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CHARACTERIZATION OF THE PROJECTIONS OF GEODESICS
OF THE SASAKIAN METRIC OF TCP" AND rce”

A. L. Yampol’skii UDC 514

Curves that are projections of geodesics of the Sasakian metric of the tangent and tangent sphere bundles of
a complex projective space are considered. The main result is: THEOREM. If T' is a geodesic of TCP?
(T,CP") then 7w T is a curve in CP™ for which curvaures k;, ..., ks are constant and kg = ... =k, = 0.

1. Formulation of Results. Sasaki [1] has noted that the projection of a geodesic of the tangent or tangent sphere
bundle of a space of constant curvature to a base is characterized by the fact that its curvatures k, and k, are constant
and k3 = ... k, = 0. Moreover, subsequently it became possible to give a complete description of the geodesics of the
tangent and tangent sphere bundles over space forms, that is, over the sphere ", plane E", and Lobachevski plane L
21, 31

Nagy [4] has shown that for the tangent and tangent sphere bundles of 2 symmetric space the geodesics are
projected onto curves all of whose curvatures k;, ..., k, are constant.

The goal of this paper consists in proving the following assertion.

THEOREM. If I is a geodesic of TCP" or T,CP", then n," is a curve in CP " for which curvatures ki, ooy
ks are constant and kg = ... ky, = 0.

Since Azo [5] has proved that the geodesics of TM " and T,M" are projected onto the same curves, we consider
below geodesics in T,CP".

2. A Remark on Geodesics of Symmetric Spaces. Suppose that I'(g) = {x(0), y(0)} is a curve in T'M", o is
its natural parameter, and y(g) = mol'(0) is the projection of I'(0) to the base. The parameter ¢ is not natural for the
curve .

However, if § is the natural parameter of v, then d$2 = (1 — 2)do2, where ¢ is a constant [2]. Let us denote
by """ the covariant derivative with respect to o . Then the equation of the geodesics in 7)M " can be written as [1]

=Ry, y)x', y =—c, (1

where ¢ = ||y’ |2, R(y, y') is the curvature operator of M",
It is easy to verify that ¢? is constant along v.
Suppose that M™ is a symmetric space. This means that R'(y, y'x' = 0.
LEMMA 1. If ¥(6) = =T is the projection of a geodesic of T\M "™ of symmetric space M " and {x(g)} is its
parametric equation, then the p + 1 derivative of y(0) satisfies
a) xPH) = R (y, y)x’,
b) 2P = R (y, y') xto,

¢

Proof. Let us covariantly differentiate the first equation of the system. We obtain x” = R’ (y, y')x' + R v, y)x
+ Ry, ) Ry, y')x".

Taking into account the symmetry of M ", the second equation of (1), and the oblique symmetry of the curvature
tensor, we find that
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=Ry y)x" (2)

Repeating this operation p — 2 times, we obtain Assertion b) of the lemma.

On the other hand, substituting into (2) the expression for %/ from the first equation of (1), we obtain x” = R* (¢, y)x',
where R2(y, y') is the square of the curvature operator of M™ . Repeating this operation p — 2 times we prove Assertion
a) of the lemma.

COROLLARY 1. If T'(o) is a geodesic of T)M" of symmetric space M?", then all the curvatures of y{o) =
wol'(0) are constant.

Proof (see also [4]). Indeed, Lemma 1 (b) implies that (x(+", x) = 0. This means that [x@] = const.

Suppose that £(s). ..., £,(s) is the Frenet frame along x(o). Then, taking into account the affine connection of §

and o, we find from Frenet’s formulas:

¥ = (1=} Py,
x" = (1 —¢€?) k5.

However, |x"|| = const. Consequently, k; = const.
Therefore, 2" = (1 — ¢y (—kyEy + Raa).
However, || x"|| = const. Therefore, k,2 + k,? = const. Consequently, k = const. The proof is concluded by

continuing this process.

COROLLARY 2. If I'¢) = {x(0), y(0)} is a geodesic of T,M " and M?" is a symmetric space, then R(y, y'} acts
as differentiation on the vectors of the Frenet frame of y(0) = w0} R(y, ¥")&p = (1 —¢%)'7 {kpiBp + Bofpri)-

The proof is conducted by induction on p.

Proposition. If I'(e) — {x(s), (o)} is a geodesic of TM™ and M™ is a symmetric space, then the sectional
curvature of M " along [ in the direction of the elementary area element of vectors (y, ¥') is constant.

Proof. By definition

(Riu, v v'. y)
TP PP —Cu o'

kyy =

However, ¥ is a unit vector field; therefore, ¢y, y'> =0, ||y' P =¢% Iy ||# = 1. Consequently, A, = .C'—, (R (y,

§ru

From this we immediately conclude that ky,»" = 0.

Remark. This assertion is also true for geodesics in TM.

3. Characterization of the Projections of Geodesics of TCP" (T,CP"). Since CP" is a symmetric space, all
the assertions of Section 2 and, in particular, Lemma 1 are true for the geodesics of TCP" (T,CP"). Let us show that
all curvatures, starting with k., are zero for the projections of geodesics of TCP" (T,CP").

The curvature oprator of CP " has the form R (x, y)z= -; (g, 2x —(x, Dy~ Uy, 2 lx—x, )1y +24x,

Iyyiz , where I is the operator of complex structure for which /2 = —E, {x, Jy) =—{(Ix, #}.
Let us denote by S(x,y) an operator of the type of curvature operator of a sphere, thatis, S(x, y) z =(y, 22

—{x. 2)v.

Then the curvature operator of CP " can be written as

Rix, 9)z="(S(x, o) +SUx, Ig) +2x, 191}z

or

R, ) =2 {S(x o) + S Ux, Iy) +2ml},

where m = (x, Iy}.
LEMMA 2. Let S(x,y) be the curvature operator of the unit sphereand p* = || x"y|I* the norm of bivector Y.

Then $3 + p2S = 0.
Proof. Let us introduce the notation {y, z) = a, {x, z) = b. Then S(x, y)z = ax — by;
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Sx, Pe=Six, NS(x yz=S(x, v) (ax—=by) =
=aS(x, y)x—>bS(x, )

S, z=Sx, 08 (x, Nz=5(x, y)laSix, yhr—
—bS(x, Ny =Ly, (aSix, Yhx—5bS(x, y)yhdx—(x, (@Six, ¥ x—
—8S(x, Yy y=a{Sx, yWx, x+o{Sx, Yy, V4=
= —(S (x, #) y, x)(ax— by).

But ¢S (x, #)y, x)=|lx"y|i* Consequenly, §$* + p2S = 0. The lemma is proved.
Remark. For a space of constant curvature k operator S’ satisfies the identity §3 + k2p2S§ = 0.
The proof is analogous to the previous one.

COROLLARY (see also [2], [3]). If I'(¢) is a geodesic in the tangent bundle of a space of constant curvature,
then the curvatures of y(s) = x(I'(0), starting with ka' are zero.

Proof. According to Lemma 1 (a), ™) = §%(y, y")x'. Taking into account the fact that the curvature is constant,
we find from Frenet's formulas

1V = (1 — ) {Byhyk oSy — Ry (R + &) Bl (3)

On the other hand,

S5y, ¥'y = —p2S(x. ¥); therefore, x™) = —p28 (x, y)x"=—p%" 4
From Frenet's formulas x” = k;(1 — ¢2)#,. Comparing (3) and (4), we obtain

(1= kRpkeE, + (0% (1 — %) — (1 — ) by (B2 + £3) E, = 0,

Since &, and §, are linearly independent, we conclude from this that ky = 0.
LEMMA 3. The curvature operator of CP " satisfies the identities

R =a,R* 4 b,IR +¢,E,
Risv‘l — as!Rﬁ + ﬁ’R+ ?‘.f’

where a,, b, c;, a, B, 7, are coefficients.

To prove the last assertion we need a "table of multiplication” of operators S(x, ), S(ix, /), I. To abbreviate the
notation let us denote S(x, y) and S(Ix, [y) by A and B, respectively.

LEMMA 4. Operators A (=3(x, y)), B (=S(Ix, Iy)), I are multiplied according to the following table:

A B i
A A2 miB IB
B mid B 1A
1 /4 iB —E

Proof. Let us consider AB = S(x, y)S(Ix, Iy);

Sx y)SUx, Iy)z=S8(x, y) Iy, 2 Ix—(Ix, 2) Iy) =
=y, {y, D lx—lx, 2) Ipyx —(x, {Iy, 23 1x, —(x, DI y=
=y, Ix)y, 2)x+(Ix, 2)Cx, Iy)y=
=ml (([y, 2) Ix —Ix, 2)ly) =mlS (Ix, Iy).

Thus, AB = miB.

The remaining equalities are proved analogously.

Proof of Lemma 3. Note that the multiplication table implies that (4 + B) = I(4 + B), that is, 4 + B and |
commute. Therefore, numerical formulas for raising to a power are true for operator degree R = —i-{(ﬁl + B)+ 2mi),

W&

that is, R*(x. 4) = () {(4 + B)* —8m®/ +6m (4 + B) I (A + B+ 2ml)}.
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Note that A + B + 2ml = ¢ R, A+B=1tR—2ml

E]
Therefore, B = {1 {(A + B + % [R? + 12m*R — 8m¥

Moreover, (4 + BYf = A® + B* + AB! + BA® + ABA 4 BAB + A®B 4 B*A.

Using the table of multiplication, we find that AB® = ABB = m/E®, BA?=mlA* ABA = —m’A, BAB =
—m*B, A = AAR = mAIB = mIB®, BA =mlA®

In addition, according to Lemma 2, A* = —p°4, B? = —p*B.

Thus,

(A + BY = —p¥A + B) + ml (B* + A®) = m* (4 + B) 1
+ ml (A® 4+ BY) = (p* +m") (A + B) + mlI{A® + BY). ©

Il

Note that R? = [ k

L] E]
:,-j [{-4 + B —4m®E + 2mi (A + B}} =:} { A% 4 B 4 3ml (A + By — 4m*E} . The last

inequality implies that

a4 B = () R —3mi (4 R—2ml) — 4mE = (4] e -2 1R _10mE.

Substituting this expression into (6), we find that (4 + B)® is a linear combination of operators IR2, R, and I.
Substituting this linear combination into (5), we obtain that

R =o,IR* + B, R+ 1], M

where «;, By, v; are, generally speaking, nonzero coefficients.
Subsequent R are calculated using (7):

R =RR=a,IR* +p,R* + 1R =
=l (2, /R - B,R+ 1) +BR* + IR =
= {—o; + i) R® 4 (=, + ) [R—amE=

=0a,R* + b,IR +¢,E.

The proof of Lemma 3 is concluded by continuing this process.
Proof of the Main Theorem. According to Lemmas 1 and 3,

229 = a X"+ bIx" 4 e,

Xt = g JX" 4 px” A i ®)

Let us now consider the first equation of system (8) for s = 2, 3. According to Frenet's formulas, X = (1 -
2k kokakas + 1.c. (£, £4), where l.c. denotes a linear combination with constant coefficients of vectors £, &5 of the

Frenet frame while
=l ) X = le G) 2= le B &)
Consequently, for s=2 we obtain from the first equation of (8)
Lo, (B B+ de US) koo kg =0 (10)

If the coefficient of I£, is equal to zero, then k, = 0 and the theorem is proved. Suppose that the coefficient of IE, is
NONZEro.
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For s = 3, according to Frenet's formulas

X8 = (] —P k. keia + le (510 Ess E2).

Keeping (9) in mind, we find that

l.c. (31, E:p &i) "i' Le. '(-:':i '+‘ k: e k‘gg = 0 ([]
Expressing vector I, from (10) and substituting it into (11), we obtain L.c. G Ba B Ry . R =0,

Since the vectors of the Frenet frame are linearly independent, we can conclude from the last equality that in the
general case k=0 and, consequently, all the Temaining curvatures are zero. The theorem s proved.

Note. The author wishes to exrpess his gratitude to Professor A. A. Borisenko for pointing out a discrepency it
the proof of the result announced earlier [6].
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