THE SECTIONAL CURVATURE OF THE SASAKI
METRIC OF T, M"
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We study the tangent bundle of vectors of fixed length on a Riemannian manifold. We give
sufficient conditions for the sectional curvature of the Sasaki metric on the tangent bundle of
vectors of fixed length to be nonnegative. Bibliography: 6 titles.

Let TM" denote the tangent bundle of an n-dimensional Riemannian manifold M"™ with metric g.
There is 2 natural Riemannian metric (the Sasaki metric) on TM™, which we denote Tg. If in each fiber we
restrict ourselves to vectors of unit length (or length A > 0), we obtain a subbundle Ty M™ (resp. T\ M")
called the spherical tangent bundle. The metric G induced on T\M"™ by the metric Tg is called the Sasaki
metric of TyM™. The purpose of the present article is to obtain sufficient conditions for the sectional
curvature of the metric G to be nonnegative.

INDEX CONVENTION. All indices denoted by lower-case letters (except p and ¢) assume values from 1
ton. The indices p and ¢ assume values from 1 to n — l,and A,B,C,D=1,...,2n; I,J =1,...,2n— 1.
i L. Statement of the Results.

THEOREM 1. Let X,Y,U,W, and & be unit vectors tangent to M™ at the point Q; and let (X,Y) =
W,W) =0, and (U, &) = (W, ¢) = 0. If

(VxR)(E W)X, Y)?  {(Vy R)(§, V)Y, X)*
[R(E,W)X]? [R(E,U)Y 2
,“2

3R YW 0) - X (R(E, U)X, R W)Y + %{R(f,U}Y, Re,w)x)]” <

32
Kyy — T|R(X1 Y)¢)?,

where R is the curvature tensor of M™ and Kxy is its sectional curvature, then T\ M" has nonnegative
sectional curvature at the point Q = (Q, A£).

REMARK. For n = 2 this condition is necessary and sufficient.
We introduce the notation

r({VXR)(E:W]X:Y)I

M= sup |R(X,Y)¢|, My = sup , #= inf Kxy.
JXAY|=1 |XaY|=1 |R(E!W)X| [XAY|=1
lel=1 AW |=1
[§i=1

2 4, Im — 2M2 ) .
THEOREM 2. a) If A’M < 3 14 i M 1|, then T\ M™ has nonnegative sectional curvature.

b)IF1) 0 < 1 € 1/6,2) M* < u/6, and 3) M < p/6, then Ty M™ has nonnegative sectional curvature.

i 2. Preliminary information. Let (z') be a local coordinate system in a neighborhood of an arbitrary
fixed point @ € M™. Then the vectors (8/8z')q constitute the natural basis of the tangent space Ty M"
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to M. If € € TgM", then £ = £'(8/8z")qg, and the set of quantities (=, &) gives the local coordinates,
called the natural induced coordinates, of a point @ = (Q,€) € TM™. Regarding z' and £ as independent
functions, we obtain a local coordinate system in some neighborhood of the point Q. The natural basis of

. . ~ - ~. g
TQTM’“ consists of the vectors(8/dz',8/8¢'), and any vector X € Té TM™ has the form X = X'

Az i
- )
Xt a’{- Sasaki [1] has defined a Riemannian metric on TM" having the form
Tg;; =gij +TeT a0 £6°,
Tgin+;' = Fia,_f 6’9

TYntint; = i »

in the local coordinates (z*,¢'), where g;; is the metric tensor of M™ and I}, are the Christoffel symbols
of the Riemannian connection of M™. We shall denote by ((-,-)) the scalar product of the vectors in the
metric Tg. Tt is not difficult to verify that

(X, 7)) = gis X'V7 4 gop (X7H + T2, X€) (YR + 2 Vi) = (nX,m¥) + (KX, KY),

where m. X = X'8/8z* is the differential of the projection 7 : TM" — M" and KX = (X ¢
[, X*€v)8/8z" is the connection mapping of [2].

The imbedding of Ty M™ into TM™ is given by the condition that the tangent vector be a unit vector:
i ¢ g = 1, making it possible to consider one of the coordinates, for example, £* as a function of the
other coordinates z',...,z", £,...,€" 1. Let y* be local coordinates on TM" and z! local coordinates
on Ty M™. Then the imbedding of T; M™ into TM™ can be written as follows:

!-,‘l — Zl,.,,,y“ — I",y““ __In+1 (: {1]!__.1y2n—] =I2n—1 (__ fn—l)

n __ _2n 1 n n+l In=1
TR TRl £ . A PR )-

Tt is not difficult to verify that in this case the Sasaki metric of 7y M™ has the form [3]:

Gir = ik + T2 ke a E€° + Tain £% Ak + Takn £% Ai + gnn Ai At
Gt'rn P Fm',p Ea + Fm‘.n Ea Bp t gﬂnAl'Bpﬁ
Grtgntp = Opg + Gnp By + 0ng By, + gnn By By,

where A, = 8y®" /dz*; B, = 9y [9z"*7 (= 8y*" /3€P). Ax and B, can be easily found by taking the
. 1.
covariant derivative of the equality g;; €€’ = 1. It then results that A, = —T,&& and By = —E—p,

n n
where & = g "

It is known [4] that the unit normal to TyM™ in M™ at the point (Q, £} is the vector N = ¢V —the
vertical 1ift of the vector £ to the point @ = (Q, £). Consequently the vector X € Ty TM™ is tangent to
T,M™ if and only if (KX,£) =0, ie, KX € L5 (£). We denote by K, the restriction of the connection

mapping of K to vectors tangent to TyM". Then K, : TsThM™ — L5 (£). Let X and ¥ be elements of
TgTM™. If we denote the scalar product of vectors in the metric G by {({-,-))1, we obtain

(X, 7))y = (7, X, mY) + (K. X, K, Y).

We define the horizontal lift of a vector X € Tg M™ to the point @ = (Q,¢) € T1M™ to be the horizontal
lift of the vector X to the point @ in the ambient space TM™. Similarly for a vector X € L5 (€) we shall
define the vertical lift to T5 Ty M™ as the vertical lift in TM™. To simplify the notation we shall distinguish
the lifts into TT) M™ and TTM" only by context.

§ 3. The second quadratic form of Ty M"™ C TM" and the curvature tensor of T; M™. To calculate
the second quadratic form of the imbedding Ty M™ C TM" we need the components of the Riemannian
connection of the metric Tg.
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LEMMA 1 [1]. The Christoffel symbols of the Riemannian connection of the Sasaki metric of TM"™ are

‘-l'l
Fn-r&n+¢ n+be

1
ST R £,

N 1
=0, Ty = -ER:U\ &,
Tnls =T5 +
~ 1
I‘g‘c = r:: - E(Rghp Pic + R:Pm P:b)f‘\ E”
" a 1 a a a[‘d 1 a 1
refe = E(Rm. + R, + zaz—b;) e - Ervh (R:ut ). + Rf,.z F;b}f“ ey,

where Ry, Is the curvature tensor of the metric g and 'y, are the Christoffel symbols of the Riemannian
connection of the metric g.

LEMMA 2. The matrix 0} of the second quadratic form of the imbedding Ty M™ < TM" has the form

COROLLARY 1. If X and Y are tangent vectors to Ty M™, then N(X,Y) = (K, X,K, V).
_ _ _ 1 . _
COROLLARY 1'. If X and ¥ are tangent vectors to T\M™, then N, (X,Y) = - Z(K‘X’ K,Y).

PROOF: As already noted in § 2, the local coordinates (z',...,2¥"1) of T\ M™ can be chosen so that if
#'....,u*" are local coordinates of TM", then the imbedding Ty M™ C TM™ assumes the form

V=gl oyt =yt =t (= ),
yzn—l — I?h—l {= En—l }’yzn — yZn (II,... ,zEn—I ],
Hyzll 1 ) ) ayﬂn 5
ad o = 7T &€ and Ganir = p» Where & =g, &,

The following equalities can be verified by direct computation.

2 yin 1 ars ) _ \ i s
@ZE = A {ka = Gkm + Bz:’: G + T3 Tim,s €€ + (Tamye Ai + Ty A )€ };
ai!yzn 1 -
azm—M:‘; = = En {Gm n4p + (an,s Bp + rpm,a }E };

azyln _ 1
aznte grnte _e_ﬂG"‘ﬂ”“” ’

We shall denote covariant differentiation in the Riemannian connection of the metric T'g by V. Then
the components of the unknown second quadratic form are 5]:

Yy =Tgan 6{(%;)3\?3 = V.'_r(g—i;)NA,

where N¥ are the coordinates of the unit normal to Ty M™ in TM"™ and N4 = Tgap N®B. Since the unit
normal to Ty M™ in TM™ at the point @ = (Q, ) is the vector ¢¥ = (0,...,0;€',...,£"), it is easy to
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verify that {N,} = {I'%, £*&;&.}. Using Lemma 1, we obtain

gty - FY° | e 04 P
f; = [6:5 "9z T = 3:.':7 ]N" F [a 1a 7 rlen 5 azf] mre T
a h A ). & )A t
[[‘ - = Ii’f‘,.,_ﬁ“;.lT + R TY)E 6"'—— R, € E—z inx & 3:1:1 ]P £t

1 ory; v

[_ 2( By FRh)E + :‘: ¢ - Er:"(R?ﬂ‘PEU + RE, T )M 64 E +

a o loa pa ay*" o 2 ra ph o) 9Y oty
(v + 5T Bhn €6) 5 + (Do + 3T R €€ 55 & + 5

1 ary  are . .
(R:l,.J }AI)E £ + [ 1:;: dz ‘: + F}.orlj I‘?ar:).]fn‘f)‘ + Gi; — G‘-.f =

bn =

[ A R}x,\.-]ﬁ &a + gij _Gij =ij — G.‘j;

. 8%y ay° 8y Jrynta cnia 0YC 9
[83"8:"“’ +TCD azt az“ﬂ’] at [6::‘ azntp +leb 6‘5‘ :c“"'P

]Nﬂ'l'a =

intp =
[~ Ron @~ Ron @ P €6 + [T + 515, Rhy €6° 4 T B, + T3, Rhn € €°B, | €.+

82y2n

an = (Tipa + Pinp Bp)€* — (Gingp +Tipa +Tinp Bp)€a) = —Ginsp;

32 y?n _

ﬂn+p ntq T W = —Gn+pn+q .

The lemma is now proved.

We omit the proof of the corollaries in view of their simplicity.

The curvature tensor R of the Sasaki metric of TM™ is calculated in [6]. Consequently the curvature
tensor R of the Sasaki metric of Ty M™ can be calculated from Gauss’ formula:

(R(X,V)Z,U0)); = ((R(X,Y)Z,0)) + Q(X,0)0(Y, Z) - (X, Z)Q(Y,0).
tha remark that if one of the vectors is horizontal, then (X, Z) = 0. Indeed if X = X, then (X", 7) =
_X(Kl XH K, 2Z) =0, since K, X* = 0. Using [6, we can state
LEMMA 3. The curvature tensor R of the Sasaki metric of Ty M" at the point @ = (Q, \§) is
(R(X™,YH)z" UM, = (R(XH,Y™) 2" ,U™)) =
(R(X,Y)Z,U)+ %;(R(Z,Y]{,R{X, U+

X RO 2)E RIGD)E) + 5 (ROGY)ER(Z,D)e);

(R(XH,YH)Z% ,UY)), = (R(XY,YH)Z9,U")) = ;m R)(X,Y)E,U);
(R(X™,Y™)ZY,U"))y = ((R(X",YT)Z",U")) = (R(X,Y)Z,U)+
X (R(e. 21X, R(EUYY) - 2 (e 2)Y, R(E U)X
((R(XH YV yz® uvy), = R(XH,Y"]ZH,U"))=

2
< (X, 2)Y,U) = (R(&,Y)Z, R(¢,U)X);
((R(XV!Y ]ZV!UH})I ; (R(XVsYV}ZV'UH)} =0

(R(XY,Y7)ZY,U")) = 35 (¥, 21X, 0) — (X, )08, U)),
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where (R(X,Y)Z,U) is the curvature tensor of M"™ and

<[V3RJ[X!Y}E) U) = VJ-RE;'H XleEjUi A

i 4. Proofs of the theorems.
PROOF OF THEOREM 1: Let X and ¥ be mutually orthogonal unit vectors tangent to Ty, M™ at the point
Q= (@,A¢) (£ is a unit vector). Then the sectional curvature X %y in the direction of the element of area

of the vectors X and V is
Kzy = ((R(X,Y)Y,X)),.

We introduce the following notation: Xy = 7, X, Yy = m. 7, Xy = K1 X, Yy = K,Y. It is easy to
verify that any vector X can be represented in the form X = (Xy)¥ + (Xv)¥. Using this decomposition
and the result of Lemma 3, we obtain the following expression for the sectional curvature of ) M™:

2
Kiy = (R(Xy,Yy )Yy, Xy) — a—j—iR(anYH)ﬂ! + 3(R(Xg, Y)Yy, Xy )—
2
R X)X, RUE Yo Vi) + 1 RIE Yo Vi + R(E X0 )Ya [+ M(Vy R)(Xar Y )E Xo)— (1)

M(Vxy B)(Xn, Y )€, Xv) + %(IXV FI¥ [~ (Xy,Yy)?).
We shall require f_fj-}—, 2 0 and study the case of an area in general position, i.e., such that Xy # 0,
Y¢ 20, Xy # 0, Yy # 0. We introduce the following notation: X = Xa/lXu|, Y =Yg /[|Yu|, U =
o/ Xv |, W =Yy [[Vy|, @ = |Xy|/|Xg], B = Yy |/|Vz|. . _ _
We remark that in the plane of the orthonormal vectors X¥ the vectors X and Y can be mapped by
an orthogonal transformation to vectors with orthogonal projections

(Xu,Yu) =0, (Xy,¥y)=0. (2)
For that reason we shall assume that the given vectors X and ¥ satisfy (2).
Under these conditions Eq. (1) assumes the form
I 2 2 3A2 2
xy = [Xu Y " {Kxy — = |R(X, Y)E[ +
,\2
(B(R(X,Y)W,U) — A*(R(¢, U)X, R(E,W)Y) + ?{R(E: U)Y,R(£,W)X)]apf+
s A? 1
—4—-|R(E,U}Y|’a2 7 REW)X B + M(Vy R)(X,Y)E,Ua — A((Vx R)(X,Y)E,W)S + 3 o)

We regard the expression in braces as a polynomial in & and B. In the corresponding notation it has the
form

1
a4 +ayef + aye’ + a0 + a4 + ag 8 + A—zaz,ﬁ"’ -

1 Aap2 ay \? as \? Mai o} al
Lo S o ) s ) e Y
Al (aﬂ i 2 ) et 2a, tas{B+ Zas T 4 4a;  4as

Consequently to assure that the sectional curvature is nonnegative in the case of general position it suffices
to require that

_Mal & d
4 da; 4das ~
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Recalling the notation we are using, we obtain the assertion of the theorem, since it is easy to ascertain that
the more special cases for the position of an elementary area are corollaries of the inequality just obtained.

PROOF OF THEOREM 2: a) We coarsen the inequality of Theorem 1 by taking account of the notation
introduced before the statement of Theorem 2. We obtain

A 3 32
2M2 +T[3M+§A’M’]=+TM‘ < p- (3)
We set A2M =t. The result is a chain of inequalities:
12 4p—2M3) 35  .n 4(p — 2M7)
3t(1+ = g WMol Iy 4t g V1
(1+38) +t< =5 A3t i
3/, 4.5 64\ _4(u—2M3) als[ 3u-—2M
e+ - ——)<————- t< =14+ -——T 1],
4((+3) 27/ 53 M 3 tim

which was to be proved.
b) For A = 1 the sufficient condition for the sectional curvature of Ty M" to be nonnegative has the
form

sMm? M,
2o == -
2Mv+( . )[1-1-(14—2)]&2;:. (4)
It follows from condition 3) that 2M2 < u/3. It follows from conditions 1) and 2) that M? < 1/36.
Therefore (3M? /4)[1+ (1 + M/2)?] < (1/8)[1+ (1 +1/12)?] = (4/8)(313/144) < 2u/3.
Thus condition (4) is a consequence of conditions 1)-3). The theorem is now proved.
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