CHARACTERIZATION OF THE PROJECTIONS OF GEODESICS OF THE SASAKIAN METRIC OF TCP^n AND T_1CP^n

A. L. Yampol'skii UDC 514

Curves that are projections of geodesics of the Sasakian metric of the tangent and tangent sphere bundles of a complex projective space are considered. The main result is: THEOREM. If Γ is a geodesic of TCP^n (T_1CP^n) then $\pi_0\Gamma$ is a curve in CP^n for which curvatures k_1,\ldots,k_5 are constant and $k_6=\ldots=k_{2n}=0$.

1. Formulation of Results. Sasaki [1] has noted that the projection of a geodesic of the tangent or tangent sphere bundle of a space of constant curvature to a base is characterized by the fact that its curvatures k_1 and k_2 are constant and $k_3 = \dots k_n = 0$. Moreover, subsequently it became possible to give a complete description of the geodesics of the tangent and tangent sphere bundles over space forms, that is, over the sphere S^n , plane E^n , and Lobachevski plane L^n [2], [3].

Nagy [4] has shown that for the tangent and tangent sphere bundles of a symmetric space the geodesics are projected onto curves all of whose curvatures k_1, \ldots, k_n are constant.

The goal of this paper consists in proving the following assertion.

THEOREM. If Γ is a geodesic of TCP^n or T_1CP^n , then $\pi_0\Gamma$ is a curve in CP^n for which curvatures k_1, \ldots, k_5 are constant and $k_6 = \ldots k_{2n} = 0$.

Since Azo [5] has proved that the geodesics of TM^n and T_1M^n are projected onto the same curves, we consider below geodesics in T_1CP^n .

2. A Remark on Geodesics of Symmetric Spaces. Suppose that $\Gamma(\sigma) = \{x(\sigma), y(\sigma)\}\$ is a curve in T_1M^n , σ is its natural parameter, and $\gamma(\sigma) = \pi_0\Gamma(\sigma)$ is the projection of $\Gamma(\sigma)$ to the base. The parameter σ is not natural for the curve γ .

However, if S is the natural parameter of γ , then $dS^2=(1-c^2)d\sigma^2$, where c is a constant [2]. Let us denote by "'" the covariant derivative with respect to σ . Then the equation of the geodesics in T_1M^n can be written as [1]

$$x'' = R(y, y') x', \quad y'' = -c^2 y,$$
 (1)

where $c^2 = ||y'||^2$, R(y, y') is the curvature operator of M^n .

It is easy to verify that c^2 is constant along γ .

Suppose that M^n is a symmetric space. This means that $R'(y, y')x' \equiv 0$.

LEMMA 1. If $\gamma(\sigma) = \pi_0 \Gamma$ is the projection of a geodesic of $T_1 M^n$ of symmetric space M^n and $\{x(\sigma)\}$ is its parametric equation, then the p+1 derivative of $\gamma(\sigma)$ satisfies

a)
$$x^{(p+1)} = R^p(y, y') x',$$

b) $x^{(p+1)} = R(y, y') x^{(p)}.$

Proof. Let us covariantly differentiate the first equation of the system. We obtain x''' = R'(y, y')x' + R(y', y')x' + R(y', y')x' + R(y', y')x''.

Taking into account the symmetry of M^n , the second equation of (1), and the oblique symmetry of the curvature tensor, we find that

Translated from Ukrainskii Geometricheskii Sbornik, No. 34, pp. 121-126, 1991. Original article submitted October 16, 1989.

$$x''' = R(y, y')x''.$$
 (2)

Repeating this operation p-2 times, we obtain Assertion b) of the lemma.

On the other hand, substituting into (2) the expression for x'' from the first equation of (1), we obtain $x''' = R^2(y, y') x'$, where $R^2(y, y')$ is the square of the curvature operator of M^n . Repeating this operation p-2 times we prove Assertion a) of the lemma.

COROLLARY 1. If $\Gamma(\sigma)$ is a geodesic of T_1M^n of symmetric space M^n , then all the curvatures of $\gamma(\sigma)$ $\pi_0\Gamma(\sigma)$ are constant.

Proof (see also [4]). Indeed, Lemma 1 (b) implies that $\langle x^{(p+1)}, x^{(p)} \rangle = 0$. This means that $||x^{(p)}|| = \text{const.}$

Suppose that $\xi_1(s), \ldots, \xi_n(s)$ is the Frenet frame along $x(\sigma)$. Then, taking into account the affine connection of sand $\boldsymbol{\sigma}$, we find from Frenet's formulas:

$$x' = (1 - c^2)^{1/2} \xi_1,$$

$$x'' = (1 - c^2) k_1 \xi_2.$$

However, ||x''|| = const. Consequently, $k_1 = \text{const.}$

Therefore, $x''' = (1 - c^2)^{3/2} k_1 (-k_1 \xi_1 + k_2 \xi_3)$.

However, ||x'''|| = const. Therefore, $k_1^2 + k_2^2 = \text{const.}$ Consequently, $k_2 = \text{const.}$ The proof is concluded by continuing this process.

COROLLARY 2. If $\Gamma(\sigma) = \{x(\sigma), y(\sigma)\}\$ is a geodesic of T_1M^n and M^n is a symmetric space, then R(y, y') acts as differentiation on the vectors of the Frenet frame of $\gamma(\sigma) = \pi_0 \Gamma(\sigma)$: $R(y, y') \xi_p = (1 - c^2)^{1/2} \{ -k_{p-1} \xi_{p-1} + k_p \xi_{p+1} \}$.

The proof is conducted by induction on p.

Proposition. If $\Gamma(\sigma) = \{x(\sigma), y(\sigma)\}$ is a geodesic of TM^n and M^n is a symmetric space, then the sectional curvature of M^n along $\pi_0\Gamma$ in the direction of the elementary area element of vectors (y, y') is constant.

Proof. By definition

$$k_{yy'} = \frac{\langle R\left(y,\ y'\right)\ y',\ y\rangle}{\mid\mid y\mid\mid^2\mid\mid \mid y'\mid\mid^2 - \langle y,\ y'\rangle^2} \;.$$

However, y is a unit vector field; therefore, $\langle y, y' \rangle = 0$, $||y'||^2 = c^2$, $||y||^2 = 1$. Consequently, $k_{yy'} = \frac{1}{c^2} \langle R(y, y') \rangle = 0$, $||y'||^2 = c^2$, $||y||^2 = 1$. $y') y', y\rangle.$

From this we immediately conclude that $k_{yy'}$ = 0.

Remark. This assertion is also true for geodesics in TM.

3. Characterization of the Projections of Geodesics of TCP^n (T_1CP^n). Since CP^n is a symmetric space, all the assertions of Section 2 and, in particular, Lemma 1 are true for the geodesics of TCP^n (T_1CP^n) . Let us show that all curvatures, starting with k_6 , are zero for the projections of geodesics of TCP^n (T_1CP^n) .

The curvature operator of \mathbb{CP}^n has the form $R(x, y) z = \frac{k}{4} (\langle y, z \rangle x - \langle x, z \rangle y + \langle Iy, z \rangle Ix - \langle Ix, z \rangle Iy + 2 \langle x, x \rangle Iy + 2 \langle x, x \rangle Ix - \langle x, z \rangle Iy + 2 \langle x, x \rangle Iy +$, where I is the operator of complex structure for which $I^2 = -E$, $\langle x, Iy \rangle = -\langle Ix, y \rangle$.

Let us denote by S(x,y) an operator of the type of curvature operator of a sphere, that is, $S(x, y) z = \langle y, z \rangle x$ $-\langle x, z\rangle y$.

Then the curvature operator of \mathbb{CP}^n can be written as

$$R(x, y)z = \frac{k}{4} \{S(x, y) + S(Ix, Iy) + 2\langle x, Iy \rangle I\} z$$

or

$$R(x, y) = \frac{k}{4} \{ S(x, y) + S(Ix, Iy) + 2mI \},$$

where $m = \langle x, Iy \rangle$.

LEMMA 2. Let S(x,y) be the curvature operator of the unit sphere and $p^2 = ||x^y||^2$ the norm of bivector x^y . Then $S^3 + p^2 S \equiv 0$.

Proof. Let us introduce the notation $\langle y, z \rangle = a$, $\langle x, z \rangle = b$. Then S(x, y)z = ax - by;

$$S^{2}(x, y) z = S(x, y) S(x, y) z = S(x, y) (ax - by) =$$

$$= aS(x, y) x - bS(x, y) y;$$

$$S^{3}(x, y) z = S(x, y) S^{2}(x, y) z = S(x, y) (aS(x, y) x -$$

$$-bS(x, y) y) = \langle y, (aS(x, y) x - bS(x, y) y) \rangle x - \langle x, (aS(x, y) x -$$

$$-bS(x, y) y \rangle y = a \langle S(x, y) x, y \rangle x + b \langle S(x, y) y, x \rangle y =$$

$$= -\langle S(x, y) y, x \rangle (ax - by).$$

But $\langle S(x, y) y, x \rangle = ||x \hat{y}||^2$. Consequently, $S^3 + p^2 S \equiv 0$. The lemma is proved.

Remark. For a space of constant curvature k operator S' satisfies the identity $S^3 + k^2 p^2 S = 0$.

The proof is analogous to the previous one.

COROLLARY (see also [2], [3]). If $\Gamma(\sigma)$ is a geodesic in the tangent bundle of a space of constant curvature, then the curvatures of $\gamma(\sigma) = \pi_0(\Gamma(\sigma))$, starting with k_3 , are zero.

Proof. According to Lemma 1 (a), $x^{(IV)} = S^3(y, y')x'$. Taking into account the fact that the curvature is constant, we find from Frenet's formulas

$$x^{(\text{IV})} = (1 - c^2)^2 \left\{ k_1 k_2 k_3 \xi_4 - k_1 \left(k_1^2 + k_2^2 \right) \xi_2 \right\}. \tag{3}$$

On the other hand,

$$S^{3}(y, y') = -p^{2}S(x, y); \text{ therefore, } x^{(IV)} = -p^{2}S(x, y)x' = -p^{2}x''$$
 (4)

From Frenet's formulas $x'' = k_1(1 - c^2)\xi_2$. Comparing (3) and (4), we obtain

$$(1-c^2)^2 k_1 k_2 k_3 \xi_1 + (p^2 k_1 (1-c^2) - (1-c^2) k_1 (k_1^2 + k_2^2)) \xi_2 = 0.$$

Since ξ_1 and ξ_2 are linearly independent, we conclude from this that $k_3 = 0$.

LEMMA 3. The curvature operator of \mathbb{CP}^n satisfies the identities

$$R^{25} = a_3 R^2 + b_s IR + c_s E, R^{25+1} = \alpha_s IR^2 + \beta_s R + \gamma_s I,$$

where a_s , b_s , c_s , α_s , β_s , γ_s are coefficients.

To prove the last assertion we need a "table of multiplication" of operators S(x, y), S(Ix, Iy), I. To abbreviate the notation let us denote S(x, y) and S(Ix, Iy) by A and B, respectively.

LEMMA 4. Operators A (=S(x, y)), B (=S(Ix, Iy)), I are multiplied according to the following table:

	A	В	1
A	A2	mIB	1B
В	m/A	B ²	IA
I	IA	IB	— Е

Proof. Let us consider AB = S(x, y)S(Ix, Iy);

$$S(x, y) S(Ix, Iy) z = S(x, y) (\langle Iy, z \rangle Ix - \langle Ix, z \rangle Iy) =$$

$$= \langle y, \langle Iy, z \rangle Ix - \langle Ix, z \rangle Iy \rangle x - \langle x, \langle Iy, z \rangle Ix, -\langle Ix, z \rangle Iy \rangle y =$$

$$= \langle y, Ix \rangle \langle Iy, z \rangle x + \langle Ix, z \rangle \langle x, Iy \rangle y =$$

$$= mI (\langle Iy, z \rangle Ix - \langle Ix, z \rangle Iy) = mIS(Ix, Iy).$$

Thus, AB = mIB.

The remaining equalities are proved analogously.

Proof of Lemma 3. Note that the multiplication table implies that (A + B)I = I(A + B), that is, A + B and I commute. Therefore, numerical formulas for raising to a power are true for operator degree $R = \frac{k}{4}\{(A + B) + 2mI\}$, that is, $R^3(x, y) = \left(\frac{k}{4}\right)^3 \{(A + B)^3 - 8m^3I + 6m(A + B)I(A + B + 2mI)\}$.

Note that $A + B + 2mI = \frac{4}{k}R$, $A + B = \frac{4}{k}R - 2mI$.

Therefore,
$$R^3 = \left(\frac{k}{4}\right)^3 \left\{ (A+B)^3 + \frac{24}{k}IR^2 + 12m^2R - 8m^3I \right\}$$

Moreover, $(A + B)^3 = A^3 + B^3 + AB^2 + BA^2 + ABA + BAB + A^2B + B^2A$.

Using the table of multiplication, we find that $AB^2 = ABB = mIB^2$, $BA^2 = mIA^2$, $ABA = -m^2A$, $BAB = -m^2B$, $A^2B = AAB = mAIB = mIB^2$, $B^2A = mIA^2$.

In addition, according to Lemma 2, $A^3 = -p^2A$, $B^3 = -p^2B$. Thus,

$$(A + B)^3 = -p^2(A + B) + mI (B^2 + A^2) - m^2 (A + B) + mI (A^2 + B^2) = (p^2 + m^2) (A + B) + mI(A^2 + B^2).$$
(6)

Note that $R^2 = \left(\frac{k}{4}\right)^2 \left\{ (A+B)^2 - 4m^2E + 2mI(A+B) \right\} = \left(\frac{k}{4}\right)^2 \left\{ A^2 + B^2 + 3mI(A+B) - 4m^2E \right\}$. The last inequality implies that

$$A^{2} + B^{2} = \left(\frac{4}{k}\right)^{2} R^{2} - 3mI\left(\frac{4}{k}R - 2mI\right) - 4m^{2}E = \left(\frac{4}{k}\right)^{2} R^{2} - \frac{12m}{k}IR - 10m^{2}E.$$

Substituting this expression into (6), we find that $(A + B)^3$ is a linear combination of operators IR^2 , R, and I. Substituting this linear combination into (5), we obtain that

$$R^3 = \alpha_1 I R^2 + \beta_1 R + \gamma_1 I, \tag{7}$$

where α_1 , β_1 , γ_1 are, generally speaking, nonzero coefficients.

Subsequent R are calculated using (7):

$$\begin{array}{l} R^4 = R^3 R = \alpha_1 I R^3 + \beta_1 R^2 + \gamma_1 I R = \\ = \alpha_1 I \left(\alpha_1 I R^2 + \beta_1 R + \gamma_1 I \right) + \beta_1 R^2 + \gamma_1 I R = \\ = \left(-\alpha_1^2 + \beta_1 \right) R^2 + \left(\alpha_1 \beta_1 + \gamma_1 \right) I R - \alpha_1 \gamma_1 E = \\ = a_2 R^2 + b_2 I R + c_2 E. \end{array}$$

The proof of Lemma 3 is concluded by continuing this process.

Proof of the Main Theorem. According to Lemmas 1 and 3,

$$x^{(2s)} = a_s x''' + b_s I x'' + c_s x',$$

$$x^{(2s+1)} = \alpha_s I x''' + \beta_s x'' + c_s I x'.$$
(8)

Let us now consider the first equation of system (8) for s=2, 3. According to Frenet's formulas, $x^{(4)}=(1-c^2)^2k_1k_2k_3k_4\xi_5+1.c.$ (ξ_1, ξ_3), where 1.c. denotes a linear combination with constant coefficients of vectors ξ_1, ξ_3 of the Frenet frame while

$$x''' = 1.c. (\xi_1), x' = 1.c. (\xi_1), x' = 1.c. (\xi_2).$$
 (9)

Consequently, for s=2 we obtain from the first equation of (8)

$$l.c. (\xi_1, \xi_2) + l.c. (I\xi_2) + k_1 \dots k_4 \xi_5 = 0.$$
 (10)

If the coefficient of $I\xi_2$ is equal to zero, then $k_4=0$ and the theorem is proved. Suppose that the coefficient of $I\xi_2$ is nonzero.

For s = 3, according to Frenet's formulas

$$x^{(6)} = (1 - c^2)^3 k_1 \dots k_6 \xi_7 + \text{ i.c. } (\xi_1, \xi_3, \xi_5).$$

Keeping (9) in mind, we find that

i.e.
$$(\xi_1, \xi_3, \xi_6) + \text{i.e. } I\xi_2 + k_1 \dots k_6\xi_7 = 0.$$
 (11)

Expressing vector $I\xi_2$ from (10) and substituting it into (11), we obtain l.c. $(\xi_1, \xi_3, \xi_6) + k_1 \dots k_6 \xi_7 = 0$.

Since the vectors of the Frenet frame are linearly independent, we can conclude from the last equality that in the general case $k_6=0$ and, consequently, all the remaining curvatures are zero. The theorem is proved.

Note. The author wishes to expess his gratitude to Professor A. A. Borisenko for pointing out a discrepency in the proof of the result announced earlier [6].

REFERENCES

- 1. S. Sasaki, "On the geometry of tangent bundle of a Riemannian manifold," Tôhoku Math. J., 10, 338-354 (1958).
- S. Sasaki, "Geodesics on the tangent sphere bundles over space forms," J. Reine Angew. Math., 288, 106-120 (1976).
- 3. K. Sato, "Geodesics on the tangent bundles over space forms," Tensor, 32, 5-10 (1978).
- 4. P. Nagy, "Geodesics on the tangent sphere bundle of a Riemannian manifold," Geom. Dedicata, 7, No. 2, 233-244 (1978).
- K. Azo, "A note on the projection curves of geodesics of the tangent and tangent sphere bundles," Math. Rep. Toyama Univ., 11, 179-185 (1988).
- A. L. Yampol'skii, "Characterization of projections of the geodesics of TCP"," Theses and Reports of the Tenth All-Russian Geometric Conference [in Russian], Novosibirsk (1989).