = 0. The converse is also true:
any vector Xof the form X = X¥ + UV, where X € ToM™ and u € Ly (£) is orthogonal to the complement to £ in ToM",
belongs to T nTiM".

In what follows X, ¥, Z... denote vectors from ToM™ while u, Vo X Yo denote vectors from LQl(E).

LEMMA 1 [5]. At every (Q, ) € TiM" the curvarure tensor Rof the Sasakian metric of T M™ is determined by

cﬁ(XH,Y'H}ZH,UH:--CR(I,Y)Z,U)*;«CR(I,U}E,R{Z,Y] E5+
%:n}x.z:e.mr,m g':-+-:- <R(X,Y)E,R(Z,U)E>,
R, "2 W e 9zm (1,1 €,
titx”,r":zH.u"»-;mu.zw,u:»—;ﬂue.nz.mc,u)xm

-Etx”.r“:z".u"»-«n(x.rJz,uw%-rm.zmme.um-

3262



—%(R[ﬁ.zlrpﬁ(ﬁrulx"-

:ﬁixv,yvlzv,uﬂbtu,

HAx .y 2¥ ¥ secy, zoax, ub=<x, 232y, u>,

where Ris the curvature tensor of M "at Q.
Using the result of Lemma 1, it is easy to obtain the necessary and sufficient conditions for strong sphericity of the

Sasakian metric of TM".

Let B bea strongly spherical distribution on T,M". Then at an arbitrary point (Q, £) the vector ¥ € 3"(@ ¢y can
be represented as ¥ = k¥ + VVassuming that h € IL3 g 4. v € KF gy <v. £ > = 0.

LEMMA 2. For the Sasakian metric of 7M™ to be v -strongly spherical it is necessary and sufficient that at every
(0, £y € T\M" for every pair of vectors h,v from L% and KF*, respectively, and any X, ¥, Z € ToM" u, w, x €

Lot ®)
1 1
1) <R[x.Y)h.Z>—I=R(Y.hJIE.ﬂ(K.ZJ£>+E<RII;ME.R(Y.ZIE>+
1
+§<PILr}E.ﬂ[h.Z}EP-;tﬁzﬂl (X, Y)E,v>=k(<Y, h><X,Z>-<X, h><Y,Z>)=0,

1 1 1
2) Em(r,mx,z:--zcn.re,rr',mz,u;x>+5<(vzn] (E,u)X, h>+
+h<u, v><X ,Z>=0,
1 1
3) -z-d?(v,u)h,z:-——d—-:R(E,w)z,Rtﬁ,u:h:Hrcr.r,u}h,z:-o,

4} (1=k) (<u,¥><w, X>=<U , X><W,¥>) =0,

The proof is obtained by applying the results of Lemma 1 to (1) for various combinations of lifts. Because the proof
is simple yet lengthy, we omit its details.

In dimension n = 2 the curvature tensor of the Sasakian metric of T;M" can be written out especially simply in a
special coordinate system on M ™. Let (I}, I;) be mutually orthogonal vectors in ToM?. We superpose I,with § and connect
to (I, b} a normal Riemannian coordinate system in a neighborhood of Qon M 2 Let us call such a coordinate system & -
special.

LEMMA 3 [6]. In a £ -special coordinate system the curvature tensor of the Sasakian metric of 1"IM2 has the form
Rigpy = KU~ (3/4)K), Rizyy = (1/2) 3Kidq', Ryp03 = (1/2) 3K1dg™, Ry3y5 = K¥4, Ry = 0, Ryzps = K*/4 where K(q',
ql) is the Gaussian curvature of M.

Note thar an analgous £ -special coordinate system can also be chosen on M® (n = 3).

2. Proof of the Main Results.
Proof of Theorem 1. Having chosen on M *a £ -special coordinate system, we can rewrite the conditions of strong

sphericity (1) as the following system of equations: Ry ¥* = k(b 655 = ;60055 1, J, L, 5= 1,2, 3.
In this system, in view of the special choice of the coordinate system, ¥ = k!, §2 = &2, # = +! while [, J, L are
arbitrary. Using Lemma 3, we write out this system for some combinations of indices (7, J, L):

] 21 8K
(1,2,1): K[1-= K}h"+= —v'=kn";
4 2 1

3 i 85K
(1,2.2): -K(].-: x}h‘.g.E i

aq*
18K K g
(1,3, 1): = —=h +— v =hv";
2 .1 4
ig
's

(1,3,3): Th‘-—kh*;

x‘
(2.3,3): = himekh?,
{1,3,3) and (2,3,3) imply that either i) K2/4 = k or ii) &' = 0, 42 = 0. By virwe of the fact that ¥ = const and the
point on M? was chosen arbitrarily, 1) means that K = 24/k = const and, consequently, dK/adg! = 0, dK/dg* = 0.
Letting k¥ = K%/4 in the system, we reduce it to
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{1.2,1): K(1-K)h*=0;
(1,2,2): K(1-K)h'=0.

Clearly, for K = 0 and K = 1 the system is identically satisfied. We discard K = 0 since by hypothesis £ > 0. A
so, for K = 1, k = 1/4 the index of strong sphericity is v = 3. Assertion b) is proved. If, however, K#1, then » =
Thus, k' = h? = 0 rurns out to be one-dimensional, v = 1, vertical, and the sphericity exponent is k = K2/4. In case
(1,2,1) and (1,2,2) imply that if K = (g!, g%) # const, then »! = 0 and, consequenily, ¥ is a zero distribution.

If, however, K(q', ¢*) = K = const, then (1,3,1) implies ¥ = K24, Thus, v = 1 and k = K/4. Theorem 1
proved. 8
Proof of Theorem 2.

Since by hypothesis k = 1, letting u = v, w = x in Equation 4) of Lemma 2 and choosing x orthogonal to v(n =
we obtain (1-K)[v|?[x]? = 0. By virtue of the arbitrariness of x, the latter equality implies v = 0.

Thus, if the desired distribution exists, then it is horizontal.

Let 2* be the desired horizontal strongly-spherical distribution on T;M™.

LEMMA 4. If at every @ = (0, §) subspace 7" contains £ then M "has constant sectional curvature egual to o
and k = 1/4.

Proof. Let us consider at 0 € M" the linear operator R(-, £)§: Lot ($) - Lo*(£). It is symmetric, therefore ther
exists an orthonormal basis {e,, ..., e,_,} at Qconsisting of the eigenvectors of this operator. Clearly, its eigenvalues K, (

= 1, ..., n—1) are the sectional curvatures of M "in the direction of area elements (£ A e,) Thus,
R(ey, €) E=Kyey, a=1,...,n-L. (4
Let us consider at Q the orthogonal coordinate system { €1y o €n_y, £

Let & be an arbitrary vector of I, E.

Assume that z = h, w = e, u = e, in Equation 3) of Lemma 2. Then we obtain that 1/4 < Rle,, ), Rieg, £)h >
= ké, "

Consequently, vectors f, = 1/2</k R(e,,, £)h are orthonormal and < foo > =0,

Consider a new orthonormal basis {f;, ..., Ja-1» B} at Q. Since {{e_}. £} and {{f,}, h} are orthonormal, the
transition matrix from one basis to the other is orthogonal, It is easy o see that its elements have the form Gy = (1/2%) <

Riey, Dh. eg >, ag, = (U2VK) < Rie,, Bk, §>, a, = WP, a,, = 1.

g
aa aﬂn n-1 n-1
Because | "l (e, 8 = 1, ..., n~1) is orthogonal, we find 3" a,’ + a, = lor ¥ (1/4k) < Ree,, &) h,
ng “nn o=l a=l
n-1
eg > 1 = 1-(h®)2. Taking into account the symmetries of the curvature tensor, we obtain 1/4k }° < rleg, M), e, >1 =
1—(h%)2. The latter equality, clearly, means that at Q ' a=l
—I-m(e h)€1?=1-(1F)2, g=t,...,n-1. (5)
ak B’ '
On the other hand, if we letz = x = €g, ¥ = h in Equation 1) of Lemma 2, then we obtain
]
<3 2 N !
<R(eg, h)h. eg> I“”,"a' h El*=k(1~(n")?). (6) |

We multiply (5) by 3k and add it 1o (6). We obtain <Rleg, W, eg> = 4k(1-(h")),
The last equality means that K; A ez = 4k = const.
Since his an arbitrary vector from II. £ * and by hypothesis 3 vetf, letting b = £ we find that

kgne#-m.ln M




Suppose now that «is an arbitrary unit vector from Ly (¢). Then for K; A, taking into account (4) and the ortho-
n-1
normality of {e,}, we obtain K; A, = <R(, wu, £> = <R, )5 & > wuf = Y K (4. Bearing (7) in mind, we
=1
obtain Kg Ay = dk.
By virtue of the arbitrariness of the choice of £, the last inequality means that M "has constant sectional curvature
equal to 4k.
On the other hand, letting # = £, 2 = {, u = w = e in Equation 3) of Lemma 2, we obtain 1/4 |R(£, eg)§|* = k.
Taking the choice of the basis into account, we find that 1J4K52 = k. In comparison with (7} it means that k¥ = 1/4.
Consequently, the sectional curvature of M "is equal to one. The lemma is proved.
LEMMA 5. If k > 1/3, then 27 » £/ and, consequently, v = 0.

Proof. Let / be an arbitrary vector from L Z v, @ = (O, £).
Let us introduce in a neighborhood of @ the coordinate system described in Lemma 4. Letting ¥ = ¢, X = Z = §

in Equation 1) of Lemma 2, we obtain <Rle,, £){, h> —3/4<R(h, £, Rie,, £)> —kh* = 0. Taking (4) into account, we
arrive at

(xu-; Ki-K)h®=0 (a=1,..., n-1}. ®

If none of the K_is a root of
t.—gt’—k-o, 9
thenh® =0, « = 1, ..., n—1. Since k > 1/3, (9} has no solutions. Consequently, i = £. According to Lemma 4, however,

in that case & = £. We have a contradiction. Hence, # = 0 and the distribution is trivial. The Lemma is proved.

The application of Lemmas 4 and 5 proves Theorem 2.

Proof of Theorem 3. Let (M®, K) (n = 3} be a manifold of constant curvamure K. Then R(X, Z = K(<VY.
Z>X— <X, Z>Y) for any vectors tangent to M".

Formulas 4) of Lemma 2 imply that if ¥ # 1, thenv = 0.

If k = 1, then the constancy of the curvature of M "and, for X = Z(|Z| = 1), u = v Equation 2) of Lemma 2 imply
V4| RiE, vZ|2—|v|? = 0.

Choosing Zto be orthogonal at the same time to both £ and v, we obtain that v = 0.

Thus, %% is horizontal. We let Z = w in 3) of Lemma 2 and choose wfrom the orthogonal complement to the
arbitrary vector . Using the constancy of the curvature, we arrive at KI2(1-K/2) < u, h > = 0.

It is can be trivially verified that K = 0 implies & = 0, which is inadmissible. If K = 2, then letting Z = & in 3) of
Lemma 2 and assuming w to be orthogonal to &, we obtain </, w> = 0. If K # 0 and K # 2, then <k, u > = 0 for
any uorthogonal to £ . Consequently, f=E and we can apply Lemma 4,

Thus, ¥ s not trivial if ¥ =t v =1,k =14, K = L.

It is easy to verify that the converse is also true.

The theorem is proved.

Proof of the Remark. In a neighborhood of Qon M "we consider the coordinate system described in Lemma 4. Let
K = Ksnfl, K, = K;f\,2 be the solutions of (9). Then K| = 2/3(1 + T=3k), K; = 2/3 (1-/T=3k), where 0 < k =
[/3, Letting x = z = e;,y = £, and thenx = z = ¢,, y = ¢ in 1) of Lemma 2, we obtain R;;,,(1—-3/4 Kl)i:2 = 0,
Ryssa(1=3/4 Kpph' = 0.

The case of ' = k? = 0 is considered in Lemma 4 and leads to & = 1/4, which contradicts the hypethesis.

Suppose that Ry5;3 = Rjs23 = 0. Then letting firstu = w = &;, 2 = e; and then ¥ = w = ¢, z = e in 3) of
Lemma 2, we obtain kh® = 0, kh' = 0, which brings us back under the conditions of Lemma 4. Finally, if Ry5;5 = 0 and
Rysp; # 0, then 2 = 0. Then letting x = z = e;,y = £ in 1) of Lemma 2, we obtain Ry393(1—3/4 Ky)h! = 0. Consequent-
ly. #' = 0 and we again find ourselves in a situation where Lemma 4 is applicable. The case of Ryyy5 = 0, Rypy3 # 0 s
considered analogously.
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