ON THE SASAKI METRIC OF THE NORMAL BUNDLE
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A. A, BORISENKO AND A. L. YAMPOL'SKII

ABSTRACT. On the normal bundle of a submanifold in a Riemannian space a natural
Riemannian metric is introduced. The structure of surfaces with strongly parabolic
normal bundle metric is determined. It is shown that the Sasaki metric of the normal
bundle of vectors of fixed length of a two-dimensional Veronese surface has constant
sectional curvature.
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Introduction
A metric on the tangent bundle of a Riemannian manifold induced by parallel
translation of tangent vectors was constructed by Sasaki [1]. The aim of this work
is to construct and study the properties of a Sasaki metric on the normal bundle of
a submanifold in a Riemannian space, using local coordinates suitable for concrete
calculations and subsequent applications. In the construction of this metric, parallel
transport of normals in the normal connection of the submanifold is used.

§1. Basic definitions and results

We denote by F' a submanifold in a Riemannian space M/*P. At each point
Q € F! there is a decomposition of the tangent space To M I+P a5 a direct sum of two
subspaces: ToF! and NoF'. ToF! is tangent to F! and NoF' is normal to F/ in the
M!+P metric.

By the normal bundle of the submanifold ¥/ in the Riemannian space M/*? is
meant the union of NpF/ for all Q € F! with structure group GL(n,R).

Let us agree for the duration of the entire article that indices will assume the fol-
lowing values: i, jk,m=1,..., o, B, 1,04, pv=1,....p;a,bcd=1,..., [+p.

Let (y!,..., y!'*?) be local coordinates for M/*P in a neighborhood of a point
Q € F!, while (x!,..., x') are the induced local coordinates for F/ in a neighborhood
of Q. Then F! locally is given by a system of equations y¢ = y9(x',..., x/).

We denote by 2 the Riemannian metric of M/*?. Then there are induced: a) a
Riemannian metric g on F/ with components

ay® oy®
&ij = 8«:55}—;3;;
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and b) a fiber metric g on each fiber Ny F':
8ap = gabnzmglr

where {n,} is some basis for NgF'.

We note that in each fiber it is possible to choose the basis {n,} to be orthonormal.
Thus without loss of generality we will assume that 3:3 = Oyp-

In the normal bundle a normal connection V+ is defined. If X is a vector field
tangent to F/ and & a vector field normal to F/, then

vie =1 (35 upd?)

where the £ are the coordinates of the vector field ¢ in the orthonormal basis Ryl
and U3; (= Uap)i) are the torsion coefficients, which are also called the components

of the normal connection. If V is the Riemannian connection of AM/*7, then
Hapi = (Ving, naj) .

The connection V+ is metric with respect to the fiber metric g, i.e., Vi g+ =0 for
an arbitrary tangent vector field X. This means that

3 L

;:f = Zaxky + Epehpy
Taking into account that g5, = J,p, we observe that u,g); + fgs; = O (see [2] or [3],
§47).

If V$& = 0 for an arbitrary tangent vector field X, we say that the normal vector
field ¢ is parallel in the normal connection of F/.

Let V be the Riemannian connection of F/. The curvature tensors R(X, Y)Z and
N(X, Y )¢ of the connections V and V+, where X, Y, Z are tangent vector fields and
¢ is a normal vector field on F/, are defined in the standard way.

If R(X,Y)Z =0, then F! is called a submanifold with intrinsically flat metric.

If N(X,Y)¢ =0, then F' is called a submanifold with flat normal connection.

The normal connection of a surface in a space of constant curvature is flat if and
only if the matrices of all the quadratic forms are reduced simultaneously at each
point to diagonal form [2].

The points of the normal bundle NF' are pairs (Q, &), where Q is a point of F/ and
& e NoF!. Let (x') be local coordinates of the point Q, and (¢7) coordinates of the
normal { in the (orthonormal) basis {n,;}. The set of functions (x’, &) determines
naturally induced local coordinates for NF'.

The line element du? of the Sasaki metric of NF' in the naturally induced coor-
dinates is defined by

P
duz = &ij dx" dxj + g,thléf"D"'cfﬁ = &ij dx' dx’ + Z{Dlia}z. (1)
=1
where D+E" = d&* + 1, &P dx' are the covariant differentials of the coordinates of
the normal & in the normal connection.

THEOREM 1. The Sasaki metric of NF'! is flat if and only if F' is a manifold with
intrinsically flat metric embedded in M'*? with a flat normal connection.

This theorem is the analogue of a result of Kowalski [7] for the Sasaki metric on the
tangent bundle. He proved that the Sasaki metric is flat if and only if the metric of the
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base space is flat. The Sasaki metric on NF' was determined in an invariant manner
by Reckziegel. Namely, let z: NF/ — F' be the map associating to each normal space
NoF! the point Q (the projection of the bundle NF !y, Tts differential 7. is a fiber-
preserving linear transformation from TNF! onto TF!. If X = (X', X'+*) are local
coordinates of a vector tangent to NF' at the point @ = (Q, &) in the natural basis
(8/0x',8/8E™), then n.X = X;0/0x'. The connection map K is a fiber-preserving
linear transformation from TNF! onto NF', given in local coordinates by

KX = (ffh'" + ,l.t‘;“fﬁ.i’")nﬂ,.

The inner product of vectors X and ¥ tangent to NF' at the point Q@ = (Q,¢) in the
Sasaki metric has the form [4]

(X, 7)) = mX,n.¥)+ (KX, KY),,

where (, ) and {, ) denote the inner products of vectors in the metrics g and gt
respectively.

The kernels of the mappings 7. and K at each point Q are linear subspaces of the
tangent space to NF' and are called the vertical subspace VNF' and the horizontal
subspace HNF'. A decomposition holds [4]:

TQNF’ = VQNF‘ ® HQNF".

The vertical and horizontal subspaces are orthogonal in the Sasaki metric. The ver-
tical subspace is tangent to the fiber.

Let X = X‘9/ax' and n = nn, be a tangent vector and a normal to F' at the
point Q. The vectors

. 8 N .0
XH;XIaxI - ﬂlifﬂ‘p@'
, 5 (2)
n —ﬂ“@

are called horizontal and vertical lifts of the vectors X and 5 respectively. We have
XH € mQ.{]NF!’ ?]V € V{Q.&JNF!;

moreover,
XY = X, .’ =0,
KXH = U, K?jV =N

The intrinsic null-index »(Q) of the point @ € F' is defined to be the dimension
of the maximal linear subspace Ly C ToF' such that for arbitrary X, Z € ToF/ and
arbitrary Y € Lg the curvature tensor of F/ satisfies the equality (see [5])

R(X,Y)Z =0. (3)

If for every Q the null-index »(Q) > k, then the metric of F' is called strongly
k-parabolic [6].

If v(Q) is constant on F/, then the distribution L is holonomic and the integral
submanifolds are totally geodesic subspaces of F !, locally isometric to Euclidean
space EV [5].

We shall say that a distribution Z on NF is vertical (horizontal) if at each point
Q € NF! the subspace L, is vertical (horizontal).

Let a vertical (horizontal) distribution L satisfy condition (3). The dimension of
the linear subspace LQ is called the vertical (horizontal) null-index of the point 0.
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THEOREM 2. a) If the vertical intrinsic null-index of NF! in the Sasaki metric is
equal to v, then on F! there are v linearly independent normal vector fields parallel in
the normal connection.

b) Let F' be a surface in Euclidean space E'*P. If the horizontal intrinsic null-index
of NF! in the Sasaki metric is equal to k, then F' can be stratified into k-dimensional
intrinsically flat, totally geodesic submanifolds with flat normal connection in the am-
bient space.

For the Sasaki metric of the tangent bundle 7M” of a Riemannian manifold M"
the following results hold:

a) The Sasaki metric of TM” is flat if and only if the metric of M" is flat [7].

b) If the intrinsic null-index of the Sasaki metric of TM" is equal to k, then k is
even and M" is the metric product of a Riemannian manifold M"~*/? with Euclidean
space E*/2, while TM" is the metric product of TM"—*/2 with Euclidean space E*
(8].

The normal bundle with the Sasaki metric is used for the study of extrinsic geo-
metric properties of surfaces in a Riemannian space.

A surface F! in a Riemannian space M'*? is called k-parabolic if the second
quadratic form of the surface after reduction to diagonal form has at least k null
coefficients. In other words, the rank of the second quadratic form of the surface

Q)= max r(Q.0)

where Np F! is the normal space at the point Q and r(Q, &) is the rank of the second
quadratic form of the surface with respect to the normal &, satisfies at each point the
inequality r(Q) <! -k [9].

By r*(Q,{) we denote the maximal rank of the second quadratic form of the
surface for points close to Q and normals close to &.

Let ¢ be a normal at the point Q for which the rank #(Q.&) = r(Q) =/ —k. Then
it is constant for normals close to £. For the normal ¢ we consider the null subspace
of its second quadratic form. It satisfies

14
S Eanxi =0, (4)

a=]
where the A7; are the coefficients of the second quadratic form with respect to the
orthogonal basis of normals 7n,|. Since the rank of system (4) is constant, the solu-

tion space Lfa.f] depends regularly on the points and on the normals. We effect a
horizontal lifting of the k-dimensional planes qu,e; to the points Q@ = (Q,¢&) of the

normal bundle. The horizontal lifting of the planes L?Q. 6 in the neighborhood of 0

forms a differentiable distribution L’é on the normal bundle.

THEOREM (see [16]). The differentiable horizontal distribution L* on the normal
bundle of a k-parabolic surface F! in a Riemannian space M'*? is holonomic if at the
points of the surface the curvature operator of M7 satisfies the condition R(X, Y)¢ =
0, where X,Y € ToF' and & is an arbitrary normal to the surface at the point Q.

The fiber R¥(Qy) is a totally geodesic submanifold of the normal bundle with
Sasaki metric. If Q is a boundary point of the fiber, then r(Q.&) > r(Qo.&). If the
surface is complete and

r(Q0.8) = 1y = maxr(Q),
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then R¥((Jp) is a complete Riemannian manifold. The projection of the fiber R*(Qy)
on the surface F' is isometric and the image under the projection is a totally geodesic
submanifold of the ambient space M!*?, along which the normal § is parallel in the
normal connection of the surface.

If in each fiber of NF! normals are restricted to be of constant length p > O, then
we obtain the subbundle N, F/, which is a hypersurface in NF'. The metric of N,F !
induced by the Sasaki metric of NF' is called the Sasaki metric of N,F'. N,F! will
be called a normal sphere bundle.

By definition (1), N(X, Y)¢ is a normal vector field on F {, If n is another normal
vector field, it is possible to compute the inner product (N (X, Y)E, 7). We define
the adjoint N(&, n)X by the equality

(N(&mMX,Y)=(NX,Y)E,n) . (5)

N(& n)X is a vector field tangent to F/, and in spaces of constant curvature N(EmX
=[Ag, Ay)X, where [A¢, A,] is the commutator of the matrices of the second quadratic

forms with respect to the normals ¢ and 7. (For more details about N and its
derivatives, see §2.)

Let X and Y be unit tangent vectors to F' at the point Q; and let ¢, 7, and { be unit
normals to F! at the point Q, with (X, Y) =0, (,{)L =0, and (n,&) . = ({,&). =0.
Let K vy be the sectional curvature of F/ in the direction of the area element of the
vectors (X, Y).

TueoREM 3. Ifat each point Q € F' for any fixed & € NgF! the following inequality
holds:

((fo?)(f, nx Y {(Vw‘?)(fi. OY X)?
N (& mXI2 INE OYI?

2 . 2 . z
+& [3(ﬁtn, OX.Y) - HNEOX RENY) + SN OY.NE, n)X}]

< 3p? 2
< Kxy — T”N(X’ Y)Ell1,

then N,F' with the Sasaki metric is a manifold with nonnegative sectional curvature.

For the Sasaki metric of the tangent sphere bundle 7,M" an analogous theorem
holds [11]. However, here we state only consequences of it. Let R(X, Y)Z be the cur-
vature tensor of M", and K xy the sectional curvature of M" in the two-dimensional
direction (X, Y). We introduce some notation:

{(VxR)(Y, Z)X, U}
M= su R(X, V)ZI||. My = su )
IIXA}’[T[=]” X DZ| v |1mzﬂ=1, [|IR(Y. Z)X||
11Z]l=1 [IXAU|I=1.
[1X[}=1
= i Kyy.
¢ i|x}sl}t;|=1 XY

Ifa) 0 < u < 1/6,b) M2 < puf6, c) M3 < p/6, then Ty M” with the Sasaki metric is
a manifold with nonnegative sectional curvature.

For a two-dimensional surface F2 in a four-dimensional Euclidean space E* the
condition for nonnegative sectional curvature of N,F? has a simpler form. We denote
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by x the Gaussian torsion of the surface F2:
(N(X, Y)Y, My _ N2

K= = .
VIRV =X Y2 JIElR I - € m2 Ve

where Ny is the curvature tensor of the normal connection and g = det(g;;). The
Gaussian torsion is equal to the product of the lengths of the principal semiaxes of
the normal curvature ellipse [12].

Let K be the Gaussian curvature of the surface F2,

THEOREM 4. The sectional curvature of the Sasaki metric of N,F* (F* C E%) is
nonnegative if and only if

2
AK < K2 (K—?’ix) .

4
where A is the first differential Beltrami parameter on F?:
Ok 0K
A = tJ _—
=8 kT o

For the Sasaki metric of a tangent sphere bundle 7, M? the corresponding necessary
and sufficient condition has the form (see [11])

2
A,Ksm(l—% )

With regard to the tangent sphere bundle 75" of the standard n-dimensional
sphere S”, it is known that the Sasaki metric of 7752 has constant sectional curvature
1/4 (see [12]), while for n > 3 the sectional curvature K of the Sasaki metric of 7}.S"
varies within the bounds 0 < K < 5/4 (see [13]).

Let us consider the normal sphere bundle N,V? of the two-dimensional Veronese
surface V2 in the spherical space S*(1/3). Let (4, ..., us) be Cartesian coordinates
in E3, and (x, x;, x3) Cartesian coordinates in E3. The surface whose radius vector
has the form

1 1 1 PN S D R 2)
UH=|— , ——=X1X3, —= ,— -x3), ~(x -2
(\@xlxz \/.jxg 3 ﬁmxz Zﬁ(xl 3) 6( i+ x5 — 2x3)

under the condition that x{ + x3 +x% = 1 lies on the four-dimensional sphere $*(1/3)
is called the Veronese surface.

It has been proved that the Sasaki metric of N,¥? for p = 1/2 has constant
sectional curvature 1/4,

REMARK. Let F? be a compact surface with Gaussian curvature of constant sign
in E*. Then on the surface F? there are a point Q and a unit normal & € NpF? such
that the sectional curvature of N,F? at the point (Q, pf) along some area element is
equal to zero. This means that, in contrast to spherical space, in a Euclidean space
the curvature of N,F? cannot be strictly of one sign.

§2. Main lemmas
Let the I', be the Christoffel symbols of the metric of F!, ., (= ep);) the com-
ponents of the normal connection (i.e., the torsion coefficients), ij the components

of the curvature tensor of the metric of F/, and N3\, (= Napyij) the components of
the curvature tensor of the normal connection.

By the definition (5), (N (& )X, Y) = (N(X, Y), n).. Since the fiber metric g+ is
Euclidean, then N },a g = g“N,pisj- By Ng,s we denote the components of the Sasaki

lij
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metric of NF!. By definition of the line element (1) we easily get
LEMMA 1. The covariant components of the Sasaki metric of NF' are
Ngij = gij + ﬂﬁiﬂao’“’éi’:dn
Ngi+p = g™ N8satrp = dap-

LEMMA 2. The Christoffel symbols of the first kind of the Riemannian connection
of the Sasaki metric of NF! are

- 1 d @ a o 9 o TET
Fijk =Tijk+ 5 [E‘T(ﬂt“#aﬂk} + W(#ﬂjﬁad{k) - ﬁ(ﬂr“#oa!j)] &ge,

Ollor|i | Oldgr|
Fuivo=3 | "ae + o

+ Hoalibly); + ﬁmuﬂﬂ,] ¢
Criaty = E[No*rit'j + 2pgrii7 ;185
Fitvetso = torjis Tirerepi =00 Diseripiss =0
LeEMMA 3. The contravariant components of the Sasaki metric of NF! are
Ng' =g¥,  Ng'"®=—g"u ",
Ngl+al+h = 508 4 giiya ub &5,

LEMMA 4. The Christoffel symbols of the second kind of the Riemannian connection
of the Sasaki metric of NF! are

f"ffj [ :|mluﬂ.1j ,ﬁm#ﬁdf”f*.

Ly = 2*"“:[3‘%&-“:“ Nyg 05 G

ous| o)

| Al

2 R~ I TR T b 1
Tk

rhnj = %lemap’ J+a_,r Ju:nrlJ' + %«u'llt ;Iavcvcl

ﬁ+a!+ﬂ =0, r:'+ﬁl+ﬁ =0.

LEMMA 5. Let X and Y be tangent vector fields and n and { normal vector fields on
F!. For the Lie brackets of their horizontal and vertical lifis at the point 0 = (0,9

the following equalities hold:
(".¢"1=0;  [X7. p"1=(ven)";
n[HE, YR =X, Y), K[X7 YA]=-NXY).
LEMMA 6. If X and Y are tangent vector fields and n and { normal vector fields on
F!, then at each point Q = (Q.¢)
VlV =0, Vann¥ = (Vin)' + (N mX)Y,

VYA =LRE Y, Tl = (V) - LN YD,

?'.'[
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where V is covariant differentiation in the Riemannian connection of the Sasaki metric
of NF!.

With the aid of the definitions of the maps 7. and K and also the definitions of
the horizontal and vertical lifts (2), it is easy to see that for any vector X tangent to
NF! there is a decomposition

X =(mX)" +(KX)". (6)
Consequently, for computation of the curvature tensor of the Sasaki metric of NF/,
it suffices to calculate it for various combinations of horizontally and vertically lifted

vector fields. A
We define covariant derivatives of the tensors N and N by the equalities

L aNﬂIu T a
(VzN)X, Y)Y = Bk + HeeNgis — Mg Nalij

— ToeNgys; = rj‘kNFu‘) SZEXY Ny,

Y aNJl“ﬁ i Ars
(VxN)(@E. n)Z = ok T T NSag — r,.kNm,s

o
~ i Njiep = B3N] |.u) xXkzigent =

(X, Y, and Z are tangent vector fields and & and 1 normal vector fields on F/).
With the aid of the definition of the curvature tensor and Lemmas 5 and 6, it is
simple to demonstrate the following statement.

LEMMA 7. The curvature tensor of the Sasaki metric of NF' at the point Q = (Q.¢)
is determined by

R(XH, YMZH = [R(X,Y)Z+ IN(E N(Z,Y)E)X
+INE NX Z)E)Y + §NE NX, Y)E)Z)
+ 3(VEN)(X.Y)EY,

RXH, YH)n" = 3U(VxN)EnY — (Vy N)E&E mX "
+INX Y)n+ iN(NE Y, X)E ~ {N(NE X, YT,

R(XH 0¥\ 2% = J(VaN)E mZY + [IN(X.Zn + AN EmZ X)E]
. - - . H
RO, n")E" = = [§R (0, OX + 4R EmNE OX]
RO, CWH = [N, OZ + SREMRE OZ - {NEONE 2]

R(n".{")e" =0
We consider a normal bundle of vectors of fixed length. A local embedding N,F’ C
NF! is given by the condition
P
> (€M) =pn

n=1
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Let the indices ¢, w, 8,k, 7= 1,..., p— 1. From the last equality it follows that

p—1
&r = ,,lpz - (&8 (7
=1

As natural local coordinates for N,F' we choose the coordinates (x',...,x/,
g,...,&r-1), where (x',...,x!) are local coordinates on F/, and (¢',...,{77!) are
the coordinates of a normal of fixed length.

If y!,..., y*? are natural induced coordinates on NF', then the embedding N F!
C NF! has the form

p—1
yi=xi, pire=gr, phr= \| pr= (&0)2
g=1

From (7) it follows that
&’ &7 &0
S -0 S=-i.
dx act o
The derivative 87 /8E? hereafter will be denoted by By.

LEMMA 8. In natural induced coordinates the components of the Sasaki metric of

N,F! are
Nigij = g + ﬂﬂuﬂauu‘f‘lf",
Ni&i 106 = (Baai + Hp0iBo)E:  Ni8liy 146 = s + By Be.
LEMMA 9. The contravariant components of the Sasaki metric of NPF’ are
N gij — gij' N]gi 1+ _ _gis.uglsé.l’
nghw I+ _ 59’6 + g.-':ﬂr“#s'-’aicy —696".

We denote by I" the Christoffel symbols of the Sasaki metric of N,F'. If I" denotes

the Christoffel symbols of the Sasaki metric of NF/ (sec Lemmas 2 and 4), and Q is

the matrix of the second quadratic form of the embedding N,F/ c NF' (see Lemma
13), then the following statements are true.

LeMMA 10. The Christoffel symbols of the first kind of the Sasaki metric of N,F'
are

Fijk =Tiju Tijtso =Tijive + TijuspBo.
rr‘ 4ok = Fl' I+pk T+ rH+p.k B?-

r;‘:w.ne = r”+9.f+9 + l‘h:';f+4p.f+,chlEi + f-‘H+.u..‘-t»33w-
1 A
L 1+6.k = _aupllk(‘sxﬂ + B By)¢”,
%o

1
Civk tro1e0 = —E;(éxp + By By)By.

LeEmMA 11. The Christoffel symbols of the second kind of the Sasaki metric of N,F !
are
rk =T1%

ij i

r"l't."i-w:f\:'chp'l'qu

i f+pB? '

ﬁfﬂ = ﬂ}a - &0,
[i+e = i+ + [i+e Bp _f&nj lip

i{+p il+p il+p
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k _ +0 _ _x#
r.’+n: l+g — 0, rﬁﬂ: I+g = S Y I+

For calculation of the curvature tensor of the Sasaki metric of N,F! Lemmas 12
and 13 are used.

LemMa 12. Let @ = (Q, p&) (§ a unit vector) be an arbitrary point of N,F!. A unit
normal to N,F! in NF! at the point Q is the vertical lift of the unit normal & to the
point Q in the ambient space NF',

Lemma 12 signifies that a vector X tangent to NF' is tangent to N, F! if and only
if ((X,¢")) = 0. This means that (KX,&), = 0, where K is the connection map of
NF!. We define a connection map K | by restricting K to vectors tangent to N,F!:
Ki = K|y p.

We denote by Ny (§) the orthogonal complement of the normal ¢ in NoF!. Then
Ki: TyN,Fl — Ng (&) If {{ , })1 denotes the inner product of vectors tangent to
N,F' in the Sasaki metric of N,F!, then

(X)) = (m X, 7. P) + (K, X, K\ V).
If X € ToF', its horizontal lift X¥ to the point Q = (Q, p¢) is tangent to N,F! at
Q, and also ({(XF &V} =0. If n € Ny (§), its vertical lift to the point Q = (Q, p&) is
also tangent to N,F' at the point Q, and moreover ({(n”,&")) = (n,&). = 0. There-
fore, the horizontal and vertical lifts to TN,F' and TNF! will not be distinguished,
assuming that in a vertical lift to the point Q = (Q, p&) the vectors are taken from
Nz ().
lQSimilarly to (6), for any vector X tangent to N,F/ at the point @ = (Q, p&) there
is a decomposition
X=X + (K, X). (8)
LEMMA 13. a) The matrix Q of the second quadratic form of the embedding N,F! ¢
NF! has the form
Q=_1_[8'u—N|gu ~Ni&i 146 .
PlL—"NE&yw,;, - nghp i+6
b) If X and ¥ are vectors tangent to N,F', then

Q(f. Y) =—-%(K[£,K1Y}L.

Let R and R be the curvature tensors of the Sasaki metrics of N,F/ and NF!
respectively. If X, ¥, Z, and U are tangent to N,F/ at the point Q = (Q, pE), then
by Gauss’s equation we have

((R(X,V)Z,0)), = ((R(X,YV)Z,U0)) + QX, 0)QY,2) - QX, 2)Q(F, 0).
Using Lemma 7, we find that the following is true.

LEMMA 14, Let X.Y,Z, U € ToF!, let & be a unit normal vector to F' at the point
Q,andlet o, w,n.( € Né—(f}.

At the point Q = (Q, p) the curvature tensor R of the Sasaki metric of N,F' is
determined by the following formulas:

(RAXM,YM)Z¥, UMY, = (R(X.Y)Z,U) + &2 (N(X U, N(Z, V2.

2 2
+E N 2N 0L+ N YE Nz U,
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For the proof it suffices to use the decomposition of £ and ¥ into components,
the linearity of the curvature tensor, and Lemma [4.

§3. Proofs of the theorems

Proof oF THEOREM 1. The sufficiency of the conditions is evident. We shall show
the necessity.

Let the Sasaki metric of NF/ be flat. Then by Lemma 7 with Z = Z¥, X = X¥,
Y=n" (X,Z=TyoF', ne NyF') we get

R(Z,)Z = [INX,Zim+ N8 & mz, X)) + [4vaMiEnz]” =o.

For & = n this implies that N(X, Z)n = 0 for any X, Z, n. Thus the normal connec-
tion is flat.

For X = X# ¥ = YH and Z = ZH (taking into account that the normal connec-
tion is flat), by Lemma 7 we get

RX,.NZ=[RX,Y)Z)! =0.

Consequently, the metric of F! is flat.

The theorem is proved.

ProoF oF THEOREM 2. a) Let L be a vertical distribution on NF! of dimension v
such that for any ¥ € Ly, and any X, Z € ;o NF' we have

R(X,YV)Z=0. (9)
We consider a subdistribution L g, for fixed ¢ and 4 € R. Since L g, is vertical,
for any ¥ € Lp s we have ¥ = ()", where n; = KY and lift is effected to the

point (Q, A¢). Using the decomposition (6) X = (Xy)? +(X)¥, Z = (Zg) +(Z}),
we write (9) in the form:

- - 2 - -
E(Vx,, N)(& me)lny - %N(?uz.ZV)XH - %N(f. M) N (S Zv) Xn

. 2, ) 2 N H
AN Xy ng) 2 + 5 N E XN ) Zn - G HE m) R E X Zi

V

2 -
+ [%N(XH.ZH)"M + %N(N(:f, WE)ZH.XH_)C . (10)

where lifts are effected to the point (Q,A¢). For 4 = 0 the distribution L(Q_{)] is a
distribution on F' as a submanifold in NF'! given by the null cross-section. The
distribution L = KL g, is a distribution of v-dimensional normal subspaces on F'.

By virtue of the regularity of the distribution L, the vector 5o = lim;_q ;¢ lies in
L. From (10) it follows that for any X, Z € TpF' we have a) N(X, Z)n = 0, and
b) lim;{_.u N(X. Z)?]’Mfl =0.

Since (N(X,Zn,{)y = (N(n,{)X,Z) forany X, Z € ToF! and n,{ € NgF!, b
implies that lim,_o N(n;,{)/4 = 0. Dividing the horizontal projection (10) by A
and passing to the limit as 1 — 0, we get

(VxN)(&. 10)Z =0 (11)

forany X,Z € ToF', & € NoF', and ng € Ly.
It is not hard to verify that

(VxNWEMZ. Y)Y = ((VEN)Z. Y)En) L. (12)
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From (11) and (12) it follows that
(VxN)(Y, Z)no =0

forany X,Y,Z € TpF! and 1o € L.
Thus, for the curvature tensor of the normal connection the following two equali-
ties hold:

- N(Z,Y)n=0,
(V¥NNZ. Y)n=0

assoon as n € L and for any X, Z, Y € ToF'.

Equalities (13) are similar to the conditions imposed on the curvature tensor of
‘2 Riemannian manifold which guarantee existence on the manifold of a field of
parallel vectors ([3], §23). Namely, let U be a tangent vector field on the Riemannian
“manifold M", and Rj.km the curvature tensor of M". If the equations

(13)

au’ -
w + I';k U=0
and the first ¢ (¢ > 0) of the systems of equations
‘Rj‘km v/ = 0,
Vs, R}k’?‘ U’ = 0.
vi':vﬂ _flkmUJ = Us

...................

admit a complete system of solutions which also satisfy the (g + 1)th system of these
equations, then there exists a collection of parallel vector fields depending on arbitrary
constants. _

As a simple analysis shows, with R, replaced by Ng, ., I‘;k by 43 and the
tangent vector field U by a normal vector field #, the proof of this fact is carried over
to normal vector fields.

In our case the dimension of L is equal to v and each of v basis vector fields
satisfies (13), which (with ¢ = 0) guarantees the existence of v linearly independent

normal vector fields parallel in the normal connection. i
" b) Let F! be a surface in the Euclidean space E'*”. Let L be the horizontal distri-
bution on NF! of dimension k indicated in the condition. Since F' is a submanifold
in NF!, given by the null cross-section (§ = 0), we consider the restriction L|z. Then
L = n.(L|f) is a distribution on F', and each vector Y € L[ is the horizontal lift
~ of a vector Y = n,¥to the point (Q,0). Since for L|p equality (9) is valid, then,
 representing the vectors X,Z € T,NF'and Y € Ly at the point @ = (Q.0) in the
form
=+, Z2=2Zyp)"+2v), Y=Y,
- where Xy, Zy € TQF(, Xy, Zy € NQF"., and Y € Ly, we get
R(X.1)Z = R(X)" + (X0). Y)(Zm)" +(Zv) =0
= [R(Xu. Y)Zy + sN(Xy, Zy)y)?
+[-IN(Y. Zu) Xy + N(Xy. ¥)Zy]" = 0. (14)

Since X is an arbitrary vector, if we set Xy =0 forany Z, X € ToF ! in the horizontal
~ projection, we get R(X, Y)Z = 0, as soon as Y € L. Consequently, the intrinsic null-
~ index of F! is equal to k. As Chern and Kuiper showed [5], in this case ¥ ! can be
 stratified into k-dimensional intrinsically flat submanifolds F totally geodesic in F'.
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Moreover, with Xy = 0 in the vertical projection of (14) we get N(X, Y){ = 0 for
X € ToF', { € NoF'!, and Y € L,. With the aid of (5), it is easy to see that in
this case V(n,{)Y = 0 for any 5. { € NoF' and Y € Ly. But in a space of constant
curvature N({, 7)Y = [A;, A,]Y, where A; and A, are the matrices of the second
quadratic forms of F/ C E'*? relative to the normals {,n € NoF'!. Consequently,
[A;, Ay] = 0 as soon as ¥ € L. Since the matrices A; and A, are symmetric, the last
equality signifies that there exists an orthogonal basis in which the restrictions of all
second quadratic forms 4; on F* relative to the normals in E*# are simultaneously

reduced to diagonal form. But F¥ is totally geodesic in F/. Consequently, the second
quadratic forms of F¥ relative to normals in F/ are identically zero. So over F¥ the
matrices of all second quadratic forms are simultaneously reduced to diagonal form,
This means that the normal connection of F* in the ambient space is flat.

PROOF OF THEOREM 3. Let 4, B be a pair of orthonormal vectors tangent to N,F'

at the point Q = (Q, p¢).

We decompose 4 and B into components (8):
A=A"+ad", B=B"+p",

where 4 = 7,4, a = K\A, B = n.B, and b = K,B. By assumption {(4, B)), = 1.
This means that
(A, B) + {a, b}, =0.

We show that in the two-dimensional plane of the vectors 4, B there is a pair of
vectors 4;, B, for which
(A|,B]) = (al,b|>J_ =0.

In fact, in the two-dimensional plane of the vectors 4, B we can pass to a new basis
Ay = Acosg + Bsing, B =—Asing + Beosp.
Then
Ay =mn.A) = Acosg + Bsing, B =n.By =—-Asing + Bcosg.
We require that {4, B;) = 0. We have
(41, B\) = (4, B) cos’ g + (|| BI[* — || 4]*) sin g cos ¢ — (4, B) sin’ ¢
= (4, B) cos2¢ + (|| B||* — ||4||*) sin2¢ = 0.
Since we assumed that originally (4, B) # 0, we will thus find the rotation angle:

141> - [1B]I?
2(4.B)

The condition {(a;, b) . = 0 is fulfilled automatically.
Thus, without loss of generality we assume that 4 and B satisfy the conditions

{4,B) =0, {a,b), =0.
We introduce the following notation:
X =A/||4ll, Y =B/||B|l. ¢=aflall.,
n=>b/IbllL. a=l{lall/l4l. B=I&l/lIBI
Then X, Y, {, and 5 are unit vectors satisfying
XY)=0, {L=0, (n&i=(&.L=0

cot2p =
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Using (5) and Lemma 15, we write the sectional curvature of N,F' in the form
3p2
Kz = IAIPIBIE { Ky = 2N X VIR
+PWmmmn—ﬁm@mxﬁmnm
p?
PO EDERE O ap
_P_i N 2. 2 Ei N Y12a?
+ LR E X+ FINE OY I
- . |
(T RIE DY, K p(TxR)EME MK VB + 2508 .
The expression in curly brackets is to be regarded as a polynomial in « and f. We
denote the free term and the coefficients of af, a?, B2, a, B by mg, my, my, mj3, My,
ms respectively. Then

1
K ip = |l4|1BII? {mD + miaf + mya? + myf* + mae + msf + ?alﬁz}

1 pim 2 ( ms \*
_ 21 12
= ||A|)*|| B! {p2 (aﬁ+ > ) +m |+ Zmz)

2 23092 2 2
ms pm my ms

m 4+ — mp — - — .
+ 3('8 2m3) + Mo 4 4m§ 4m%

Consequently, for nonnegativity of K ;p it suffices to require that

2 mi mi
mg — p—mf 4 3

3 > 0.

Restoring the substance of the notation, we get the required inequality.

The theorem is proved.

ProOF oF THEOREM 4. Let X and ¥ be mutually orthogonal unit vectors tangent
to N,F? at the point Q = (Q, p&). Let Xy = K, Xand Yy = K, Y. Then Xy, Yv €
Né(&]. But Né- (¢) is one-dimensional. Consequently Xy and Yy are collinear. On
the other hand,

{{X. Y})| = {XH. YH} + (XV, YV}J_ =0,
where one may assume that {Xy,Yy), = 0 and (X4, Yy) = 0. Consequently, one
of the vectors (for example, Xy) may be assumed to equal the zero vector. Thus,
without loss of generality we get that

2=xH Y= +(vy), (15)

where X, Yy € ToF? and Yy € Ng(£).
By Lemma 15, using (15), we have

392
Rxy = (RXX. Y)Y, X) - - IN(X. Y )IL

2
+ pUVENY(Ya, X8 Yo s + SR E Y X
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Carrying out an argument analogous to that in the proof of Theorem 3, we get a
necessary and sufficient condition for nonnegativity of the sectional curvature of
N,F? in the given case

2
(TENEXENL < INE AT (RO VX - oIV TR ).

where X and Y are mutually orthogonal unit vectors and ¢ and 5 are mutually or-
thogonal unit normals to F2.
Since N(& n)X is orthogonal to X, then

INE mX|P = (NE mX, ¥)2 = (N(X, Y)E, )3

IN(X YKL = (N(X.Y)E i
Therefore the necessary and sufficient condition takes the form

Similarly,

(VEN(Y.XEm3 < (N(XY)Emi [( (X Y)Y X) - 3'0 N Y )L

Using the fact that the fiber metric is Euclidean and (X, Y) and (&, n) constitute unit
bivectors, we arrive at the inequality

2
(X, grad x)? < k? [K— ;’i—xz]

for any unit X, where
drc—( 1 oK c’bc)
gradr =& Bx"’g ox!

Letting X = grad x/|| grad k||, we get the required inequality.

The theorem is proved.

ExaMPLE. We consider the embedding of E3(x;, x3, x3) into E3(uy, uz, u3, ug, us)
given by the radius vectOr

X1 X3, —=X2X3,

1 1
(,/‘ f \/_xlx;, ﬁ(xf -x3). E(xf +x3 - 2x§)) : (16)
We consider in E? the sphere S?(1): x? + x + x? = 1. Then (16) gives an isometric
immersion S2(1) — S*(1/3) by which the points (x;, X3, x3) and (—=x;, —x3, —Xx3) are
transformed into the same point. In other words, (16) gives an isometric embedding
of the real projective plane into S$*(1/3), which is called the Veronese surface V2 ¢
S4(1/3) (see [2]).

We shall show that the Sasaki metric of N,V for p = 1/2 has a constant sectional
curvature equal to 1/4,

Let F? be a two-dimensional surface in a four-dimensional Riemannian space
M?*4, Let K be the Gaussian curvature of the FZ-metric. Since the codimension of
the embedding F2 ¢ M* equals 2, the curvature tensor of the normal connection has
exactly one component: Nj;;2. In a coordinate system satisfying the conditions of
Lemma 14’, the curvature tensor of the Sasaki metric takes the form

3p? aN oN
Riz12=Ri2pz - %(Nuuz}z Riz13 = % 3;::'2. Rz = g a':Zm
N 3N 2
Rizz = g 3;::[2. R|313=p(+11). Rin3 =0, (17)
aN, (N, 2
Ry = %_3;2;12' Riiy=0, Ryp=2-"12120 ( :‘2“2} :

where (x, x;) are local coordinates on F? and R;3;2 = K.
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Let Q = (Q. p€) be an arbitrary point of N, V2. Without loss of generality we can
assume that & coincides with the second basic normal vector and that the origin of
the local coordinate system of V2 is situated at the point Q.

As local coordinates for V2 we choose the coordinates (x;,xz) induced on S2(1)
from E* by the embedding x? + x + x; = 1. Then at the origin of coordinates
(x; = xo = 0) the Christoffel symbols of the V2-metric vanish, and the metric itself
will be diagonal.

We show that at this point both the torsion coefficients 12|y and py)2 vanish.

Normals to V2 in S* are conveniently considered in the ambient space ES. We
find these normals (n,;, and n;)) from the conditions

ou
("llnu)=0: ("2|,u>=0, <nl|,5:t—l>=0,

u Su ou
<"2"a‘;>“°' <”""a'7cz>=°’ <"2'*555>=°'

where ( , ) is the Euclidean inner product, and u is given by (16). Solving these
systems, we find that

= (xa(1 +x3 = 2x2), x1(1 +x§ — 2x3), =x3(1 +x3),0,2v3x1x2x3),

18
ny = (2xi(1 = x§), —2x2(1 - x2),0, —x3(1 + x3), V3(x} — x3)x3). (18)

We introduce an orthonormal basis of normals (£y;.£2(), obtained from (18) by a
standard orthogonalization. Then at the origin of coordinates (x; = x; =0, x3=1)
the following equalities hold:

& =(0.0,-1,0,0), &;=(0,0,0,-1,0), %‘%=(0.1,0,0,O),

0%y _ &Ky _ 08 _
e (1,0,0,0,0), o, (1,0,0,0,0), By (0,-1,0,0,0).

Hence at the origin of coordinates we have gy2)1 = fi2)2 = 0. This means that the
conditions of Lemma 14’ are fulfilled and the calculation of the curvature tensor of
N,V? can be carried out by (17). Calculating N2 at the origin of coordinates, we

get

(19)

Ny = -2 (20)
The derivatives of Ny, at the origin of coordinates vanish, a fact that one may
verify by a direct computation, using (1 8) and (19). Thus at the point { we get

IN2 -0 ON1212 —0

ax; ' ox)
Substituting (20) and (21) into (17), we find that

(21)

Ri312=1-3p% Ris13=p" Rizzi=p%
Ri213=Ri22:3=R323=0
Setting p = 1/2, we get the required result.

We prove the remark. a) Let the Gaussian curvature of the surface F? be strictly
positive: K > 0. Let ¢ be the normal at the point Q for which the Gaussian curvature

A 1 Ayy — A?
gng2 — &
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is maximal (the A;; are the coefficients of the second quadratic form of F 2 relative
to the normal &). Since X > 0, K(£) > 0. Let 7; and 7; be the principal directions
of the second quadratic form, K,(¢) and K;(¢) the principal curvatures. If for all
points we have K ({) # K3(¢), then the directions 7; and 1, make up a regular net,
but in this case the Euler characteristic y(F?) = 0 (see [14]).

On the other hand, by virtue of the positivity of the Gaussian curvature, y(F?) # 0.
Thus there is a point Qy € F?2 for which K,(¢) = K3(£). Consequently, the second
quadratic form of F? relative to the normal ¢ is umbilic at the point Qp. Hence
for any normal # orthogonal to £ the commutator [4;, A,] 1s 0. By Lemma 15, with
X = X" and ¥ = " at the point Q = (Qp, p¢) the sectional curvature of N,F? is
equal to

Pz 2
Kyy = T“[Ar:-An]X” = 0.

b) Let X < 0. Then in the direction of the horizontal area element of X = X¥,
¥ = Y¥H at the point Q = (Q, p¢) we have

3p? 2
Kgy = K- —|IN(X. Y)S||L <0,

and in the direction of the horizontal-vertical area element of X = X#, ¥ = y¥
(n L &) at the point (Q, p&) we have

2
Kyy = %-ll[Ac’ A X 2 0.

Consequently, at (Q, p&) there is an area element (X, ¥) in whose direction K yy = 0.

If K < 0, a stronger statement is true: the sectional curvature of N,F? has alter-
nating sign. We demonstrate this. In the direction of a horizontal area, K3y < 0. In
the direction of a horizontal-vertical area if only at one point (Q, p¢) the sectional
curvature K gy > 0. Let this not be the case. Then [4;, 4,] = 0 for any £, n € NpF?
and any X € ToF 2 at each point of F2. This means that the normal connection of
F? is flat. Then for all normals the principal directions coincide. Since the Gaussian
curvature of F? is negative, on the surface there are no umbilical points and the
principal directions form a regular net. Thus the Euler characteristic y(F?) = 0; but
on such a surface it is impossible to assign a metric with negative curvature [10}.
Compact surfaces of negative Gaussian curvature do exist in E4 [15].

The remark is proved.
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