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ON THE SASAKI METRIC
OF THE TANGENT AND NORMAL BUNDLE
UDC 513

A. A. BORISENKO AND A. L. YAMPOL/SKII

The metric on the tangent bundle of a Riemannian manifold, induced by the parallel
translation of tangent vectors, was constructed by Sasaki [1] in 1958. Its properties
were investigated by Kowalski (2], Yano and Okubo (3], Klingenberg and Sasaki [4],
and others. The Sasaki metric was used in the study of geodesic flows on Riemannian
manifolds (5] and in proving a theorem on the volume of manifolds with all geodesics
closed [6]. The Sasaki metric on the normal bundle of a submanifold in a Riemannian
space was considered by Reckziegel (7] and used to study the geometry of immersed
manifolds. However, no systematic investigation of its properties has been carried out.
In this note we study: a) the tangent and normal bundles whose Sasaki metric has
constant null index (§3); and b) the sufficient conditions for the nonnegativity of the
sectional curvature of the tangent and normal sphere bundles with Sasaki metric (§4).

1. Let M™ be a Riemannian manifold with metric g, and let (z*) be local coordinates
on it. At each point Q € M™, the vectors (9/dz") form the natural basis of the tangent
space TgM™. Denote by v* the coordinates of a tangent vector v € TgM™ in that basis.
The system of functions (z*,v') determines the natural induced local coordinates on
TM™. The line element do of the Sasaki metric on TM™ is defined in these coordinates
by the formula [1] do? = gi;da’da’ + g;;Dv' Do, where the D' = dv' + I v7da* are
the covariant differentials of +* in the Riemannian connection on M™.

2. Let F! be a submanifold of a Riemannian manifold M**?, Denote by g the Rie-
mannian metric of M'*?. Then g induces: a) a Riemannian metric g on F!, and b) a
fiber metric g* on each normal space NgF*. Without loss of generality we assume g~
to be Euclidean, since F! has a global orthonormal basis of normal vector fields. Denote
by (z') the induced local coordinates on F*, and by (£%) the coordinates of an arbitrary
normal vector ¢ in the orthonormal basis {n,(}. The system of functions (z?,£%) deter-
mines the natural local coordinates on NF¢, We define the line element do of the Sasaki
metric on NF! in these coordinates by

P
do? = gijdaida’ + ) (D€%),

a=]

where D+£* = dé* + ,u,amifﬁ dz® is the covariant differential of £€* in the normal con-
nection on the submanifold. '

3. The wntrinsic null index v(Q) of the point @ of a Riemannian manifold M™ is
defined to be the dimension of the maximal linear subspace Lo C ToM™ such that for
any Y € Lg and any X, Z € ToM™ the curvature tensor of the metric on M™ satisfies
R(X.,Y)Z = 0. The distribution L is called the null distribution on M™. If the dimension
of L is constant, then we call it the intrinsic null index of the metric of M™.
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THEOREM 1. If the intrinsic null indez i of the tangent bundle TM™ with Sasaki
metric is equal to k, then k is even and M™ is the metric product of o Riemannian

manifold M™*/? and the Fuclidean space E*/2, and TM™ is the meiric product of
TM™ k2 gnd E*.

Kowalski [2] proved that if the Sasaki metric on T'M™ is flat, then M™ is also flat.
Theorem 1 generalizes this result significantly. One of the main points of the proof is
that the requirement on the intrinsic null index of TM™ implies the existence of a k/2-
dimensional regular distribution L on M™ such that for every ¥ & L and any vector
fields X, Z,U tangent to M™ the curvature tensor R of M™ satisfies the conditions
R(X,Y)Z = 0and (VyR)(X,Y)Z = 0. As shown by Shirokov [§] (see also [9], §28), these
conditions guarantee the existence of k/2 linearly independent parallel vector fields on
M™, and M™ is the metric product of a Riemannian manifold M™~*/2 and the Euclidean
space E8/2,

The converse theorem is not true, i.e. the strong parabolicity of the metric on M™
does not in general imply the strong parabolicity of the Sasaki metric on TM™. N

We say that a distribution L on NF! is vertical (horizonal ) if, at each point @, the

subspace L is tangent (orthogonal) to the fiber. If L is the null distribution on NF*,
then we will call its dimension the vertical (horizontal) null indez.

THEOREM 2. a) If the vertical intrinsic null index of the Sasaki metric on NF' is

equal to v, then on F' there exist v normal vector fields which are parallel in the normal
connection.

b) Suppose F' is a surface in a Euclidean space. If the horizontal intrinsic null indez of

NF is equal to k, then F' is fibered into k-dimensional intrinsically flat totally geodesic
submanifolds with flat normal connection in the ambient space.

REMARK. In the case of a distribution in general position both possibilities are re-

alized, depending on the dimension of the projections of the null distribution on the
vertical and horizonal subspaces.

4. If, in each fiber of TM™, we consider only the vectors of a fixed length p, we obtain
a subbundle of TM™ called the tangent sphere bundle: T,M™. 1f M™ is compact, then

T,M™ is a compact hypersurface in TM™. On T,M"™ we consider the metric induced by
the Sasaki metric on TM™".

Klingenberg and Sasaki [4] showed that the Sasaki metric on T}5%, where S? is the
standard 2-dimensional sphere, has constant sectional curvature equal to 1 /4. Forn >3
it was shown in [10] that the Sasaki metric of T,S™ has nonnegative sectional curvature
for0 < p* < 4/3. If M? is a 2-dimensional Riemannian manifold with Gaussian curvature
K, then the sectional curvature of the Sasaki metric on T' oM 2 is nonnegative if and only
if AjK < K3(1—3p?K/4), where A, is the first Beltrami differential parameter [11].
To formulate the result for n > 3, we need the following notation: g is the Riemannian
metric on M™; (-,-) and || - || are the inner product and the norm of tangent vectors in

the metric g: R(X.Y)Z = Ry Z? X*Y™3 /85" is the curvature tensor of g; and

(VuR)X.Y)Z = VR, 2’ X*Y™U* 0

Al

r

THEOREM .3 Suppose X. Y, U W, and § are unit vectors tangent to M™ at an ar-
wrary point @, and (X.Y) = (UW) = 0 and (U.€) = (W,€) = 0. Let Kxy be the
sectional curvature of M™ in the direction of the surface element spanned by the vectors
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X and Y. If, at Q € M™, for any fized £ € ToM™ and all X, Y, U, W € TqM",
(1){(V'XRJ(€,W}X,Y}2 {(VyR) (€, U)Y, X)?
[|R(E,W)X|[? IR(€, V)Y

2
+ 2 [3RYIWD) - ARIEVIX, RIEW)Y) + & (REDY, REW)X)

3{)‘2 2
< Kxy — THR(XsY]EH )
then the sectional curvature of the Sasaki metric on T,M"™ is nonnegative.

REMARK. a) The assumptions of Theorem 3 are satisfied by compact rank 1 sym-
metric spaces. For these, Kxy > 0 and inequality (1) is certainly valid for p = 0.
Consequently, it is also true for p > 0 sufficiently small.

b) For n = 2, Theorem 3 yields the aforementioned necessary and sufficient condition.

Let us introduce the notation

= of Kxy, M= su R(X,Y
SN |'i5i|=11||£:'\1’||=1|] (¥ )ell
{(VxR)(§,W)X,Y)]|
Mg = sup i
Y ixt=nlieaw=1 IR(EW)X]]
[|XAY]=1

Weakening inequality (1), we obtain the following assertion.

4 [a[ 3 p—2M2
2\ < 2 \ﬁ S BT Ve
FMsg [ Yy M !
then ToM™ has nonnegative sectional curvature.

b) If0 < pu<1/6, M? < uf6, and MZ < u/6, then TyM™ has nonnegaiive sectional
curvature.

THEOREM 4. a) If

The proof of Theorem 3 is based on the analysis of the formula for the sectional
curvature of the Sasaki metric of T,M™. It is known that at each point RQ=(Q.n) €
T,M™ the tangent space T5(T,M™) decomposes into the direct sum of two subspaces
V5(ToM™) and Hz(T,M ") which are orthogonal in the Sasaki metric. The subspace %
is tangent to the fiber and is called vertical, and the subspace H is called horizontal.

On T5(T,M™) there are defined two maps [12]: m. (the differential of the projection
m: T,M™ — M") and K (the connection map). m. maps the H-subspace onto TgM™,
and K maps the V-subspace onto the orthogonal complement of the vector ¢ in ToM™.

Let X € T5(T,M™). Put X = m.X and Xy = KX.

LEMMA 1. The sectional curvature Kxv of the Sasaki metric on T,M™ in the di-
rection of the surface element spanned by the orthonormal vectors X and Y at the point

Q = (Q,p€) is

Kxv = (R(Xy,Yu)Ya, Xu) = $0°[|R(Xn, Vi) E[°
+3(R(X g, Yr)Yy, Xv) — 0* (R(E, Xv) X, R(& YW )YR)
+ L02||R(&, Vv ) Xx + R(E Xv)Ya|[? + o{(Vy, B)(Xu, Yi)§ Xv)
— (Ve R) (X, Yir) €, Yo ) + o7 2 (I X [P ¥o |2 = (Xv, Yo )?).

There are analogs of Theorems 3 and 4 and of Lemma 1 for the Sasaki metric on the
normal bundle N,F! of vectors of fixed length. The following assertion is an analog of
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the result of Klingenberg and Sasaki [4] for the Sasaki metric on the normal bundle. Let

V*? be the standard Veronese surface in S* (in the Euclidean space E® its radius vector
has the form

1 1 1 1 o ol 5 9 )
r= | —=Ix3, —=3123, —=T122, —=(T] — 23), =(z7 + 25 — 2z ,
(Jpoata, Jeman, Sezion, 5ol - ), 1+ 23 - 222)
73 +ad +12 =3,
where z;,z5, 23 are the Cartesian coordinates in E3). For p = \/?:/2 the sectional
curvature of N,V? is constant and equals 1/12.
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