THE CURVATURE OF THE SASAKI METRIC
OF TANGENT SPHERE BUNDLES

A. L. Yampol'skii UDC 513

We study the sectional curvatures K of the Sasaki metric of tangent sphere bundles over spaces of
constant curvature K (T (M", K)). We give precise bounds on the variation of the Ricci curvature
and a bound on the scalar curvature of Ty (M",K) that is uniform on K. In an appendix we
calculate and give lower bounds for the lengths of closed geodesics on T3 5". Bibliography: 10
titles.

Let M™ be an n-dimensional Riemannian manifold. Under its natural topology the set of all vectors
tangent to M™ forms the tangent bundle TM" with base M™, fiber E™, projection 7 and structure group
GL(n).

If we consider tangent vectors only of unit length (resp. of length A > 0), we obtain a subbundle
TyM" (resp. TxM") of the tangent bundle TM" with base M™, fiber "' (resp. Sy~!) projection m
and structure group SO(n), which is called the tangent sphere bundle over M™. The fiber over € M" is
denoted M;.

In 1958 Sasaki [1] constructed a natural Riemannian metric on TM™ and T; M™, thereby founding the
metric study of tangent sphere bundles of Riemannian manifolds as independent objects. To be specific, if
() are local coordinates in a neighborhood U C M™, then the element of length on TM™ is defined by
the equality

dﬂz =gijd$id$j +g",'DUiDUj; i,jil,.¢.,ﬂ, {l]

where g;; are the components of the metric tensor of M" and Dv' = dv* + T}, v’ dz* are the covariant
. . . b3
differentials of the coordinates of the tangent vector in the natural basis (-@)

The coordinates (z',v%) are local coordinates in TM™. As Dombrowski [2] has shown, at each point
7 € TM"™ the direct-sum decomposition TM} = HT M} @V TMj, where HTM7 and VT M7 are mutually
orthogonal subspaces of dimension n, called horizontal and vertical respectively. The vertical subspace is
tangent to the fiber.

To each vector field X on M™ there corresponds a unique pair of vector fields X* and X* on TM",
one of which is horizontal and the other vertical [2]. They are called the horizontal lift and the vertical lift
respectively.

Over Ty M™ there exists an adaptive frame bundle consisting of the frames {e;,...,en1;€n; f1s-+ 03 fa-t }
such that e,,...,e, are horizontal and f1,..., fa—1 are vertical; moreover ¢, is the horizontal lift of a given
(unit) vector Z € M7, z = m(Z), and dme; = Kfi (1 =1,...,n— 1), where K is a connection mapping
(3, 4]. At the given point Z € Ty M" we have the decomposition Ty M3 = HT\M3 & Lz @ VT M7z, where
HT M} is the horizontal (n — 1)-subspace with basis {e1,...,€n-1}; Lz is the one-dimensional horizontal
subspace {e,}; and VT M} is the vertical (n — 1)-dimensional subspace {fi,...,fa-1 }-

Hweset X* =z and X"+ = v, the metric (1) can be represented in the form (1): do® = G1s ax'dx’?,
I,J=1,...,2n, where

Gij = gij + gu r?gr;19'9‘1

(2)

Ginsj =lisj v’y Guypinti =8y HJ=1...,n

Ty M" is defined as a subbundle of TM™ by the condition that the tangent vector be of unit length:

gav'v =1 (3
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The metric induced by the metric (2) and the imbedding (3) is called the Sasaki metric of T M™,
We denote the tangent sphere bundle over a manifold M™ of constant curvature K by Ty (M™,K). The

purpose of the present paper is to obtain bounds on the variation of the sectional curvature of the Sasaki
metric T (M™, K). We shall prove

THEOREM 1. The sectional curvature K of the Sasaki metric of the manifold T, (M", K) is nonnegative
ifand only if 0 € K < 4/3.

THEOREM 2. The sectional curvature K of the Sasaki meiric of Ty S™ ljes within the Iimits 0 € K < 5/4.
THEOREM 3. a) The Ricci curvature Ric of the Sasaki metric of the manifold Ty (M", K) lies within the
limits
() n=2: K'[2<Rie<K(2-K)/2 for 0<K<1;
K2-K)<Rie<K*/2 for K<0 or K>1;
() n>3: KQ@-K)n-1)/2<Rie<K@n-1)-K)/2 for 1<K< n—2;
K@2-K)(n-1)/2<Ric<(K*+2(n—2))/2 for K<1 or K>n—2

. b) The scalar curvature R of the Sasaki metric of the manifold T, (M™,K) satisfies the inequality
R < (n—1)(n* + 2n —~ 4)/2. Equality is attained when K = n.

In the Appendix we give lower bounds for the lengths of closed geodesics of the Sasaki metric of T 8™,

1. The Sasaki metric of T)(M ", K) and its curvature tensor. Without loss of generality we
may assume that g,., # 0. Then (3) defines a differentiable imbedding Ty M™ — TM™ given locally by the

function

" :u"(zl,...,z";ul,...,v“"l], (4)

and (z',...,2",v?,...,o"" 1) is a local coordinate system on Ty M", which we shall call the natural system.

LEMMA 1. In natural coordinates the metric tensor of Ty M"™ has the form:

Gik = gir + Tie P{, I“HU'U. + I‘ﬁ.n vtAk + I‘ll,n v‘Ai + gnnAl'Ai ]

G,',,H.p = I‘g.'.p vt + I‘,,-},. t”Bp + Q'npAi + Gnn Ai By, (5)
Gn+qu+p = gep + gnp By + gng Bp + gnn By By,
1 agl:

where By - _gip”ilgin“u and Ay = — S (i, k1, 5,8 = L..onpg=1,...,n -1).

29.',., v 8xk
PROOF: Differentiating (3), we obtain d(gi;v'e?) =0, i.e.,

0gi; ; ; AR i i _
(ﬁv v + 2ginv E)d: +2(g¢,v + gin v o dvf = Q.
We set
" 1 gy , ,
A Oz 200 Bzt U ? (©)
_ov" g
Br = ﬁ - _g‘_nv;' (7)

By definition the metric of 7} M™ is induced by the metric (3). Having in mind (4), (6), and (7), it is easy
to verify that B ~ ~ ~
Gik = Gix + Ganx Ai + Gizn Ak + Gapan A; A,
G:‘n+p = _in+p + éﬂn Bp + éznn+p Ai + é!n:n A;B,,
Gn+qn+p = én+qn+~p + Gimﬂn Bq + Gn+q2n Bp + @hﬂn Bqu-
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Substituting (2) here, we obtain (5).

The curvature tensor of the metric (2) was computed in [5]. We shall compute the curvature tensor
of the metric (5). We agree that 1,j,k,/,e = 1,...,n and p,q,r,t = 1,...,n — 1. By the symmetry of
the fiber the value of the curvature tensor of Ty M" is independent of the “fiber” coordinates of a point.
Therefore without loss of generality we shall calculate the curvature tensor at the point (z,0) € TiM"™.
As local coordinates of the base we choose the Fermi coordinates along a geodesic z™. Then at the point
z € =™ we shall have

g 99 _ 189 _p
g'l - 61.1! azl — W 2 a:l:i 3:* - Rmuk (8)
_ B
Th =T =0, —-3::" = —Rpink »

where R is the curvature tensor of M™ at the point z and &; is the Kronecker symbol. From condition (8)
and equality (3) it follows that

" =1 9
at the point (z,0). From (6) and (7), taking account of (8), it is easy to obtain at the point (z,0) the

relations
A, =0, B,=0,

aA, 8B,
e Roinj » Fri 0, (10)
A _ o 9B, _
vt S pa
Finally, substituting (8) in (5), we obtain
Gi_f = 51',15 § Gi!l-l—p =0, Gn+qu+p = 6;« . [11)

In what is to follow, we shall need the first and second partial derivatives of the metric (5) at the point
(z,0). Taking account of (8)—(10), it is easy to verify that

G _ G _
axi % B = 0,
3G;n+, arru' P aG!'n+P
= = . =0 12
dzi axi dve ! (12)
aGn+qu+p =0 lE’G'ﬂ+m+p =0
gz e

and
8Cu  ga | OTg ke , g nka

8zidr!  Jrigrt = dr AT ot 9z’

*Gu P*Ga #Gintp _ Trip
dzidwr | 9widwr | 9dzidxd  Bvort’
3zcm+p = arqi.r 62(;‘.-,,_”, =0 [13]
Oz dvd dzf ’  Ovr o !
inﬂ*quP =0 a=Gn+qn+p =0
A7 3zt ’ dzi dv* ’
ag Gn+qn+p

vigr e el

From (12) we find the following expression for the Christoffel symbols T' of the manifold T; M™ at the point

(z,0):
) . 1[8Tp, OTn;
I‘l'j,i: =D} rfj,ﬂ+ﬂ = 5( az:rp +T;;l)1
; 1(8Tas,  OTmiy (14)
intek T o\ "9r ozt )’
fn+qn+p.k =fin+p,n+q =I-‘Il+"l+p.1l+q =0,
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where T' is the Christoffel symbol of M™ at the point z. From (11), (13), and (14), we obtain by direct
computation the following components of the curvature tensor R of the manifold Ty M™:
Rijn = Riju + (1/4)(Ritna BZj + Risna Roi) + (1/2) Rijna B2y,
ﬁijkﬂ&q = (Uzlviﬁum ’
Rijnspnse = Bijpg + (1/4) Rianp Ry = (1/4) Riang By (15)
ﬁin+:'in+~1 = (1f2]R-'lw - [ll‘l)-&nnq R:,,,s
ﬁin+pn+rn+q =0, éﬂ+tn+pu+m+q = b bpg — 850 8yq.

From this we find the nonzero components of the curvature tensor for T} (M™, K):
fzvm' =K, émanq = K(1- 3K/4), ﬁpvﬂmﬂ =K(1- K/4), f“vn+mn+q = K/2, (16)
an+ppn+p = K= /41 Rnn+pnn+p = Kiliqs Rqﬂ+pn+qp = K(l - Kffz)/zl Rn+qn+pn+qn+p =1L

Indeed, taking account of (8) in this case,
Ry = Riju = K(gax gt — Gagix) = K (8 by — 8ub;s).
We substitute this value in the first of Egs. (15):

Riju = K(bix b — 6:;6;) + (K* /4) Z[(ﬁenﬁa = Gia b1n ) (Bak bnj — 6o bni )+
(fi'u 5&« - Eia "Skr: )(50;1' Bn; - §a¢ anjl] + 2(6&16)‘« = Jiu 'sjn)('suké‘nl - éal "5nl )] =
K (& b1 — 8ubjn) — (3K [4)(bix bin bin + 61 6inbin — 8160 6kn — bk binb1a ).

Hence we obtain R,g,, = K and Rpgng = K (1 — 8K/4). Other combinations of indices give 0. The
remaining formulas are obtained similarly.

2. The sectional curvature of T} (M™,K). Let X and Y be unit orthogonal vectors tangent to
Ti(M", K) at the point (z,0). The sectional curvature X of the manifold T; (M™, K) at this point is given
by K = Riyey X'Y? XKV, where I,J,K,L = 1,...,2n — 1. Taking account of the symmetry of the
curvature tensor, we obtain K = Ry, (X'YY — X7¥T)(X¥YL — XLVK). We introduce the bivector
§ = X'Y? — X?Y!. Then K = Rijkp S SKL — B0 SASE, where A = (I,J) and B = (K, L) are
collective indices, and

D _(5%) =1. (17)
Thus, using (16) we find !
K=Y Raa(5%) +2 Y Rapsts® =
A A#B
E :li [K(SP7)" + (S™P™+4 )2 £ 2K (1 — K/4)§P9 gnton+a 4
o KSPne? St K(1 - K[2)SPmte gontr |4
zl{ﬂ' [2)(8™F ) 4 (K?/2)(87™* )? + K(1 - 3K/4)(S"")?]. (18)

If we use one of the conditions for simplicity of the bivector:
SPAGnEPIte _ gpntp cantq | gpntq gantp _ 0, (18)

one can verify the following fact.
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LEMMA 2. The sectional curvature of the Sasaki metric of the manifold T (M™, K) is calculated from the
formula

[*

n—1
E [K[SN')? +K(3 — K].S‘P‘f gniente (S“”’""' )3]
g=ptl

n—

K=

it

P

n—-1 2 n=1

+ (K’M]( Y semie ) + Y [K(1 - 3K/4)(57)2 + (K*/4)(8™* )", (19)
p=1 p=1

where S™ — XTY7 —X’ ¥ are the components of the simple bivector corresponding to the two-dimensional

area of the orthogonal vectors X and Y.

Theorem 1 follows easily from Lemma 2. Indeed, let 0 < K < 4/3. Then K*(3 — K)* < 4K and
consequently each group of terms in (19) is nonnegative. Conversely, if K <0 or K >4/3,then K <0on
areas for which §P* = 1. For example X = (0,...,0;1;0,...,0), Y = (o,...,0,1,0,...,0;0;0,...,0).
REMARK. For n = 2 this result was obtained by the author [6].

Consider (19) as a quadratic form on the unit sphere (17). Then the extrema of K coincide with the
largest and smallest eigenvalues of the coefficient matrix of (19). As a result one can obtain the following
estimates. ~

The sectional curvature K of the Sasaki manifold T} (M™,K) forn > 3 satisfies the following inequal-
ities:

K< (K+1+ VK- +K2(3- K)?)/2 for —oo <K <(11+V57)/2;
K < K*/2 for (11+v57)/2< K < +o0;
K> K(1-3K/4) for —oo<K<-2(3+V39)/5 and 4/3<K < +oo;
K20 for 0<K <4/3;
K> (E+1-(K-1)? +K(3-K)?)/2 for —2(3+V39)/5<K<0.

For n = 2 there are sharp bounds. To be specific the sectional curvature K of the Sasaki metric of the
manifold Ty (M?, K) lies within the following limits:
K(1-3K/4) < K<K'/4 for K<O0 or K>1;
K?/a< K <K(1-3K/4) for 0SK<L
Indeed, for n = 2 Eqgs. (19) and (17) have the form
K = (K?/4)(S2) + (K*/4)(S™)® + K(1 - 3K/4); (S™)* +(5")" +(5%)" =1,
so that K = K?/4 + K(1 — K)(5'%)?, from which we obtain the desired bounds immediately.

REMARK. The mani!’ald T,(M?*, K) is a manifold of constant curvature only for K =0and K =1. In
these cases K = 0 and K = 1/4 respectively. For K =1 this result was obtained by Sasaki and Klingenberg

[7].
Analogous results hold also for T, (M", K). We note only

LEMMA 2'. The sectional curvature K of the Sasaki metric of the manifold T\ (M™, K) is calculated from
the formula

A-2 n-1
R — Z z: [K(Spq}z + K(3 — )2 K}Spqsn+pn+w + (1/;3)(sﬂ+ﬂﬂ+? )3]+
=1 g=p+1
’ ! n—1 2 n—1
(A*K?/4) ( 3 s'"'*") + YK (1 - 32 K/4)(S™")F + (AT K* [4) (™7 )P,
p=1 r=1
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THEOREM 1'. The sectional curvature K of the Sasaki metric of the manifold T) (M™, K) is nonnegative
ifand only if 0 < A’ K < 4/3.

The proofs are the same as in the case A — 1. For n = 2 this result was obtained by the author [6]. It
is also easy to see that if n = 2 and \? K — 1, then K = K/4, as was obtained by Nagy 8].
Let us consider in more detail the case K — 1, i.e.,, when M™ is the unit n-sphere. Then we have

LEMMA 2". The sectional curvature K of the Sasaki metric of Ty S™ is

n—2 n-1 =1 2 n—1 n=1
T N 3 R 3y
p=1 q=p+1 p=1 r=1 =1

PROOF OF THEOREM 2: Let X and Y be two orthonormal vectors constituting an elementary tangent
area to T;5". As was shown in § 1, it is possible to choose a coordinate system in T7S™ so as to be
orthogonal at a given point. In addition one can adapt the coordinate system to a given elementary area
as follows.

Let {er, ... enrieni fiyeon) fuoy } be an adapted basis of the fiber TT; 5" at the point (z,0) € T, 5™.

n=1 =1 - -
Then X = 3 zfe, + 2%, + 3. VPf, = X + 2%, +V. In general X # 0 and V # 0, so that one can set
r=1 P=1
o= X/ X, e € AT, ", and f] = (dm - €))°, i € VTy 5.
n-1
In the plane of the vectors fiand V =3 o# f» we choose a unit vector f3 orthogonal to f]. We set
p=1

& = (Kf;)*. Then ¢, € HT;S™. In the subspace HT; 5™ we choose a unit vector e orthogonal to ¢} and
&y We set fy = (dn,e}). Continuing this process, we obtain a basis of TT,5", which we shall call adapted
to the given elementary area. In this basis

X = (z‘,o,...,o;z“;u‘,u’,o,...,u),

21
Y_—.(y',y’,...,y"‘l;y";wl,w’,...,w"_lj. )
We shall show that K < 5/4. From condition (17) we find
n-2 n—1 n-1
1= 2[34)2 — Z Z [[Spq}2+(sn+pn+q ]3+(Sm+q }=+(Sqn+p ]1]+E[{Spn+p )2+(Spn}:+(srm+p )2]
A P=1 g=p+1 r=1
Therefore
n-2 n-1
5/4-K = '.'.5,*'4]‘F D [(S7E)7 4 (Smombe )1 4 (gonta gt g (gemt Y1+
i‘ p=1 g=p+1
“:1 n-2 n-1
L[[Spnﬂa }2 + {Spn )2 + l‘snn-l-p ):]} _ E Z [Spq + gntente }!_
p=1 p=1 q=p+1
i— n—i 2 n=1 n—1 n—=2 n-1
(35 )+ sy P P|=% 3 sy sy
r=1 p=1 p=1 =1 g=p+1
=1
BISTITE +(5/4)(S7™0)! 4 (5/4)(S™P )7 (1/2) 57 504 |1 Y (550 24 (5702 4 (57007 12
r=1
Using the identity (18'), we obtain
n—2 mn-1
K =D D0 (87 = 8™ ) (5/4)(ST) + (5/4)(S™ ) 4 (3/2) 70 s 4
r=1 g=p+1
n-1 n=2 n-—1
Z(Spn-ﬂi ]: —92 Z E Spote ganta
=1 r=1 g=p+1

113



n=1 n—-z n=1
But it follows from (21) that $*"*? =0forp=3,... .n—1,whence ¥ (S"™*?)* -2 % ) Sente gantds =
p=1 p=1 g=p+l

{slrﬂl ]2 + (SEn+2 )2 _ 2sln+1 S!n-rE _ [Sln+l _ S:n+2 )3_
It is now obvious that 5/4 — K > 0. We remark that K =5/4 in the following circumstances:

gre _ gneete =, gente — QIMtP =, gintl _ g+t _ 0, 5™ = grntp — 0, [22)

which hold, for example, for the vectors
X = (1/v2,0,..-,0;0;0,1/v/2,0,...,0), and Y =(0, 1/V2,0,...,0;0;-1/v2,0,...,0).
The inequality K >0 is obvious. We note merely that equality is attained when

57 + S-n+pn+q - 0, Sln+1 +siu+2 =0, S = Snn+p =0, (23}

which hold, for example, for the vectors
X = (1/¥/2,0,...,0;0;0,1/v2,0,...,0), and Y= (0,1/v/2,0,...,0;0;1/+/2,0,....,0).

We shall show that the choice of vectors indicated in the examples is not accidental, One can show,
using [9], that T3 5% is a totally geodesic submanifold of T; S". Therefore the distribution of the sectional
curvature of Ty S coincides with the distribution of the sectional curvature on T} S*. It turns out that at
each point of T)S5° there exists a_d-urthofra,me'XhX,,Xs,X; such that K(Xy,Xa) = K(X3,X4) = 5/4
and K(X1,Xs) = K(X1,X0) = K(X0, X3) = K(Xa,X4) = 0, where K(X;, X;) is the sectional curvature
of T, S? in the direction of the elementary area of the vectors X, X; (1,7 =1,..-,4)-

Indeed, for T, $* Eq. (20) has the form
K= (5% + S 4 (1/4)[(S™ +5%) 4 (S) + (8% + (S*) + (5%
According to (22) we have K = 5/4 if
gt _ g =g, §M_s§"® =0, S§B=sM=0, §¥=5°=5"=5=0. (24)

Suppose X = (z!,z?,2%,v!,v*) and ¥ = (y*, 4%, v°, w',w*) are the vectors determining the elementary
area, i.e.,

{:I}i + (21]! + (Is): + [VI)Q ¥ {v:)z =1,

(') + )+ ) + () + (@) =1 (25)

Dyt 42ty 4ty e+ viw? =0.
Then from the fourth of the equalities (24) it is easy to obtain 2% = y? =0, Passing to a basis adapted to
the given elementary area (2* = 0), we obtain a system of equations composed of the first three of equalities
(24) and the third equality of (25):
iyt - v'u? + vw! =0,

2wt -yt +yto? =0,

'yt + ol +vtw? =0, (26)
2wt —yte? =0,
—y’vl =0.

From the last equality of (26) we obtain one of two possibilities:
a) y* = 0, from which §** =0 and G2 — 0, The first two of conditions (23) give $*° = §' =0, and
therefore S is the zero bivector. This is the degenerate case.
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b) v' = 0. In this case we regard the first four equalities of (26) as a homogeneous system of equations
with respect to y',y*, w!', w?. For this system to have a nontrivial solution it is necessary and sufficient
that its determinant A vanish. It is easy to verify that A = (v?)4 — (2! )*. From A = 0 it follows that
(=) = (v*)* = 0.

1) If 2! = v* (both are nonzero, since otherwise we would have X = 0), we obtain from the second
and third of Egs. (26) the equations y! = w? = 0. From the first equality of (26) we then find w! = —3?,
Finally, from the first two equalities of (25) weget 2! =v* =1/y/2and —¢* = w! = 1/v/2. Thus

Xi = (1/v2,0;0;0,1/v2) and X, = (0,~1/v/2;0;1/v/2;0).

2) If 2! = —v*, we proceed as in Case 1), obtaining two other vectors X, = (1/v/2,0;0;0, ~1/+/2) and
X¢=(0, I/vﬁ;l};]fx/z;ﬂ]. It is not difficult to verify that the pairs (X, X;), (X1, X4), (X3, X5), (X2, X4)
satisfy conditions (23) also and consequently K(X1,X3) = K(X;,X,) = 5/4; K(X(,X;s) = K(X1,X,) =

KXy, X;3) = K(X;,X,) = 0. We remark finally that the vectors X;, Xy, X3, X, form an orthonormal
frame at the given point.

3. The Ricei curvature and the scalar curvature of Ty (M",K). Using (15) we obtain the
following components of the Ricci tensor R of the manifold T, M™:

n n—1
}.Ei.k = Ry + (3}{4) ERilnn R:u - {1/'4] Z Riont Rj:u ’
i=1

=1

fz{n-}—q = _(1/2]EVIREIM ’

=1

n
Bovpneg = (0= 2)85g ~ (1/4) ¥ Riang R, -
I=1

From this we ubiain for #, (4", K):
I}w = [2(“ ) 1} - H]K/2, Rpn = (2 - K](n - I)KfZ, ‘ﬁ'n-i-pnﬂ = {K: + 2[“ - 2}”2‘ [27]

PROOF OF THEOREM 3: a) For a unit vector X = (z',...,2" ;2" ), ... y"1 ), since we have (11) in
natural coordinates, we tind

=

n—1 1
Ric=")" Ry (2°)* + Ran (2")* + ¥ Ruspmsp (v°)%.
r=1 =1

This expression is a quadratic form on the unit sphere. Its extrema are the largest and smallest of its
coefficients. It is easy to verify that

Ry — Ron = K*(n - 2)/2, ﬁpp _Izn+pn+p =—(K-1)[K ~(n-2)],

~

Ron = Rutpniy = —(1/2)[nK? = 2(n — 1)K +2(n - 2)].

This implies the following inequalities:

Ry > Roy for n32;
By 2 Boppnip for 0KK<1, n=2 and 1<K<n-2, n33
Ron > Ruipnyy for 0KK<1, n=2
Ry < Rospnsp for K>1, K<0, n=2 K<l, K>n-2, n>3

Rnn ‘C: ﬂ+pﬁ+p fﬂr n ? 3-
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Assertion a) follows immediately from this. _ )

b) Using (27) it is easy to see that R = —(1/2)(n - 1)[K? + 2Kn — 2(n — 2)|. Hence Rmaz =
(1/2)(n = 1)(n® +2n — 4) for K =n.

Appendix. An estimate of the lengths of the closed geodesics of T S™. A curve I' in HhM*
is called horizontal (resp. vertical) if its tangent vector at each point is horizontal (resp. vertical).

As Sasaki [9] has shown, the geodesics of T; 5™ divide into horizontal, vertical, and umbilic types, which
under certain conditions can be closed. Geodesics of umbilic type divide into 3 classes as follows.

Let T be a geodesic of 735", and let x, and x; be the curvature and torsion of the curve v = m[; T
is a geodesic of class:

(1), i =0, k=1...,n
(#), if x>0, m=0, k=2,...,n
(i#1), if >0, % #0, =0, k=3,...,n

Let £ be a unit vector tangent to ; let ¥ be a unit vector field along ~ defining the curve I' = (1,9)
in T, S"; let ¢ be the derivative of y with respect to arc length on I'. We use the notation cos = (&1,
cosp = (1/¢)(€1,y'), where ¢ = (y',¥'}.

Let (z',z?,2°,2*) be cartesian coordinates in E*. A Clifford torus is by definition a surface T*(a)
satisfying the conditions (z')? + (2*)? = cos?(a/2), (#°)" + (z*)? = sin’(a/2), where 0 < a < 7/2. If
we set A = cos(a/2) and p = sin(a/2) (\* + u? = 1), then T?(a) has the parametrization z! = Acos,
22 = Asinf, 2% = pcosp, z* = psinyp. The linear element of T?(a) is ds* = A%d¢* + ptdp®. The curve
C(a,m) on T?(a) defined by the equations

2! = Acost, z* =Asint, z°=pcos(mt), z'=usin(mt),

is called a simple helix in S%. A simple helix in S™ is defined to be a simple helix in §% C §".
The curvature and torsion of a simple helix are given by

xf - Agug(l _mu)z/(lz +m2”2]2, x; =m!/(32 _I_m:pz)z_ [28}

The condition for a simple helix to be closed is that m = p/q should be a rational number. In this case
its length is 2m\/A%p? + plg?.
THEOREM 4. Let T be a closed geodesic of Ty S™ of length {(T). Then I(T') =27 if I' is of horizontal type,
vertical type, or umbilic type of class (i1); I(T) = 2n(p/q)\/p* + ¢ > 27p if I is of umbilic type and class
(1); UT) = 21PN + g2 ut /1 + # (cosp + [z /31)?)? + (1 + (%2/%)?)? cos? ¢ > 2mmin(p, q), where p
and g are natural numbers defining the (closed) curve ¥ = mT; A and y are the parameters of the Clifford
torus; and x; and x; are the curvature and torsion of the simple helix v = mT.

PROOF: Let o be arc length of the curve I' C T;S™ and let s be arc length along the curve v = m T,
y C 8", If 4 = z(s), then I' = (z(s),y(s)), where y(s) is a unit vector field along z(s). The geometric
meaning of the Sasaki metric of 775" [10] is that do? = ds* + d0?, where @ is the elementary angle of
turning of the unit vector field y(s) along the curve z(s).

A geodesic T' of horizontal type is generated by a parallel vector field along a geodesic of S™. Then
df = 0, and do® = ds*, whence I(T') = 2.

A geodesic I of vertical type is a great circle of the fiber. Consequently I(I') = 27. A geodesic [
of umbilic type of class (1) is generated by a vector field ¥ = cos(co)lz + sin(co)ls [9] along the geodesic
~ C 8™, where I, and I3 are orthonormal parallel vector fields along v, tangent to S" and orthogonal to 7;
c=const,, 0 <e <L

For the vector field y(o) to be closed it is necessary that co = 27p, where p = 1,2,... In this case the
d

s
great circle of S" is traversed possibly ¢ times: s = 27¢, ¢ = 1,2,... But according to [9] i V1-¢l
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Thus T is closed if and only if ¢/v/1 - ¢? = p/q. Hence ¢ = a/vp* +¢* and o = 27(p/q)\/p? + ¢*. Thus
(T} = 2n(p/q) \/pT + ¢*, where p and ¢ are mutually prime natural numbers determining a closed geodesic
of umbilic type and class (i). It is obvious that I(T) > 2xp > 2.

The vector field

y(s) = cospéy — (ccos¥/V1—cx))& — (41 /x1)6s, (29)
where (£1,£3,€s) is a Frenet frame of the simple helix, determines a geodesic of T} S" of umbilic type and
class (i31). Here x,, »,, ¢, cos, and cos ) are constants connected by the relations

4G =c?[(1 - ¢F), cos® o+ cos® P = (1 — ¢?)ud /2, (30)

It follows from (29) that the geodesic is closed if its simple helix is closed. We set up Fermi coordinates

along v in §”. Then g;; = &; along . Consequently the Sasaki metric is also diagonal along v, and I(T') =
a

[ V1t ds,a=1(), where §* = x}(cos o+ (x3/x)?)? +¢? cos? ¥/(1—e*)+¢* cos® (xg /31)? /(1 —¢2).
o

Teking account of (27) we obtain §? = »¢[(cos p + (%3 /2,)?)? + (1+ (»2/)?)? cos? ¢]. Taking account of
the fact that x,, #,, cos g, and cos ) are constants, we find

HT) = 2my/p2 A7 4 g2t \/1 + xj[(cos p + (%2 /30)?)? + (1 + (52 /%1)?)? cos? ¢]. (31)

It is now obvious that
UT) > 2mv/p*2A% + g*u? > 2m min(p, g).

If we set »; = 0 in (31), we obtain an expression for the length of a closed geodesic of umbilic type
and class (#1) [9]. In this case it follows from (28) that m = p/¢=0and % = A/u. Hence p = 0 and the
first closing of 2 geodesic of class (17) occurs for ¢ = 1. Therefore UT) = 2xpv/1 + »F = 27m/A? + p? = 201,
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