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Introduction

This survey contains a summary of results on the Riemannian geometry of
fibre bundles.

The paper is divided into seven sections. In the first section we consider
the Sasaki metric [93] of the tangent and the normal bundles, and the
spherical tangent and normal bundles respectively.

Riemannian submersions are a generalization of fibre bundles. Since
Riemannian submersions are nowadays the object of study of many geometers,
we deem it appropriate to include in the second section a survey of papers by
O'Neill [84] and Gray [57). Thus we fill a substantial gap in the Russian
geometric bibliography on these themes.

In the third section we include a survey of results in which is posed, and in
a sense solved, the first and natural problem of the Riemannian geometry of
fibre bundles: what is the connection between geometric features of the
bundle and analogous features of the fibres and the base?









58 A.A. Borisenko and A.L. Yampol'skii I

Let us perform a parallel translation of the tangent vector (E'+dey

2

in the sense of Levi—Civitd from (x'+dx’) to (x) along the natural
geodesic joining these two points. Let us denote by d6 the angle between the
result of the parallel transport and the vector (£'). Then we define the squaye
of the differential of the distance do”® between the points (x', £') and
(x'+dx’, E'+dE") by do? = ds?+[E[?d6%. In the local coordinates (x', E') we
obtain the following expression for the linear element of TM:

do* = guda'de® - g, DE'DER,

where the D&’ = dE'+T/i&%dx* are the covariant differentials of the
coordinates of the tangent vector.

Let us denote by Tg,, the components of the Sasaki metric of TM. Thep
do’ = Tg,-j:ix'dxj+2Tg,-ﬂ+ja’x'd,‘,’+ Tg,,+,-,,+jld‘@'_d<";-’. From this we find the
cxpression of Tg;; in the local coordinates (x', £°):

Tgiy = g + gaplmlHE"E,
Tvginﬂ' = Fi.?.,.r'%';'t -?Ign+i n+i = fij-
The contravariant components of the Sasaki metric have the form (93]
Tgh =i TE - g,
Tgnvinid = g - @l T2,

Another approach to the definition of this metric was proposed by
Dombrowski [50]. Namely, if g;;dx‘dx/ is the metric form of M, then the
scalar product of the vectors X and ¥ on M, with coordinates {X', ..., X"}
and {Y', ..., ¥"} respectively in the natural basis (8/3x"), is computed by the
fﬂrmll]a. {X, }r} = gij‘YJ. -

Let us consider from this point of view the scalar product (X, Y)) of two
vectors X" and ¥ tangent to TM and having in the natural basis (@/ox', ajaeh
the coordinates

AN G G A C
and
{jﬂ: . F-‘rl: T-‘r:-i-l! . 'i-"su}
respectively. Then
U, 1)) = g9 4 g (0 - TLEART) (P 4 [l Ee 7).
Let us define the maps

[ K: TTM—THM,
| TTM —TM
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by the formulae
KX = (™ + I X% a/aaf,
n, X = Yia/ax'.
Dombrowski called K rhe connection map, whereas n- is the differential of

the projection n : TM — M. Thus, the formula for the computation of the
scalar product of X and ¥ in the Sasaki metric becomes

(X, T)) = (m, X, a,¥)y + (KX, K.

The vertical subspace is ¥"TM = Ker n., and the horizontal subspace is
#TM = Ker K, and evidently these subspaces are orthogonal in the Sasaki
metric (see [93], [50], and [1*]).

Observe that the formula ((X, V) = (n,X, KY) + {KX '.rl:.Y} also defines a
(pseudo-) Riemannian metric. This is the so-called Vilms metric [101)].

Using the definitions of n« and K one can introduce the concept of
horizontal and vertical lifts to TM of a given vector field Z on M. Namely
(see [50]), the vector fields Z¥ and Z" on TM are called respectively the
horizontal and the vertical lifts of the field Z if

nZioy = Zo, KZ{hy = 0,
Tl = 0,  KZgy = Zg
at each point (Q, £) € TM.
In local coordinates the definition on the lifts is as follows. If
Z = {Z', .., Z"} is a vector in ToM, then its horizontal lift ZH and its
vertical lift Z¥ at (Q, E) have coordinates
ZH = (20, ..., Z"; —TRZE*, ..., —THZEk},
ZVo= {0, ... 0,2\ ... Z".

Incidentally, we observe the following technically important lemma on the
brackets of the lifts of vector fields.

Lemma 1.1 [50). At each point (Q, £) € TM we have

(XY, ¥YV] =0,

[XH, YV] = (VeV)Y,
a, [XH, ¥YH) = [X, Y],
K[XH, YH) = —R (X, V) §,

where V is, generally speaking, an arbitrary affine connection on M and
R(X, Y)E is its curvature tensor.

An analogue for the frame bundle was proved in [47].

59
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Lemma 1.2 [93). The Christoffel symbols of the first kind of the Levi— Civitg
connection of the Sasaki metric have the form

T = 1 o . .
FJH'II et = 0 1 Sk 3 {Rﬂ'm‘ + nggl—';,r?ﬂ} Q-J*! L nef K, neh = PJ.P:.'u
= . 1 . é a
it = Tpon -+ — rapl TN + Bl |— Il
Jk i JEh T ] [ ak [f\ '-'IH-I }'._TFLIF-II P fgtcﬁr.?,h]—‘ph P {gaﬁl";,_;[‘uk}]gygli
= 1N LTI T L PP B
P.fk,r!-i-h = ' [ ﬂ:k. T ar! "‘guﬂrhzjrht_- gaﬁrfjrﬂ}f] ;':".

Lemma 1.3 [96]). The Christoffel symbols of the second kind of the Levi— Civirg
connection of the Sasaki metric have the form

=TI i 1 [
I n+j n+k = ﬂ: Fn-'r_i" k= = Rh‘ ?-J"*.-_.-L‘

T [ —

v . 1
T;'..}:FJ; = r}n — 3 I LhHHJ‘E”E?‘r

= i 1 ! -1 ] ]

Cir = ik + 5 [Riwili + BT h] EMER,

f
T 4 1 I . i - 0y ar.ﬂt
FJ]: — % Jkk 7 RKH. - El.r}'

ot

1 i n o 1 1 e
B T Fon [Bis T35 + H}-*lll k] ‘E'RELLE‘I'

Using these lemmas one can find the covariant derivatives of compositions
of lifts of vector fields.

Lemma 1.4 [65).
ﬁxv}’rv=ﬂg fdrﬂ}rvzivx}rj'f’..i._-é_-{Rl:;,Y}X]”,
Ve V¥ = [REX)YP, T gV (vyy)n — - [R(X, Y)E]".

An analogue of this lemma for the frame bundle is given in [47).

It is also appropriate to observe here that the construction of the Sasaki
metric does not require that the connection be Riemannian, and consequently
this construction is applicable to any fibre bundles with connection over a
Riemannian manifold.

Let us consider from this point of view the normal bundle of a surface F'
in a Riemannian manifold M'*#. At each point Q € F' we have the splitting
of the tangent space ToM'*? to M'"7 into the direct sum of two subspaces
ToF' and NgF', of which the first is tangent to F', and the second is
orthogonal to :I:",‘I?j""jr in the metric of AM'*?.

By a normal bundle space we mean the disjoint union of the NoF' over all
Qe F. If Qe Fand & is the normal to F' at (, then the pair 0 = (Q, E)
is a point of the normal bundle NF'. Let us denote by (x', ..., x') the local
coordinates of F', and by (£, ..., &%) the coordinates of the normal Eina
basis of normals ny, ..., n,;, which in what follows will be assumed to be
orthonormal. Then the symbol (x!, ..., x: El, ..., £¥) defines local coordinates
on NF', which are called the natural induced coordinates, by analogy with the
tangent bundle.
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Let g and V be a metric and a covariant derivative respectively on M f+e,
and let g be the induced metric on F’. If X is a vector field tangent to F " and
£ is @ vector field normal to F’, then the covariant derivative in the normal
connection Vit of the vector field & along the direction of X is defined as the
ijmﬁon of the vector field V4£ onto the normal subspace to F !

In local cordinates we have

T._Hm — H;,“nﬂ (E:i....,i: oL = 1,...1P}.‘

where 1 ; (=i ;) are the torsion coefficients. Hence, for vector fields we
have

™

- i = T
=X L —=— i g
o !

e

A

The covariant differential D* of the normal vector field § is defined as
the normal covariant derivative of § along the direction of the vector field
a¥ = {dx', .., dx'}:

DLt — (dE* 4- pﬁiﬁfc{mi} M|

Let us define a linear element d o of the Sasaki metric of NF "in the
natural induced coordinates (x’, £¥) by means of the equality [3]

do® = gidzr'ds’ + SgpDLERDLER,

where B4p is the Kronecker delta (corresponding to the fibre Euclidean metric).
For the components of the Sasaki metric Ng of the normal bundle we
obtain the following expression [31]:

Nes; = gij + Sapnfi ) 8L,
Ngip = llﬁilagts
Jﬂ"rgna I 6‘1[5*

The contravariant components have the form

Ngi.l — gij-.. Ngti+h = —-yﬁj,gﬂ“é’f,

Ng““ 4B - B - g”}.l:u}-lﬁugtga-

For NF' we define in a natural way the map = and the connection map K

(see [89]). If X and ¥ are tangent to NF' at Q = (@, &) and in the natural

basis (3/8x"; B/0E) the vectors X and ¥ have coordinates (X% X'} and
(¥ ¥™=} respectively, then, denoting by {({ )) the scalar products of vectors
in the Sasaki metric, and by (,) and {,), the scalar products of vectors in the

metric g and in the fibre (Euclidean) metric respectively, we find that

T, 7)) = g X'T7 + 8ap (X 4+ e E) (P17 4 o, 780) =
= <ﬂ-¢: f! J‘L*F} + (K‘T‘ KY‘).I."

that is, n. and K in local coordinates arc written as

n, X=X fﬂr.-"f}"xi, KX = {.T{'m + H?,-;-Y‘.E‘} Rgj-
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The vertical subspace is #"gNF' = Ker s, and the horizontal subspace g
H NF' = Ker K.

We define in a natura]l way the horizontal and the vertical lifts of
vector X and a normal vector  in TNF” at (Q, ). Namely [89],

X = (XY — w1k X*ED), Y = {0; n2).
Dombrowski’s lemma has the following analogue (see [6] and [31]).
Lemma 1.5. At each point Q = (Q, £) € NF' we have
[V, WV1ly = 0, [XH, w7, = (Vin)l,
ny [XH, Y”IQ- = [X,¥]lp, KI[XH I’Hlé = —(N (X, Y)E)g,

4 langep

where N(X, Y)E is the curvature vector of the normal connection.

We recall that

Oapiy  Mapy
dx' dx’

is the curvature tensor of the normal connection, and N(X, Y )&= N§;,, X 'YePny,

We have the invariant expression

N(X,Y)E= ViVt — V$TxE — Vi 3k

Other technical results to be mentioned are the expression of the Christoffel
symbols of the metric NF' and an analogue of Koval'skii's lemma on
covariant derivatives (see [6] and [31]).

Lemma 1.6. The Christoffel symbols of the first kind of the Riemannian
connection of the Sasaki metric NF' are equal to

Nopjis = + Marjilhhls — Meeel il

= . 17 d . a a ] -
Pise =Tk -+ ~2—! —.7 (Hasitlope) + ;ET[:PMHPEW}—F(HETHHHJ} ETEe,

=

1 [ Ougey  Bppy;
hleh = 3 [Tﬁ_ T Rl Reapiin | 8,

— -1 .
Pispi,g =5 [Vpriis 4 2Mapitiz;] £

Pl' I, 4 = u'f'mh'! I‘J'+|:: I+fi, | = Us I‘I+|:x. [+f, l+1 — EI

Lemma 1.7. The Christoffel symbols of the second kind of the Riemannian
connection of the Sasaki metric of F' have the form

=k 1 , &

[ :l.f = PEF + Ta lﬁ:ﬁtaﬁ\g‘lj ‘i' ﬁ'imﬂfﬁ:‘} ET'EU!
= 1 i I3 y @
P#u = 5 uge (N Euxﬁlfl?.r_! + N}mﬁﬂlsé} ETEREX -

_.__1_[ i T Y

— i [+ T o o E ' . .
T nd T gt Ml ey — 200 €

=k 1 o T4 1 ot .
Plicj =5 NjpaZh Tiia; = niyy + 5~ MV jjanEAEY,

T‘ha +fi = g, [1!!{::. I+ = 0.
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: mma 18. If X and Y are tangent vector fields on Flc M™? and v and {
p normal vector fields on F' then the following equalities hold at each point

@' = {Q- &)
T 8 =0, pun® = (Vi) + 5 [ @0 X1

= 1 5 = - 1 s ur NP RV
v oY =5 INEWYI T ¥ = (V¥ )i — o [NV(X, V) E]Y

T -}]

The tensor N appears in the two lemmas. In local coordinates,
Nip = g'*Napjsj and in invariant form N(E, m)X is determined by
et ity (NG, WX, ¥) = (VX Y)e mu. Thus if n(X, ¥) is an
Jptisymmetric linear iransformation of NgF', then N(§, n) is an antisymmetric

jgear transformation of ToF'
Incidentally, Ricci’s equation for immersed manifolds

(B (X, V)& my = (N (X, V) By — (s Anl X ¥y

implics that in spaces of constant curvature (in which case (R(X, Y)E, n)g is
gero) one has N(&, m)X = [4g, Ay]X, where Ay and Ay are the matrices of the
wecond quadratic forms of the surface F' with respect to the normals § and 7
respectively.

If in each fibre of TM we restrict ourselves to vectors of specified length
p > 0, we geta subbundle T,M, which is a hypersurface in TM. If M is
compact, then TpM is a compact submanifold in TM. Its embedding is given
py the condition galit* = pt. The vector ¥ is a normal to T,M at
(0, E) € TpM, where the lift is regarded in the sense of TM.

T,M is called the spherical tangent bundle. For p = 1 it is also called the
unit vector bundle. Apart from T,M, one can consider other types of surfaces
in TM (see §3).

The connection map of TpM is defined as the restriction of the connection
map of TM : K, = Kira We have K, @ Tigx) T,M — L}(E), where L5(5)
is the orthogonal complement of £ in ToM.

The components of the metric tensor T,M may be computed, for instance,
as follows.

Let us regard the equality il igk = p? as an equation with respect to £".
Then T,M is given explicitly, and

ar" 1 vyl

B’ T (= AR
B:" En (ks =j { :h:J
:']E" .‘:::p

w =, 5

where & = g% p = 1 n—1.
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After standard computations we find that
8 . LT - . 1
{Tpg i = Eij +- Pﬂrium‘g‘&u Bl I.‘-',z'.;ru “’:""Aj -+ 111;,115}'-4, -I- g"ln“!rfl_f

{Tpg}imp = P.'kf.:m E’ + F?.e',u= E;\'Bp e gnpAJ -+ ﬁnn-'"]tﬂp,
(Tog)nipnsg = gpg + EnpBy + gugBy, EnnBp By,
(rg=1,....n—1)
Yamaguchi and Kawabata [107] obtained a somewhat different form for

the components of the metric of T,M (that is, for p = 1)
Let us define T\M in TM parametrically:

Zt = ui, Ei = Ei {l,t.{1 Ip.}'

Let Vi be the covariant derivative of £ in the connection of M with respect to
u', and let 8,8 be the usual derivative of £ with respect to the parameter (°.
Then the components of the Sasaki metric T;M become

(T1g)i; = gy + <VE, V&),

{Tlg]i nip C"FIE: ap’g}-

(T18)nspneq = gk, dgE>.
If in each fibre of the normal bundle NF' we restrict ourselves to vectors of g
specified length, we obtain the spherical normal bundle N,F"

From a geometric point of view it is interesting to study the geometry of

the normal bundle of unit vectors, that is, for p = |,

Since along F' one can choose an orthonormal basis of normals, the
normalization condition of a normal vector becomes

and the natural embedding N,F' C NF' is given as follows:
vt =gt oy = g,
1

P 1 -1 — — Y ()2,
ylte =EP(E1 | Ep-1) -‘gi E%ul('é}

where (y) are coordinates on NF', and (x’, E®) are coordinates on N F',
i=1.,Le =1 .,p—1 Letusset

Bﬂ . I

In these coordinates we have the following lemmas.
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1.9. The covariant components of the melric rensor of the Sasaki metric

5::’;’ are equal 10

(Nyghy = & e g vi 555
(N12)itg = (Banii 7 ooy Be) B
(Nyghis teg = Oog T BuBy
(o, T b = fv....p @ 0= 1,..,p— b i, i= 1, .« v o 1)
Lemma 1.10. The contravariant components of the metric tensor are equal 1o
(N, = g, (N, o0 = —g"ul BN
(N g)i+0 e — 8P4 — EVE% | AR TRATRAS
(e, T, k=1, P % Be=1,...p—1i.i=1... [y

Mok [73] constructed an analogue of the Sasaki metric on the frame bundle
FM and ihe orthonormal frame bundle OM.

The geometric meaning of this metric consists in the following. Let
0= (x', ..., x") be a point on M, and let F = {Ey, ..., E4} be a linear frame
in ToM. Then the pair (Q, F) constitutes a point of the frame bundle FM.
Let us consider two near points of this bundle: (Q+dQ, F+dF) and (2, F).
Let us perform a parallel transport, in Levi— Civita's sense, of each vector of
the frame F+dF into the point Q, along the geodesic joining and Q+dQ.
Let @0’ be the angle between the cesults of the parallel transport of &+ dS and
the vector &; and let ds be the length of the geodesic segment (0, Q+dQ).
Then the linear element do of the Sasaki metric of FM is defined by

dot = dst + 3 |& (@O

=]

The paper also contains direct analogues of Lemmas 1.2 and 1.3 and the
computation of the curvature tensor of the Sasaki metric of FM. Since it is
not our intention to lay stress on heavy index notations, we refer the reader to
the original paper [73], and observe that the formulae obtained therein
qualitatively differ little from the corresponding ones for TM.

Going back to the tangent bundle, we shall indicate an expression for other
types of metrics on TM connected with the Riemannian (pseudo-Riemannian)
metric and the connection of M.

Let us consider the quadratic forms [105]:

I gudxiix"‘.
II. 2gdx'DE/,
1. g,;DE'DE.

Then the metric form of the Sasaki metric can be wrtten as the sum
I+III. The form 1I, regarded as a metric form on TM, determines the
so-called complete lift metric. The metric 1+111, that is, the Sasaki metric, is
sometimes called the diagonal lift metric. The forms I+11 and 11+ I11 also
determine a (pseudo-) Riemannian metric on TM. Their properties were
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studied in [105] and [100). Shirkov proposed a construction of a synthetic
metric and a synthetic connection on TM [25].

In general, it is possible to indicate a procedure for lifting from M onto
TM any tensor fields, not only metrics. One singles out horizontal, vertical,
and complete lifts of tensor fields. However, we shall not consider these
questions (sce [8], [74], and others), since this could be the theme of a Separate
survey.

Thus, on the tangent bundle of a Riemannian manifold one can construct
in various ways a (pseudo-) Riemannian metric starting from the (pseudo-)
Riemannian metric of the given Riemannian manifold. Thus, the projection
map n : TM — M becomes a map between two (pseudo-) Riemannian
manifolds, and n. is a surjection and preserves the lengths of horizontal
vectors. It is likely that this was the basis for the definition of the concept of
a Riemannian submersion, which will be considered next.

§2. Riemannian submersions

2.1. Main equations of a Riemannian submersion.

Let M and B be Riemannian manifolds. A Riemannian submersion

m: M — Bis a map from M onto B satisfying the following axioms Al
and A2

Al. ® has maximal rank, that is, rank ne = dim B, and therefore © ™ \(b) Jor
every b € B is a smooth embedding of a submanifold of M of dimension
dim M —dim B.

The submanifolds n~'() are called fibres. The vector fields on M tangent
to the fibres are called verrical. The vector fields on M orthogonal to the
fibres in the metric of M are called horizontal.

A2. ns preserves the length of horizontal vectors. M is called the space of the
submersion and B the base of the submersion. O'Neill [84] found analogues of
the Gauss—Codazzi levels of an isometric immersion for the case of
Riemannian submersions.

Observe that the space of a Riemannian submersion is a particular case of
an almost product manifold, whose geometry has been studied by Gray [57].
His method is analogous to that of O'Neill, both in concept and results. We,
however, regard the Riemannian submersion as a more natural object of
study, and the subsequent exposition follows O'Neill [84] (see also [2*]).

Let # and ¥" denote the projections of the tangent space to M onto the
spaces of horizontal and vertical vectors respectively. The letters U, V, W will
always denote vertical vector fields, whereas X, ¥, Z will denote horizontal
ones.

The second quadratic form of the fibres is defined as a tensor field T of type
(1, 2) on M determined by arbitrary vector fields E and F on M by the



Riemannian geometry of fibre bundles

formaula. (cf. [57)
TF = #Vyp (VF) + ¥ Vs (F),

where V is the covariant derivative on M.

T has the following properties:
1. At each point Tg 1s an antisymmetric linear operator on the tangent

ace to M and takes horizontal vectors into vertical ones, and conversely.
2. T is vertical, in the sense that Te = Ty

3. T is symmetric on vertical vector fields: T, W = Tyl

To define another tensor, 4, we interchange the projections % and ¥” in

the definition of T:
fl.l'-:-f;1 = Tﬁrfj_ fﬁFl} _frx‘;{ {1.*".};‘}_

4 is a (1, 2)-tensor with the following properties:
1'. At each point 4gF 1s an antisymmetric linear operator on the tangent

space to A and carries horizontal vectors into vertical ones, and conversely.
2. A is horizontal, in the sense that 4 = Axe
3’. For horizontal vector fields we have A Y = —AyX.
A is the integrability tensor of the horizontal distribution, since

1 *
AxY = ¥ [X, Y]

Let us denote by V the connetion induced on fibres, that is,
VoW =¥ V.

The following lemma yields an analogue of the Gauss decomposition for a
Riemannian submersion.
Lemma 2.1 [84).

1) Ve W = TyW - Ty W,

9) VyX = #VyX + TvX,

) VeV = AxV 4+ ¥'ViV,

&) V¥ = #HVyY + AxY

(cf. [65] and [57)).
Let us denote by (R(Vy, V2)Vs, Ve) the curvature tensor of a fibre, and by
{R*(hy, h)hs, ha), the tensor defined by

CR* (hy, hy) by, B = (R* (he, 13) by, B3

where R* is the curvature tensor on B, and h} = sk ).
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If AxY in local coordinates is written as 43X/, then we denote by
(Vz4)x Y the expression (VeAI)Z* X'V Then the analogues of the Gausg
Codazzi equations of a Riemannian submersion are as follows (cf. [57));
R(X,Y)Z Hy = (R* (X, Y)Z, Hy— 2 (AxY , AH> + CArZ, Ay 1 +

T {AZX- ArH)
CEEY)Z V) = ((VzA)e ¥, VY + (AxY, TyZ> — (AyZ, Tyxy . "

— (_;’12-&.’, T?}'}.
CRIX, YY)V, Wy = ((Vyd)r ¥, Wo — {(Vwd)xY, Vy + AxV, 4ywy _
= AxW, Ay V) — (TvX, TwY) + (TwX, Tyyy
(R, VY, W = (V) W, Yy + {(Vrd)xY., Wy — TvX, Tyyy 1
_:_ {"4'.?: V'u /1}’%‘
U VYW, Xy =¢ (VWhoW, X) — (VoThi W, X,
RONYW. Ey = (R, VYW, F> 4 (ToF, TyWy — (7w, TPy,
Here the covariant derivatives of the fields 4 and T are described by
(Vvd)yw = —Arpw, (VxT)y = —Ta,y,
(Vxd)w = ~Aayw, (WWl)y = —TIryy.
From the Gauss— Codazzi equations one easily obtains the following result
(cf. [57]).

Corollary. Let n: M — B be a Riemannian submersion, and let K, K., and
be the sectional curvatures of M, B, and the fibres respectively.
Then

. _ TV TyWy — | T oW 2
E(V.W)=K{V,W)—_¥ l.";;hwr"_”

KX V) = prrp KT VX [ AxV —| Ty X o,

r v , 3l Ayl
K{A,}}:E*{X*}*Jhﬁﬁu Xt=“*|:x.}'

The last formula implies that along horizontal surface elements the
sectional curvature of a submersion space is not greater than the curvature of
the base ([57], [12]).

The following examples have been considered: a) the Hopf bundles
m: 821 & CP"; b) a Riemannian homogeneous space G/K and
n: G —+ G/K; and c) the frame bundle FB and n : FB —+ B.

In addition to these applications, Gray [57] considered the Hopf bundles
§*3 5 HP" and obtained an expression for the sectional curvature of the
quaternionic projective space.

In these examples a crucial step was the determination of an expression for
the tensor 4 of the Riemannjan submersion, so that T = ( (these are
Riemannian submersions with totally geodesic fibres),
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Let us write down the tensor 4 for the Hopf bundles. Consider
| gt ', CP"[84]. Let N denote the unit exterior normal to the unit
¥ hﬂ" g+l C R¥*2 C C*"'. Let J be the natural quasi-complex structure
Eﬂﬂ“. The fibres of the submersion 7 : g+l _, CP" are one-dimensional
qod are integral curves of the vector field JN, which, in turn, are great circles
Sy. +1 .
Thus, the vertical space of the submersion  : s+ 1 o CP" coincides with
JN, and the horizontal space coincides with its orthogonal complement.
If X and Y are horizontal vector fields on 5§21 then the formulae

AyY = (X, JY)IN, AdJIN) = JX

pletely determine the tensor A.
From the Corollary given earlier we obtain a formula for the sectional

curvature of CP™

C v v 3(x, JY)?
Ke X Ya) =1+ T3 77F -

Let us consider the quaternionic Hopf bundle = : 8§43 5 HP™ (5T
On the tangent bundle to S**** we have the operators of the quaternionic-
Kibler structure, [, J, K : I? = K* = J? = —E, and IJ = K. Let N be the

qgnit normal to §%*3 in R“*% Then

AyY = —(IX, Y)IN=-{JX, Y)JN—(KX, Y)KN,
where X and Y are horizontal vectors of the Hopf bundle (that is, they are
horizontal lifts of tangent vectors to HP" in the submersion space).

Let us define an operator Q by QX = XI A XJ A XK. Although,
generally speaking X1, XJ, XK are not basic, QX is, that is, there exists a
vector field Q-X- on HP™® such that Q.X+ = m.(QX ), and QX = (Q-X)".

Then
K, (X, Y)=1+3 ($Xy [ QuXa Y /N Q.Y D1 — (X, Yol [ & A\

¥, It =1 3sin (¢ -+ B) sin (p — 8) (sin @)%,
where © and o are determined from the conditions
(X NQX, Y NQY) = cost B | X Y I
(X, ¥y =cosq |[X||Y |
Thus, the Hopf bundles §° <= 82, §24°1 £, Cp", 54773 s HP" are

Riemannjan submersions with totally geodesic fibres. It turns out that the
converse theorem also holds; it was proved by Escobales [51].
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Theorem 2.1. Letn : 8™ — B be a Riemannian submersion with connecieq
totally geodesic fibres, for which the dimension of the fibre lies between | ang
m—1. Then n is a submersion of one of the following five 1ypes:

a) m: §¥ D CPY (n == 9),

b) a: S S HPT (= 2),

¢) m: S -‘—; 82 (1/2),

d) 87— §1(1/2),

e) m: 1% 2 58 (179,
In the cases a) and b), B is isometric to a complex and a quaternionic

projective space of sectional curvature 1 < K« < 4 respectively, In the cases
c), d), and ¢), B is isometric to a sphere with curvature K. = 4.

We recall that the tangent bundle of a Riemannian manifold with Sasaki
metric is also a Riemannian submersion with totally geodesic fibres.

At each point (Q, £) € TM the tensor 4 is completely determined by the
following formulae:

. 1
Ak "= —'—j"”f (X, ¥)E]H,
" 1 -
A‘th‘]ﬂ =T[R{E+ V)yXI|H,

where R is the curvature tensor of the manifold at Q e M.

This implies, in particular, that the sectional curvatures of TM along
horizontal, vertical and mixed surface elements at a point (0, £) are equal to
[57):

a) K (XV,YV) =0,
b) K(X",¥™)= | REX)Y /| XP|Y
c:' K(XH? ]’H} EK* I:Xt }j._%'f{{}k' Ip}ér-lixh Y Iz'

where X' A Y is a simple bivector on the vectors X, ¥ e ToM.

Bergery and Bourguignon [38] studied the connection of the Laplacians on
the space of a Riemannian submersion with the Laplacians of the fibres and
the base of the submersion with totally geodesic fibres. More precisely, let
m: M — B be a Riemannian submersion with totally geodesic fibres. Let
F,, = n~'(n(m)) be the fibre passing through m € M. Let us denote by AY
the Laplacian on the space of the Riemannian submersion.

If f: M - Ris a function of class C?, then we denote by f | F,, the
restriction of f to the fibre F,, and by A®~ the Laplacian of the fibre regarded
in the metric induced from M.

By the vertical Laplacian A, we mean a second-order differential operator
defined on C*-functions on M by

(Auf) (m) = (A"m (f | F,)) (m).
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The horizontal Laplacian Ap 18 defined as the differential operator
ﬂh = .I':'l]'l"jl - ﬁ'l‘-'
We say that the operators 4 and B commute if AB—BA is the zero

Theorent 2.2 [38]. If the fibres of a Riemannian submersion T M — B are
wotally geodesic, then the operators AM, A,, and Ay are pairwise commutative.

Using this fact, Bergery and Bourguignon observe that if M is compact and
connected, then the spectrum of A, (like that of A") is diserete, which is not
iue for Ay However, if the multiplicity of each eigenvalue of AM is finite in
{he situation under consideration, then for the eigenvalues of A, this is not
irue, generally speaking.

In general the spectrum of A, contains the spectrum of A% of the base
manifold, but does not coincide with it.

If we denote by L*(M) the Hilbert space of (real-valued) [*-functions on
M, then it turns out that L*(M) admits a basis consisting of common
eigenfunctions of AM and A,

The connection between the eigenvalues of AM. A, and A, is described as
follows. Let

H (b, ¢) = {f & L* (M) | 8] = bl B = ).

If f € H(b, ¢), then AMf = (b+¢)f. However, the converse is not true,
that is, the cigenvalues of A™ are not all possible sums of eigenvalues of Ay
and A, when M is not a direct product. Among other results in this paper we
shall mention connections such as inequalities between the diameters of the
submersion space, the fibre, and the base. Let us write diam(F/G) for the
diameter of the metric space F/G, where F is the fibre with the metric induced
from M, and G is the isometry group of the fibre. Let us denote by
diamy(M) the horizontal diameter of M:
diamyM = sup inf{length of a horizontal geodesic joining p and g,

paaeM
if this is possible},

where the inf is taken along all possible horizontal curves.
Then

diam® B + diam?® (FIG) = diam®* M,
diam® M < diam® B -+ diam® F,
diam? M < diami M + diam® (F/G).
It seems interesting to study the connection of the geometry of a

submanifold in the space of a Riemannian submersion with the geometries of
the fibres and of the base.
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The fibres are a natural class of submanifolds in M. These are integral
submanifolds of a vertical distribution. O'Neill found a connection between
the sectional curvatures of M and F and the second quadratic forms of a fibre
in the space of a submersion (see above).

The horizontal distribution of a Riemannian submersion is not iut,cgrab[e,
except for the case of a flat base. However, this does not prevent one from
studying horizontal submanifolds in A whose dimension is smaller than that
of the base. These submanifolds were studied by Reckziegel [90]. Let us
make the definitions more precise and give a statement of his result.

Let ® : M — B be a pseudo-Riemannian submersion. A map g: N - jf
is called a horizontal isometric immersion if the tangent space to g(N) C M s
horizontal at each point.

Let us denote by f the composition of the projection of a submersion and
an immersion: f = nog.

The main result of [90) may be stated as follows.

Theorem 2.3. If g : N — M is a horizontal isometric immersion of a pseudo-
Riemannian manifold N into the space M of a pseudo-Riemannian submersion,
then

a) f = mog is an isometric immersion N — B

b) the second quadratic form K of the immersion g i horizontal and
nah® = b/, where b’ is the second quadratic form of f: N > B:

c) let L(g) and L(f) be the normal bundles of the immersions g and f
respectively, and let V* be the normal connection of L(g) and L(f). For every
normal vector field n € L(g), men is a normal vecror field from Lf. Ifnis
horizontal, then

zvviﬂ = 4 {Etxn n, nnr""-.'!i'ﬂ = F}ﬂ*ﬂ
Jor every vector field X on N.
(We recall that 4 is the integrability tensor of the horizontal distribution.)

Corollary. The immersion [: N — B is totally geodesic, totally umbilical, or
pseudo-umbilical if and only if g : N = M has the same property.

In [69], two-dimensional Chebyshev surfaces are considered in the space of
a Riemannian submersion. Two cases are studied of the position of such a
surface: a) when the projection onto the base is one-dimensional and the
projection onto the fibre is two-dimensional; b) when the projections onto the
base and onto the fibre are one-dimensional, One of the results is as follows:
if the intersection of a surface with the fibre is a line of its Chebyshev net,
then the projection of the net onto the fibre is a Chebyshev net of the fibre.

Ikuta [61] stated several results on the geometry of Riemannian submersions
whose fibres are not totally geodesic. Thus, for example, he gave an
expression for the curvature tensor of the normal connection of the bundle in
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(erms of the integrability tensor of the horizontal distribution and the second
quadraﬁﬂ forms of the fibres. He proved the following result.

Theorem 24, Letn: M "*¥¢) — B"(a) be a Riemannian submersion of a
space of constant curvature ¢ onlo a space of constant curvature a. If

a) ¢ = a, then the horizontal distribution is integrable;

b) ¢ # a and the normal connection of the fibre is flat, then n is even.

Incidently, assertion a) is a simple consequence of O'Neill's formulae
relating the curvature of the base with that of the submersion space.
Moreover, the integrability of a horizontal submersion implies that M is a
metric product of the base and the fibre. Taking into account the fact that M
has constant curvature, this means that M is flat, that is, that ¢ = a = 0.

In [80] an interesting problem is stated regarding Riemannian submersions.
Let ®: M —» B be a Riemannian submersion, and let N be a submanifold
in M. Then n(N) is a submanifold in B. What is the connection between the
properties of N C M and those of n(N) ¢ B? In [80] it is proved that if N
is a locally symmetric submanifold in M, then, under certain assumptions,
a(N) will be a locally symmetric submanifold in B. Namely, it is assumed
that f: N = M is an isometric immersion of N into a space M of constant
curvature; that = : M — Band n: N — B' B are Riemannian
submersions with totally geodesic fibres, and the diagram

N L. M
N
B — B

is commutative; that f is a diffeomorphism on the fibres; that AgF = 0 for
a horizontal F tangent to N and E and orthogonal to N. An example
(possibly the only one, given all these assumptions) is the Hop{ bundle
x: 871 S CP" where N = §?™*! is an (m < n)-submanifold in

M = S and a(N) = CP™ is locally symmetric in CP". One can obtain
more interesting examples of submanifolds in the submersion space by
simplifying the situation and considering the tangent bundle of a Riemannian
manifold and a surface in it.

2.2. Geodesics in Riemannian submersions.
The equations of geodesics for the tangent bundle of a Riemannian manifold
with the Sasaki metric were obtained in [93] for the particular case of a
Riemannian submersion. The case of a general Riemannian submersion was
considered in detail by O'Neill [85], whose work will now be reviewed.

The main goal of [85) consists in comparing the geodesics of M and B for
a Riemannian submersion = : M — B and finding the connection between
conjugacy and the index of geodesics in M and B. In particular, the
equations of the geodesics in the submersion space were obtained.



74 A.A. Borisenko and A.L. Yampol'skii l

More precisely, let # and ¥~ be the horizontal and vertical projection
operators in the tangent space to M, and let E', E”, ... be the covariant
derivatives in the Riemann connection of M of a vector field E tangent to A
Let Ep = HE and E, = ¥'E. Then for every vector field £ we have
E = E#'FE-;A‘

Theorem 2.5, Let n : M — B be a submersion, and let E = Ex+ Ey be g
vector field on a curve y(t) C M. Then

HAE' Y= Ey + Appp (¥7') + Awr (Ey) + Ty (Bv),
VAE'Y = Awy (Bx) + Tyry (Ew) + ¥ (E¥),

where ' is the tangent vector field to y(t), E« = n«(E) is the projection of E
into the tangent vector field to the base, and E. is simultaneously regarded as
the horizontal lift of the field n«(E).

Theorem 2.6. Lety be a curve in M, let X = 2y, and U = %Y. Then
Ky = v + 24xU,
Y (4 — TuX + ¥ (),

where <" is the horizontal lift of the vector of the second covariant derivative of
the curve moy onto the base B.

Setting X#'(y”) = 0 and ¥'(y”) = 0 we obtain a condition for v to be a
geodesic on M. In particular, if y is horizontal, that is, ¥y = 0, then
Y+ = moy is a geodesic on B, and conversely, the horizontal lift of a geodesic
of B to M is a geodesic on M.

Corollary. If = : M — B is a Riemannian submersion with totally geodesic
fibres, then the equation of a geodesic ¥ on M has the form

Yo = — 2y (V) ¥ (¥7) = .

To state other results we give several definitions.

Let v be a geodesic of a Riemannian manifold M joining the points a and
bin M. A vector field § along v is called a Jacobi field if £ satisfies the
Jacobi equation

E+Re,E) v =0

The points a and b are said to be conjugate along v if there is a non-zero
Jacobi field E along y such that E(a) = E(b) = 0.

Let a and b be conjugate points on a geodesic. The dimension of the
space of solutions of the Jacobi equation is called the multiplicity of the
conjugate point, or the order of conjugacy.

The existence of conjugate points on a geodesic segment indicates that the
geodesic is not the unique shortest line joining the two given points,



Riemannian geometry of fibre bundles

The main result of [85] is stated as follows.

Theorem 27. Lety:la bl = Mbea horizontal geodesic segment on the space
of @ Rigmannian submersion T M — B. If I'is an index (M orse) form on M
and Ig is an index (Morse) form on B, then

b
T(E,F)=In(Eu Fa) + \ (DE, DF» dt,

where DE = ¥ (Ey)—Te,y +2AyEx is the derivative vecior field ™

A consequence of this theorem is that conjugate poinis on Y appeal no
earlier than those on mo Y.

As an application of these results, consider a submersion n : M — B,
where M is compact and has constant sectional curvaturc 1.

Let

A= sup |AxY] (X, Y = )
JEATYT =1

be the norm of the integrability tensor of the horizontal distribution. (In
the case of the tangent bundle we have AyY = R(X, Y)&, where R(X, Y)is
the curvature operator.) Let B(s) be a geodesic in B with the natural
paramﬂtrization. Then:

1) for every integer m the point f(mn) is conjugate to P(0) with order
dim B—1;

2) all the other conjugate points B(t) for B(0) lic in the intervals
mi+d <t < (m+1)n—d, where d = (14 3420)) V%

3) the order of conjugacy on each such interval is at least equal to the
dimension of the fibre.

A more detailed description of non-horizontal geodesics is given in [79].

§3. Connection between the geometric features of the tangent bundle
(the normal bundle) and the base

One of the most important features of the Riemannian metric is its
sectional curvature. Hence, we will begin the study of the connections
between the geometry of the tangent bundle (the normal bundle) and the base
with the curvature of the Sasaki metric. We shall carry out the exposition
both in invariant form and in local coordinates.

Let us denote by R(X, Y)Z the field of the curvature tensor of the base,
and by R(X, ¥)Z that of the curvature tensor of the tangent bundle.

(1) See the definition of the Morse index form in S. Kobayashi and K. Nomizu,
Foundations of differential geometry, Vol. 2, Interscience, MNew vork 1969, Translation:
Osnovy differentsial’nol geometrii, Mir, Moscow 1990, Vol. 2, p. 8L.
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Lemma 3.1. The curvature tensor R of the Sasaki metric of TM is determineg
at each point Q = (Q, &) by the following formulae :

R (XY, YV)ZV — 0,
R(XV,YV)ZH r—[H(X, Y)Z+ 4+ R@EX)RE V) Z —

’ .

R(XH,YV)ZH = H_ R{(R(5Y)Z, X)t + 5 R(X.2) YT' +
+ [ OB & )2]",
R(XH,YV)ZV = — [-.jr—ﬁ{l’, Z)X + ¢ H{g,}’}H{E,Z]J{]HT
R(XH, YH) ZV = [R{X, Y)Z 4+ R(R(Z)Y, X)E—
1
——R(R(EZ)X, Y}_ET.
R(XH, YH)ZH — [R{X. Y)Z+4 +REREZY)HX +
T RERXDHY +  RERXVYZ]"
+ [z B @],

where X, Y, Z are tangent vectors at the point Q= ﬂ{@.

An analogue of this lemma for the frame bundle was proved in [47).
In induced local coordinates the components of the curvature tensor at
(Q. &) of the Sasaki metric of TM are expressed as follows:

i i i i @ she , 1 i FSTRE | i A
Jkm = H;‘ km TR:nquutﬁ; EH T TRumR:;mE 5“ T 75 R}huﬁﬁxma Eur

1 1 o pi e
R} kn+m — "2"" T;I;H_Iﬂmg [
i ] L 2 1 pi s
Ej n+k nem = R}km + e R:}L?.HR?me"EM - i Exlmﬂ?ukg E‘u!

. i ; | i +h
Rrﬁﬂ Fnsm = 5= Rijm i R;LmR:M £,

R:Iz+j nik nam = ﬂ'r R:I; n+k n+m = 0.
An analogue of this assertion for the frame bundle is given in [73].
The following assertions follow easily from this lemma.

Theorem 3.2 [65]. The tangent bundle TM with the Sasaki metric is locally
symmetric if and only if M is flat.

Theorem 3.3 [65). The tangent bundle TM with the Sasaki metric is Sflat if and
only if M is flat.
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Theorem 3.4 [34]. If the sectional curvature of TM is bounded, then M is flat,
and therefore so is TM.

Word-for-word analogues of these results also hold for the frame bundle
(see (73] and [47)).

Theorem 3.2 can be considerably strengthened. To give the corresponding
statement, let us introduce the concept of intrinsic nullity index. The intrinsic
nullity index v(Q) of a point Q € M is defined as the dimension of the
maximal linear subspace Lo C ToM such that for ¥ € Lg and every
v, Z € TgM we have R(X, Y)Z = 0 for the curvature tensor of M. If
wQ) = k for every Q € M, then the metric on M is called strongly
k-parabolic. Clearly, the case v = n corresponds to the flat metric of M. The

ometric structure of manifolds with constant intrinsic nullity index has been
described by Hartman [9*] and Maltz [10*]. If v is constant, then the
distribution L is holonomic and the integral submanifolds are totally geodesic
in M and locally isometric to the Euclidean space E v,

Theorem 3.4' (4], If the intrinsic nullity index V of the tangent bundle TM"

with the Sasaki metric is equal to k, then k is even and M" is the metric
(Rigmannian) product of a Riemannian manifold M "~k and the Euclidean space
E*2 and TM" is the metric (Riemannian) product of TM"~"* and E*,

The proof relies on the construction, based on the assumptions of the
theorem, of k/2 parallel linearly independent vector fields on M.

A substantially larger number of results on the curvature of the Sasaki
metric have been obtained for spherical tangent bundles.

The first publication on this theme was a small paper by Klingenberg and
Sasaki [64]. They considered the Sasaki metric on T;S? and proved that its
sectional curvature is constant and equal to 1/4. Grimaldi [58] proved that
among the two-dimensional manifolds the sphere is the only one for which the
unit vector bundle with the Sasaki metric is a symmetric space. Considering
To(M", K), where (M", K) denotes a manifold of constant curvature K, in the
case n = 2, Tanno [98] and independently Nagy [75] proved that for
p? = 1/K the Sasaki metric of T,(M?, K) has constant scctional curvature
K/4. This result is a particular case of the following theorem.

Theorem 3.5 [32]. The extremal values Kuay and Kuin of the sectional curvature
of the Sasaki metric of Ty(M", K) are as follows:
a) when n = 2,
. f“* K =) —oo, 0] UL, + o0 [,
DHmax = .
K(1—3K/4), K=10,1];
K(1—3K/4), K=]—00;0] ] 00 [,

Hmil: - [ o .
K24, K =10,1);
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b) when n = 3,
. K% (K — 5)2 . ,
K+ «i[f(‘st_éxt_'i‘] v K= ] =00, (3—y17)2),
oo K =](3—yT17)/2, 2/3],
S max T . K2 e .
K~ TER 1) K =12/, (5 + V17)/2].
K4, K=1054 V1772, + o |,
_ J.‘E(i — 3K /4), K&=]—o0, 0111443, oo |,
Kmin = (0, K= ] 0, 4.;3]_

The proof is based on a thorough analysis of the formula for the sectional
curvature of the Sasaki metric of ToM given below, in the case of a manifold
of constant curvature and for p = 1.

Lemma 3.1' [32]. Let X and Y be perpendicular unit vectors tangent to T,M at
the point Q@ = (Q, pt) (& = 1). The sectional curvature K(X,Y) of the
Sasaki metric of ToM in the two-dimensional direction (X, Y) is equal to

KAX,Y) = (R (Xu, Yu) Y, Xur)> — (3p%4) | R (X, Yii) & 2 -
+ 3R (X, Yi) Vv, Xvd — p* (R (E, Xv) Xu, R (%, Vy) Yy +
T M4 |R(E, Yv) Xp + R(EXv) Yy 2+ p AVxgR) (Xu, Yi) &, Xy —
=0 (Ve ) (X YR)E V0> 4 2 (| Xy | Yy — Xy, Vy32)

It is not hard to observe that if M has constant curvature, the sectional
curvatures of To(M, K) and Ty(M, X) are connected by the relation
p’K(p, K) = K(1, p’K). Therefore, Theorem 3.5 has a trivial generalization
to To(M, K). Namely, let us denote by % the curvature of the fibre.
Then » = 1/p? and K(p, K) = xK(1, k/x). Therefore

-}Emin {P? E} = ﬂﬁmin {il X-"llujn
Emaj {P, K} - Hu‘ig:max |:1.-, KJ'IIH:L

Theorem 3.5 implies also that for Ty(M, K) the sectional curvature of the
Sasaki metric cannot be non-positive, whereas it is non-negative for
K e [0, 4/3]. The question naturally arises of finding necessary and sufficient
conditions for the sectional curvature of T'M or T,M to be non-negative in
the general case. The following result holds.

Theorem 3.6 [5). Let X, Y, U, W, £ be unit vectors tangent to M at the point
Q. and (X,Y)= (UW) =0, (U E) = (W, E) = 0. Let K(X, Y) be the
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aal curvature of M in the direction of the surface element spanned by the

Lio v
e (X, ¥Y). At 0 = (0, &) the sectional curvature of T,M is non-negative if

rg{:fﬂ.l"s
(TR & WXL T L WyREOY.ER
fﬁmk [® [REIDNYP

LA 3R (X V)WL Uy — o (RED) X REW) YD +

L EUCRED)Y REW)XOF < K (X, )= S [ROGY)EF

for every X Y. U W

The theorem gives a sufficient condition which is close to necessary, in the
eense that for n = 7 it becomes necessary. Namely, we have the following
result.
heorem 3.7 [29]. For TpM 2 1o have a non-negative sectional curvature it s
pecessary and sufficient that

MK < K (1 — 3 (p24) K),
where K is the Gaussian curvature of M 2 and A, is the first differential Beltrami
ﬁrmmeﬁm.

The assumptions of Theorem 3.6 are also satisfied by compact symmetric
spaces of rank 1. Indeed, they satisfy K(X, ¥) > 0 and for p = 0 the
assumptions of the theorem are fulfilled. Consequently, this condition also

holds for certain p > 0.
In order to elucidate the geometric meaning of Theorem 3.6 we shall

introduce the following notation:

M= sup |RX,Y)E|, p= inf K(X,Y),

Rl = | XAY |=1
=]
o (VR (& W)X, 15 |
v e TEEMX]
|gAW =1

Then a crude form of the inequalities of the theorem yields the following
conclusions.

Theorem 3.8 [5]. a) If

& y 3 p—2IMy
P”J"‘-’*‘??T[l/H TT_i]’

then T,M has non-negative curvature.

b) If0 < p < 1/6, M? < pf6, and M2 < p/6, then T\M has non-negative
sectional curvature.

The problem of the necessary value of p for CP", HP", CaP? remains open.
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Together with the sectional curvature, one considers in Riemannian
geometry the Ricci curvatures and the scalar curvature of the Riemanniay,
metric. The Ricci tensor R, y 1s defined as the contraction of the Curvatyre
tensor, that is, R;, = Ris;. The Ricci curvature in the direction of g unit
tangent vector X is defined as the scalar

Ric (X) = R,X'X7.

The scalar curvature of the metric at a given point is defined as the
contraction of the Ricci tensor: R = 2Ry,

A Riemannian manifold is called Einsteinian if its Riccj curvture depends
neither on the point nor on the direction.

Theorem 3.9 [104]. If TM is Einsteinian with the Sasaki metric, then M i flar,

A word-for-word analogue of this assertion for FAM has been proved in
[47]. For spherical tangent bundles the situation is more interesting. Thus, iy
the two-dimensional case Grimald; [58] proved the equivalence of the f‘olluwing
three assertions:

a) T,M? is locally symmetric;

b) T .M % is an Finstein space;

¢) M? is isometric to a Euclidean sphere of radius p.

Buzzanca [39] studied the problem of the eigenvectors of the Rjcci operator
on T,M2 One of the results consists in the fact that if Ric(X) = AX and ¥
is a horizontal (vertical) vector field such that supp X' = T,M? then the
Gaussian curvature of A2 is constant, and A = K(2—p?K)/2 (respectively,
A = p’k?).

In higher dimensions there are results for spaces of constant curvature.

Theorem 3.10 [30). a) The Ricci curvature Ric of the Sasaki metric T\(M™" K )
lies between the Sfollowing limits -

() n =2
K*%2 < Rie << K (2 — KY2 for < K <1,
K (2 — E)2 < Ri¢ < K32 for K<0, K> 1.
(i) n = 3:

(n — 1}}({2-K}fﬂgﬁi‘égm{n—n—mmz, <K< n—2
(r — 1) K (2 — K)/2 < Rie < (K T2(n—2)2, K<, K>n—2
b) The scalar curvature Se of the Sasaki metric of T\(M", K) is equal to

Se=(n—1)(n?+ 2n — 4 — (K — n)%)/2
and, in particular, S¢ < (n—1)(r*+2n—4))2 JSor every K.
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For K = 1 the scalar curvature and the Ricci curvature have also been

omputed in [107].
The proof of this theorem relies on the following lemma.

Lemma 3.2 [30). The non-zero components of the Ricci tensor of Ti(M", K)
qre equal 10
By = K (n — 1) — K*/2,
R.,,= K(n—1) — (n—1) K42,
Fnspnsp = 0 — 2+ K32, (p=1, .., n—1.
gemark. The system of coordinates on T)M was chosen in such a way that at
the point (@, £) € WM under consideration the nth coordinate corresponds to
the direction of the vector E, and at Q we have g;; = 8 and I"J,-"k = Tk = 0.
[107] for another expression for the Ricci tensor of T S8".)
An (invariant) expression of the Ricci tensor for the frame bundle has been
obtained in [47].
It is also interesting that T\ M, as a hypersurface in TM, has constant
mean curvature [92]. Namely, the mean curvature vector H at each point
(0, E) e T, M has the form

= n—1 o

H=—g—t"
where £7 is the vertical Lift (in the sense of TM) of &, that is, the unit normal
to TyM in TM at the point (Q, £) € TWM.

Let us now consider analogous results for the normal bundle of 2 surface
in a Riemannian space.

Let us denote by N(X, Y)E the field of the normal curvature tensor of
Fl' c M™?, and by N(E, n)X the field of the conjugate tensor. (We recall
that in a constant curvature space N(&, n)X = [As, A4)X, where X and Y are
tangent vector fields, and & and n are normal vector fields.) Let ﬁ{f, ¥)Z be
the field of the curvature tensor of the normal bundle NF ! with the Sasaki
metric, and let R(X, Y)Z be the field of the curvature tensor of F g

Lemma 3.3 [6]. At each point 0 = (Q, t) the curvature tensor R of the Sasaki
metric of NF' is determined as follows:
R(XH,YH)ZR = [R(X,Y)Z+ =N (& NEZ V)X +

+ L REN(X.2HY + 2R ENXV)DZ +
+ [ Eme ]

B(XH, Y)Y = [(VxW) (&,0) ¥ — (Ty ) (6, ) X]#
-_ [.-w'{X.r};—r%ff{ﬁ(mﬂx}%—%N{@@’Q?X’”E]V*
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RO 0¥ 2 = [ (V) o) 2] +
e NE D+ EN Rz g, ("
X =—[ 30X+ FREnIEX]"
Rig¥ )28 = [N (q.m) Z + W (5 ) F (5 m) 2 —
—rhenienz]" Re e,
where all the lifts are carried out at § = (Q, &) (Q ¢ F". £, 0, M, L e NyF
X, ¥, Ze TyF").

In a special coordinate system in a neighbourhood of @ e F’, namely, ope
such that By = B'..J"’ Hapy = '0', and r;'lrlg = I‘}M = { at the EIVCII pcint, the
result of the previous lemma may be written as follows.

Lemma 3.3 [6).

P

11 . R .

Hi_ﬂ'm = H,‘jkm - l II"\T N,m ::‘m'""m- | ks —4—_|"'|,"lII | fk‘vu.“\? | jm =+
E=1

A . i s
-t = -n"p:i. II.!A'&-"-' i km:] gﬂﬁv'

1 -
Riji 140 = 5 ViV, i15%s

i
. 1 1 L., f ™
fij e v = Neg i + ‘TZ. (Vs ielVyo 15— Nypo | 1lVoe | 1) EREY,
=1

{
1 1 1 oy )
-HI 4 & 1ve = 5 N[&U | ik — TL ﬂlm' ] ffﬂﬂ;’vﬁ |.ﬂ—§11§," t
t=1

H:' L lgivo = ﬂr ﬁ{m If 141 g = 01

where i, j, k, m = 1, . I, «, Bbro=1,.,p, p=n-—lL

Let us denote by R the curvature tensor of the Sasaki metric of N, F', If
the system of coordinates in a neighbourhood of Q is chosen so that at this
point we have g;; = 8,;, pop; = 0, [i;x = 0, and the unit normal £ is taken
as the pth basis vector of NgF', then at the point 0 = (Q, pE) the curvature
tensor of the Sasaki metric of N F' has the following form.

Lemma 3.4 [6).

»
p?
f?,-jkm = Ri}xm T —4 Z [Nprl. | J'rnn'rup |k ‘L Jnl-r_nn; :il.—twap| jm] 4 Fl;—l Z N:W-J ”ﬂ'rg;;, | kmy
=1 =]

f"u‘ ldw = ‘3— kapu | £ds

N !
. . p T ¥ ¥ T
Ry o tm=Nox i+ 5 N (Vo) Ve, ti == Npw 1 1lVps | 12],
i=]
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i
1 M
Ry vy x taw = 5~ N i — % LNW Vit pap | s Bitap et loe = 0,
=1

: 1
Risg tet 140 14n = -pT{ﬁqwﬁﬁ-;x-—ﬁwﬁw}s

Jhere Rijim is the curvature tensor of F'(i, jokom = 1, o I3
W H, q}l ]'P = I'i wany P_l},

Let us state analogues of Theorems 3.2—3.4 above.

Theorem 3.11 [6]. a) The Sasaki metric of NF' is flat if and only if F'isa
submanifold with intrinsic flat metric embedded in M'*P with a flat normal

cgnnecrion.
b) NF' is locally symmetric if and only if F' is a symmetric space embedded

o M'*? with flat normal connection.

A distribution L on HJ}fF{ will be called horizontal (vertical) il at cach point
{ € NF' the subspace Lg is horizontal (vertical).

Theorem 3.12 [6]. a) If the Sasaki metric of NF' is vertically strongly
y-parabolic, then on F ! there are v parallel normal vector fields in the normal

connection.
b) Let F ' be a surface in the Euclidean space E'™P. If the Sasaki

metric of NF I is horizontally strongly k-parabolic, then F I can be stratified into
k-dimensional intrinsically flat submanifolds totally geodesic in F " with flat
normal connection in the ambient space.

The sectional curvature of the Sasaki metric of N,F! is given by the

following result.
Lemma 35 [6]. Let X = X"+t and ¥ = YH+n" be perpendicular unit
vectors tangent to NoF' at the point @ = (Q, p&). Then

B (X.V) = (R(X, Y)Y, X> — (3p%4) | N (X, ) § B+

LN Y) N DL — 0N G OXNEnYD+
L E I REX + REDY e TIN X NED L —
; .1 - "
—p (VN (X, V) By + - (InfL 1L — D0,

where {, ) and {,), are scalar products in the metric of F' and the fibre
(Euclidean) metric respectively.

If the curvature of F' is positive, then for small p the curvature of NpF'
may be positive. An example is the Veronese surface.
Let us consider the embedding E? - E° whose radius-vector has the form

(1
U=)— T3
'i: 'If_f; 13

1 i | 2 s 1,8, 2 9.2
e ZTalq V3 Tyl ?—JJ' (1 — xh T{J:x -+ lz—uil'ﬂl*
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If xi+x3+x3 = 3, then el = 1, Thus, we obtain ap
iSometric immersion S"{v@] — S§%1) for which the points (x;, x3, x;) and
(—x1, —x3, —x3) are carried into the same point, that is, we have an
embedding of & P? into S%(1), which is precisely the Veronese surface V't

Theorem 3.13 [6). The sectional curvature of the Sasaki metric of NoV2 for
p = 32 is constant, positive, and equal to 1/12.

This example yields an analogue of a result in [64] obtained in the study of
T\82

§4. Geodesic lines in the tangent and normal bundles.
Totally geodesic submanifolds

4.1. The Sasaki geodesic metrics of the tangent bundle,
Sasaki [93] obtained the equations of the geodesics of TM. Let (x, 1) be the
natural induced coordinates in TM. Then C(r) = (x'(¢), y'(1)) is the
equation of a curve in TM. Clearly, a curve in TM can be regarded as a
vector field (1) along the curve x(t) on the base manifold. The curve C(1)is
called horizontal (vertical) if for every value of the parameter ¢ the wvector
dC/dt is horizontal (vertical),

If y(r) is a tangent vector field of the curve x(r), then the curve
C(r) = (x(1), (1)) is said to be the lift of x(t). The lift of a curve is always
a horizontal curve, and the converse also holds. Thus, a curve C(t) on TM is
horizontal if and only if it is the lift of a curve on M.

Let o be the “arc length” parameter of C(o) on TM. The curve
C(o) = (x(), ¥y(©)) is a geodesic on TM if x(o) and ¥(o) satisfy the
following differential equations [93]:

il pi, 4z dit  piode Dy
dot TR T g T e g ¥ g
By, i

where Dy'/do is the covariant derivative of the vector field along x(o). Let us
denote the covariant derivative along x(o) by a prime (’). Then the equation
of a geodesic in TM in vector form is written as follows:

Ed
%

The parametrization of C(o) is natural and hence

=Ry, yz,
=},

N I ¥ ooy [l
|2 =12 @F + |y @ =1.
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Lt US Set 'y'(0)l = c. Along x(c) we have (¢?) = 2(y’, »") = 0, that is,
_ const. Therefore, |x°(0)|=+1—¢? is constant along x(o). If 5 is the
warc length” parameter for x(c), then this equality easily implies that

dsido = V1 — ¢

rherefore, the lift of a geodesic in M is a geodesic in TM [93]. These
odesics are orthogonal to the fibres and are called horizontal geodesics.

Thus, the horizontal geodesics of TM are generated by parallel vector fields

slong geodesics of M. An analogous theorem for the frame bundle has been

proved in [73].

Theorem 4.1 [93].  Each line on the fibre of the tangent bundle TM is a geodesic
i TM. (This means that the fibres of TM are totally geodesic.)

The proof follows immediately from the equations of the geodesics of TM.
Clearly, these lines are vertical and they form the class of vertical geodesics.
The same is also true for FM [73].

The other geodesics are called geodesics in general position.

An important property of the geodesics consists in the fact that if a

desic is horizontal at a point, then it is everywhere horizontal. In other
words, if a geodesic is orthogonal to one fibre, it is orthogonal to all the
fibres that it meets. This assertion holds also for Riemannian submersions
with totally geodesic fibres [85). Moreover, in [108] this result is strengthened
and generalized. Namely, a Riemannian manifold with a bundle-like metric is
considered. Typical examples of such metrics are, in particular, the Sasaki
metric on the tangent bundle of a Riemannian manifold, the metric of a
Riemannian submersion, and the metric of a Riemannian manifold with an
isometry group action such that all the orbits have the same dimension.
Riemannian manifolds with a bundle-like metric are called foliated.

Let y(s) be geodesics on a foliated Riemannian manifold M with the are-
length parametrization. We shall say that ¥(s) makes a constant angle with the
leaves if along the geodesic the length of the projection of the vector y'(s)
onto the tangent space to the fibre is constant.

Theorem 4.2 [108]. Let M be a foliated manifold with a foliation E of
codimension q (= n—p) and Riemannian metric {:,-). Assume that the fibres
are totally geodesic.

(i) If the metric (-,-) is a bundle-like metric with respect 10 E, then any
geodesic in M makes a constant angle with the leaves.

(ii) If all the geodesics of M make constant angles with the leaves, then {-,-)
is @ bundle-like metric with respect to E.

For constant curvature manifolds it turns out to be possible to give an
exhaustive description of all the geodesics on their tangent manifolds.
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Namely, geodesics in general position are divided into three classes: (i} the
class of geodesics in general position over geodesics of the base; (ii) the clasg
of geodesics over curves of constant first curvature and zero second CUrvatuyre.
(iii) the class of geodesics over curves of constant positive first curvature, nop,
zero second curvature, and zero third curvature. In each case, the vector
fields determining a geodesic of each type on the sphere S”, the Euclidean
space E”, and the hyperbolic space H" have been written down explicitly [96],

This classification relies on a lemma in [93) stating that for a constant
curvature manifold the projection of any geodesic of its tangent bundle ontg
the base is a space curve, that is, it is a curve for which the curvature ki =g
for i = 3.

We note that when one knows curves and vector fields along them
determining geodesics in the tangent bundle of a space form, it is natural to
pose the question of totally geodesic submanifolds in this bundle. Up to now,
however, there are no results in this direction, apart from several general
results asserting that for every Riemannian manifold M the following
manifolds are totally geodesic in TM: a) the fibre [93]; b) the base,
embedded in TAf by means of the zero vector field [67]; c) the image of the
base in TM given by a parallel vector field of constant length on M [102). In
the last case the base is necessarily a metric product, at least of the form
M~ 'x E",

On the unit tangent bundle T\M the equations of the geodesics
parametrized by arc length have the form [94]

diri o dxl dak 1 ddd L Dyt

dot + ik da du:r'=Rf“‘1‘ do ¥ “do
Dyt i
aor =
where ¢ = |p'| is a constant.
In invariant form these equations are written as follows:
;rﬂl' — R {y” y] i:r_l
y' = —c?y,

where, as before, (') denotes the covariant derivative of the vector field ¥o)
along the curve x(o) on the base.

One distinguishes in a natural way three classes of geodesics in T\M: the
vertical, the horizontal, and the general ones. One checks trivially that every
horizontal geodesic is given by a parallel vector field along a geodesic of M,
that is, the “sets” of horizontal geodesics of TM and of T\ M are in a sense
the same. The vertical geodesics are those of the fibre. It is not hard to see
that these are great circles of the fibre, and thus one establishes that the fibres
of TyM are totally geodesic.

An exhaustive description of the general geodesics in T\ M was given by
Sasaki [95] for constant curvature spaces (space forms of S, E”, and H ).
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Namely, the general geodesics can be divided into three classes:

(i) The class of geodesics over geodesics of M. Each geodesic of this class
is described by a unit vector field changing in helical form along a geodesic
of M. The geodesics of this kind may be closed.

(ii) The class of geodesics over curves of constant curvature k) and
sero curvature (torsion) k;. On S" these are small circles; on H" they
are equidistants, horocycles, and regular circles, depending on whether ky < 1,
by = 1,0orky > 1. For 7,52 any geodesic of this kind is given by a unit
vector field along a small circle, making a contant angle with it [64]. These

odesics are closed.

(iii) The class of geodesics over curves of constant first curvature
k, (> 0), constant second curvature k; (# 0), and zero third curvature
ky = 0.

On T,S" these geodesics are closed, under certain conditions. On T.H"
there are no closed geodesics of this kind.

As for the tangent bundle, for TyM, and even for T,5" and T H", the
problem on totally geodesic manifolds remains virtually open.

In a sense, one can also give a geometric description of the geodesics on
T,M in the general case [79].

4.2. The geodesics of the Sasaki metric of the normal bundle.
Let C(c) = (x(c), ¥(o)) be a geodesic of the Sasaki metric of NF !
parametrized by arc length. Here x(o) is a curve on F ' (the projection of
C (o) onto the base) and y(c) is a normal vector field on F " along x(o). Let
Nqpyij be the curvature tensor of the normal connection of F' C M7, let
Njup = 8'*Nugix; be the adjoint tensor, and let D' be the covariant
differentiation in the normal connection.

The equations of the geodesics of the Sasaki metric of NF' have the form

e i dx? ri.r"’_ _ R dr 8 D4y™
dg? X gg Tdo T ‘M11eRTdg o
(DApy™
a0

(i,i=1,...Lap=1 ... ph

Here we also have three natural types of geodesics:

a) horizontal geodesics—normal vector fieids along the geodesics of the
base, parallel in the normal connection;

b) vertical geodesics—straight lines in the fibres, that is, in the subspaces
normal to the base;

¢) geodesics in general position.
Since the fibres of the normal bundle are Euclidean, clearly the fibres are
totally geodesic in NF'. It is also clear that the base is embedded in NF' via
the zero section as a totally geodesic submanifold. Moreover, it is easy to
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show that if y is a parallel vector field on F' in the normal connection, thep,
AF'y—the image of the base in the normal bundle given by the field y—ig ,
totally geodesic submanifold in NF'. There are no further results in thjg
direction. We only observe that for the surface F' in a constant curvature
space the equations of the geodesics may be written in a simple form:

(" =—]A4,, EHER

W =0,
where (") denotes the covariant derivative in the connection of F L) is the
covariant derivative in the normal connection, and [4,. 4;] is the commutaigr

of the matrices of the second quadratic forms with respect to the fields ,
and g.

§5. Surfaces in the tangent bundle of a Riemannian manifold

A natural and, as we have seen, well-studied surface in TM is the spherica|
tangent bundle T, M1

Another natural type of surface in TM is the following. Let us consider a
surface F' in a Riemannian space A/, Then its tangent bundle TF' is a
surface in the Riemannian space TAf'+? endowed with the Sasaki metric,
Clearly, a Riemannian metric on TF' may be defined in two ways. On the
one hand, one can construct a Sasaki metric starting from the metric of F'
and, on the other, one can consider the metric induced by the Sasaki metric in
TM™?,  Generally speaking, these metrics do not coincide (are not isometric).

As an example, one can consider a cylinder F? in E® The Sasaki metric
on TF? is flat, whereas the metric induced from TE* = E® on TF? has non.
Zero curvature. These metrics coincide if and only if F'is totally geodesic in
MITP

In what follows we shall consider the metric induced on TF' by the Sasaki
metric on TM™?. It is casy to establish that if F'is a cylinder in the
Euclidean space £'*7 with a k-dimensional ruling, then TF’is a cylinder in

strengthened.

The exterior nullity index w(Q) of a point Q of a surface F' in the
Euclidean space E/*7 is defined as the dimension of the maximal linear
subspace Lo C ToF” such that for every ¥ e Lo, the matrix 4, of the second
quadratic form of F/ — E™7 with respect to any normal 1 at Q satisfies

A4, = 0.
IFW(Q) = k for every Q e F'. then the surface is called strongly k-parabolic,
A cylinder with a k-dimensional ruling is a strongly k-parabolic surface.

Theorem 5.1 [4). If the exterior nullity index [ of TF' is equal to k, then the
exterior nullity index p of the surface F' satisfies the inequality p > k2.
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Mﬂfﬁﬂ?&!s ;
a) if b = k|2, then F' is a cylinder with a ki2-dimensional ruling ;

p)ifp =3 <k then F Uis a eylinder with a (k— s)-dimensional ruling and
[Flisa cylinder with a 2(k—s)-dimensional ruling.

The converse theorem also holds.

orem 5.2 [4]. If the exterior nullity index | of a surface F'C EF? s
equal 10 k(2, then the exterior nullity index | of TF ! satisfies the inequalities
rs i<k

The proof of these theorems relies on the analysis of the second quadratic
forms of TF "in TM'*P. It is not hard to show that if np is a basis of
sormals to F' at Q, then a basis of normals to TF' in TM'™* at (Q, &) is
provided by the vectors

{Ngy = ng |\ Nup =ng; - (fEREI}H}:
where V is the covariant derivative in M, p=1.,p Let APJ- be the

components of the second quadratic forms of F ! with respect to the
orthonormal basis np at Q.

Lemma 5.1 [4). The matrices AP and A" P of the second quadratic forms of
TF ¢ TM'™P with respect to the basis of the normals {Ng, Ni.p} at (Q, £}
have the form

1 ! i
Ay — 5 Riifa i+ B o A Y 1 5 R
Ab=| = { T
—
— 3 R } v

1 omita o pl k n L or
{Te"?} b T+ Rl (B g oA+ 1 AT+ 7 B A8
% ¥

|

A RY oy g Al AR D E™
z‘q“-ﬁ = ﬁ!;. - _'IH_-_ o \
1
2 gk , 1
Af 4 5 Ry AR | 0

where A is the Gram matrix of the subsystem of normals {Nj+a},
Lbjim st k=1.,1 «By=1..,p

This lemma immediately implies that if F' is totally geodesic in M I~r
(AE, = 0), then TF' is totally geodesic in TM *P  The converse is also true.

Theorem 5.3 [4). TF' is totally geodesic in TM P if and only if F' is totally
geodesic in M7,

Actually this theorem, with one additional condition, is true for all
Riemannian submersions with totally geodesic fibres [52]. For the tangent
bundle this condition holds automatically.
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Now let M and N be Riemannian manifolds. The map f: M < y
induces a map fe: TM — TN. Then the map F: TM - TN given by
F(x, &) = (f(x), J+(€)) is a natural map between the tangent bundles T3 angd
TN as differentiable manifolds. Naturally, the problem arises of comparing
the properties of f and F.

Amapf: M — Nis called geodesic if each geodesic of M is mapped
under f into a geodesic of N,

Amapf: M - Nis called harmonic if the map fv, regarded as a I-form
on M, has zero divergence.

If dim M < dim N, then in the first case f(M ) is a totally geodesic
submanifold in N, and in the second f(M) is a minimal submanifold in ¥

Let us introduce the Sasaki metric on TM and TN,

Theorem 5.4 [91). For F: TM — TN 1o be totally geodesic it is necessary ang
sufficient that f: M — N e totally geodesic.

Theorem 5.5 [91), If f: M = Nis a harmonic map and N is flat, then
F:TM — TN is harmonic.

Let D be the covariant differential in the Levi—Civita connection of M,
and let R" be the curvature tensor of N Let {e;} be an orthonormal basjs
on M,

Theorem 5.6 [91). Let f: M — N be a harmonie map. The map F: TM — TN
of the tangent bundles with Sasaki metrics is harmonic if’ and only if the
Sollowing conditions are Julfilled for every point (Q. &) e TM:

{RH {Dfnp {Er Ei}! thE:lfatei = U1
div (Df,) =0,

If dim M < dim N, the second quadratic form of the immersion f is
Dfv(X, Y).

Thus, for an immersion f: M = N we have: F:TM - TN is harmonic
fand only if f: M — N js totally geodesic. In other words, if M C N, then
TM in TN is minimal if and only if M is totally geodesic in N.

Now let f: M — N be an isometric immersion. Let us consider
Fy: T\M — T)N—the map of the spherical tangent bundles with the Sasaki
metric. F is the restriction to T1M of the map F: Tar TN defined earlier.
The following result applies.

Theorem 5.7 [92]. Iff: M - Nis an isometric immersion of M into g space N
of constant curvature c, then Fy : TM = TN is harmonic if and only if either

a) f(M) is an Einstein minimal submanifold in N and ¢ = 0; or

b) (M) is a totally umbilical submanifold in N and ¢ = dim M.

In [92] it is proved in passing that T\M is a hypersurface in TAf of
constant mean curvature. Namely, at each point (Q. £) € T)M the vector £¥
IS @ unit vector of the normal to T\M in TM.
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cem 5.8 [92]. The mean curvature vector H of the hypersurface T\M in
T™ is equal 10

H=—2=lt, n=dimM.

Another natural type of surface in TAf is the image of the base given by a
smooth vector field on M. In local coordinates this embedding is as follows.
Let (¥« V5 gl .., E™ be natural induced coordinates of TA. Then
= x|, &' = E(x', ..., ") defines a natural embedding of A into the
tangent bundle. Let us denote this manifold by (M) N

If TM is endowed with the Sasaki metrc, then the induced metric G on

g(M) has components

Gij = gy + gaVil'VE,
where g;; and V; are the metric and the covariant differentiation on M
respectively.

If the vector field E(x) under consideration is a unit field, then (M) is an
n-dimensional submanifold in TyM. The volume of the vector field is defined
as the volume of this manifold in the Sasaki metric of T\ M. It may be
expressed as [55]

Vol (2 (M) = | Vet (E 1 (VE)'(VE)d Vola,
M
where the covariant derivative VE is interpreted as the matrix of a linear
iransformation of the tangent space onto itself, and (V&) is its transpose.
Gluck and Ziller [55] proved that the unit vector field of minimal volume
on §? is precisely the unit vector field on S? tangent to the fibres of the Hopf

bundle 57 =+ 52,

Submanifolds of the form E(M) are totally geodesic in TM if § is parallel
on M [102].

Regarding a vector field £ as a map M — TM, Ishihara [62] considered the
problem of its harmonicity and established that if M is compact, then £ is
harmonic if and only if £ is covariantly constant, that is, parallel. Associating
this assertion with Walczak’s result [102], one can say that £(M) is minimal in
TM if E(M) is totally geodesic.

§6. Certain geometric applications of the Sasaki metric

Besides having independent geometric interest, the Sasaki metrics of the
tangent and the normal bundles have important applications.

Weinstein [103] proved a theorem on the volumes of manifolds with closed
geodesics. A manifold (M, g) is called a Cy-manifold if all the geodesics of the
metric g are closed and have the same length /.
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Theorem 6.1, If (M, g) is an n-dimensional Ci-manifold. then the ratjg
Vol(M,g) fom\"
Vol(§) T)

A crucial step in the proof of this theorem is the possibility of computipg
the volume of "M when T\M has the Sasak; metric. Namely, the f, OIIDWiug
formula applies:

Is an integer (the Weinstein number).

Vol (T\M, T\g) — Vol (M, g). Vol (8™,

The Sasaki metric on the normal bundle of a submanifold is applied tq
study the geometry of the submanifold itself in Riemannian space [89].

The exterior nullity index of a point Q € F'is defined as the dimension of the
maximal linear subspace Ly C ToF' such that for every Y e Ly and every
X € ToF' and € € NoF' we have Ae(X, Y) = 0, where Ag is the matrix of the
oOperator of the second quadratic form with TeSpect to the normal .

If kK = dim Ly does not depend on the point of the surface, then the
surface is called strongly k-parabolic.

It is known that strongly k-parabolic surfaces in constant curvature spageg
are foliated into k-dimensional totally geodesic submanifolds along which the
normal space is stationary,

For k-parabolic surfaces (that is, for k 3 const), through each point of the
manifold there is a totally geodesic submanifold of dimension k of the ambient
Space along which the normal 1s stationary (see [3*] and [4*]).

These assertions also hold for various classes of surfaces in a symmetric
space of rank | (see [5*] and [6*]).

The theorem on the structure of strongly parabolic surfaces is also valid for
surfaces in a Riemannian space M" if at the points of the surface the
Riemannian tensor R of the ambient space satisfies (R(X, ¥ . Z) = 0, where
XY Ze ToF! and € is an arbitrary normal to the surface [9+),

We shall show how to apply the Sasaki metric of a normal bundle to prove
a theorem on the structure of parabolic surfaces in Riemannian space.

To obtain a meaningful result, in addition to the k-parabolicity of the
surface one needs to require that the curvature tensor of the ambient space
satisfies

(A) 7(X, T)E =0

at the points of the surface, for every X, ¥ e TF! and £ e NF. In what
follows we shall assume that condition (A) is fulfilled.

Observe that a surface F/ jn a Riemannian space A7 is k-parabolic if
the second quadratic form of the surface with respect to each normal has
o more than k zero cocfficients after reducing it to the diagonal form.
In other words, the rank of the second Quadratic form of the surface
Q) = MaXeengr(Q, £), where Ny is the normal space at @ and r(Q, ) is the
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of the second quadratic form of the surface with respect to the normal £
; 50 satisfies the inequality /(Q) < /—k at each point [3*].

Let r*(Q. &) be the maximal rank for points close to Q and normals close
w0 & We shall assume that the surface is of class C* and the Riemannian

ace is of class C*. A normal & to the surface F' C M" is called stationary
along 2 submanifold R* C F' if under a parallel translation in the ambient

ace along any path in R¥ it remains normal to F'. The following result

polds.

Theorem 6.2. Let F " be an I-dimensional surface in the Riemannian space M",
assume that in a neighbourhood of Qo € F ! the rank of the second quadratic
orm is constant, r(Q) = r(Qo) = [—k, and let & be a normal at Qg for which
RO, &) = R(Qo) = I=k. If condition (A) holds at the points of the surface,
then through Qo there is a totally geodesic k-dimensional submanifold R¥(Qq, £)
of the ambient space that belongs to the surface. Along the submanifold
R¥(Qo. &) the normal § is stationary, r(Q, &) = r(Qo, &) for the poinis

0 € R(Qo, &), and r*(Q, &) > r(Qo, E) for the boundary points of R (Qy, E).
If the surface is complete and

r Qo) = ro = maxr(Q),
QeF

then R¥(Qo, &) is a complete Riemannian manifold.

Let us consider the normal vector bundle to F' in the Riemannian space

M7" and let us introduce a metric on it.
Let us agree that in what follows the indices take the following values:

ijkmst=1 .1, abecd=1 .,n oB1pv,o k=1,
wa po= n—1

Let £ be a normal at Q for which the rank r(Q, §) = Q) = [—k. Then
it is constant for normals close to £. For £ let us consider the null subspace
of its second quadratic form. It satisfies the equations

(%) NEAGX = 0,

where A7, are the coefficients of the second quadratic forms with respect to
basis normals n,L, Since the rank of () is constant, it follows that the
solution space L*(Q, &) depends regularly on the point and on the normal.
Let us perform a horizontal lift of the k-dimensional planes L*(Q. £) into the
points @ = (Q, £) of the normal bundle. The horizontal Lift of the planes
L¥(Q, E) in a neighbourhood of { is a differentiable distribution #*(Q).

The proof of Theorem 6.2 reduces to the study of Z¥%0). The following
result holds.

Theorem 6.2°. A differentiable horizontal distribution f*(ﬁ] on the normal
bundle of a k-parabolic surface F' in a Riemannian space M" is holonomic if at
the points of the surface the curvature tensor of M" satisfies condition (A).
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The fibre ﬁ*(Qajl tangenr to .f*(@o] is a torally geodesic Submani
fhe_'narﬂm’ bundle with the Sasaki metric. if ﬁ is a boundary DPoint
of R *{Qu], then r*(Q, &) = (O, E). A the surface is complete gng
MQo, E) = ry = maxgepr(Q), then ﬁk(Q] I5 a complete Riemannian manifojg

old of Narm

Proof of Theorems 6.2 and 6.2, a) Let us prove that the differentis]
distribution #%(Q), introduced earlier on the normal bundle NF! s
holonomic., Let X and ¥ be regular vector fields on NF' sych that

X(0), Y(Q) C #40) and X(3), ¥(0) C I*D). Since Z%Q) is horizong)
the vector fields X and ¥ are horizontal. Therefore, X = (e XV¥ ang
¥ = (m¥)" Since X = x'a/8u'+ X' *3/85% then

(1} H*k-zl,f i

aut

The horizontal lift of a vector a € TyF! with coordinates 4’ is the vector
(2) a¥ = {a', .. al; T A ~bpriEra’y.
From (1) and (2) it follows that
3) [ &= {X(w, &),y X', B, — Ha X — BpuX,
Y =riup, ... Y8 — ¥, ey,
The Lie bracket of X and ¥ js

S S
) IX’Y]"(ap"Y X)L

&

where 8/0v’ = 3/8u’ and 8/ap’*= = 0/35%  Substituting (3) into (4) we obtain

1 i 1 i
i ax ; Y j ; dX -3 8Y
(5) [X‘”tZﬁyl_—mxj_—“””(wa?ﬁy—_)'

a‘;& ¢

. ; o Fil T il ¥ I
O IX Y] = —yh o (uprex) 4 X¥ o (YY) +

! T d ‘et Vi = 1 i
(2 Yk}‘a:—u{}lﬁtus X7) — (PaxpEX") -

LETY S
e (BpesETY 7).

Since pag; = 0 at Qo, then at Q@ (5) and (6) become

i i
7 LY =S o OV o,
(7) (X, Y] == o7 X
(8) [, Y]“ﬁL--(Y"X*—X“Yk}%‘E:@L
73

On F’ the local coordinates are chosen so that at Qg the subspace L5y, E)
is spanned by the first k basis vectors and the vectors

T (X (@) = (1,0, ..., 0), T (Y (@o) = (0,1, 0,.. ., u).

From (2) it follows that X(Q,) = {1, 0, .., 0}, and ¥(Q) = {0, 1, 0, ..., 0}.
Assume that the normal vector § coincides with the basis vector ny. Then
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0, ..., 0}. Using the concrete definition of the coordinates, (8)

; a = {I!
wpﬂ:les
X, YHf = Oy Hpn
(9) 1X. ¥] ut ETE
The Riced equations for the immersion of a surface in the Riemannian space

y" in local coordinates v® = v*(x', ..., u') have the form

{10} Weali, & — Mgk, § 7 %(Mmu Wog|x = Wprlk Wpaih -+
. In L opd b a
g (AL AR — AfeArs) + RabeUj Vi Ng) R 4

Since Mapli = 0, ['f = 0 along the surface gap = Oap at Qq, and by
assui'ﬂpﬁ‘m condition (A) holds at the points of the surface, then for
g=lt=BJ= 2, k = 1 the Ricci equations at Qo can be rewritten as

i o sh ]
(11) e BB g (AR A — A Ala).
By the special choice of the coordinate system at Oy and the fact that the
qurface is parabolic, we have Ay = ALY = 0. Therefore, equations (11)

reduce to

d ] gy
(12) boe__ 2B 0
From (9) and (12) it follows that
(13) X, YIi+h = 0.

The Codazzi equations for surfaces in a Riemannian space have the form
(14) AL x— Ak = %11 (HeapeAls — Uy Alk) + Hubcd”?”jﬂﬁngl'

At O, by condition (A) and the fact that pap; = 0, the Codazzi equations
can be rewritten as
AT 84T

L = [:}_
At au'

(15)

Condition (A) yields the same form of the Ricci equations and the Codazzi
equations as those for surfaces in Euclidean space.

By definition of the distribution #*(Q), the projection of the vector fields
X and Y onto the base F' satisfies the condition

(16) NexdhX =0, NEARY =0
[a ) Le3

Differentiating (16) with respect to u*, multiplying by ¥*, and summing over
k we deduce that at Qg
BAT;

7 caqo 05T px — _ Npa 200 yiyk
(17) Nieay o5y ;g XY,

x
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From (15), (16), and (17) it follows that

(18) Zmd";i"‘— Y"=Z£°‘Aﬁl’”§—§=0
Similarly, ) ’

(19) Z;aA?j-%:- Xt~
Therefore,

(20) ‘}:_E“Aﬁ{ jj: 1*—_%:_ X") =0,

=1

This means that T[X, Y] C ¥, £). From (13) follows that X, ¥1is
a horizontal vector. Consequently, (7) implies that [¥, ¥) #Q0). But
since Qp is an arbitrary point of the surface, it follows that [X. Y] C #4g).
Since the assumptions of the Frobenius theorem hold, the distribution

{é) is holonomic, that is, through each point Q € NF' there is a
unique k-dimensional manifoly R4 Qo) whose langent spaces coincide with the
planes of the distribution Z40),

b) The projection of the fibre R"'{@;) onto the base F’ is 3 regular
submanifold R¥(Q, £) of the surface F'. We claim that the fibre R5(0y) is
totally geodesic in the normal bundle with the Sasaki metric, and that so is
R5Qo, &) in the ambient Riemannijap space M". Let us choose local

coordinates on F’ 5o that RYQo, ) is the coordinate surface 1!, ,* Then
the fibre R¥(Qo) has the following parametric expression:
ol =yl gk o wh ookt = o 0l = plta 8, .., u").

The tangent space to R¥((J,) is spanned by the vectors

21) rr,=(n.+..,1,...,0,%f_) (s=1,...k)

&

On the other hand, these Vectors are horizonta) lifts of the tangent vectors
6/0u” to the submanifolq R¥Qq, £):

-—ETTZi{D,,.,, 1,071.-,6}.
du .

From (2) it follows that
§ V| - -
f22) (E?—J = {U; *aay : 1e ey ﬂ;—-—}.-l]ﬂ',g_,'[, Ceep _'JJ',TJI:I'R;-IJL .
From (21) and (22) it follows that along the fibre RNGy)

; al-ﬂ- .
(23) - ﬁgx + Uaref® =0,
du
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In other words, the normal vector field E(u', ..., u") that corresponds to the
fibre R*(Qo) is parallel in the normal connection of F’ along the submanifold
R¥(Qo, E). Let us choose a normal vector field n; so that at the points of
RY(Qo, &) it coincides with E(u', ..., u¥). Then along R¥(Qy, £) we have

(24) Mag; = 0 (s =1, .. . k).
In the new coordinates, .R“{Q'.;.J has the following parametric expression:
o=t oM = L e =0 B =, L. EF == (),

Moreover, only the first k coordinates of the vector fields X and ¥ are non-
zero. Let V be the covariant derivative in the metric of the normal bundle.
Then at Qy we have

V' kS v
ﬂu,k X leaXF;

[?__\:Yl‘l;’a - = ‘lz'im}fj}”.

T2V =

Lemma 1.6 implies that

(P77 = 2o,
(25) - ! & _—
[f‘XFJHu — %[ p“”i” + ,__EE“_‘i Xy,
Y du i3
From (24) and (25) it follows that
(26) V¥ =0,
and the vector field VxY is horizontal. From (19), (25), and (26) we obtain
(27) V¥ C £ (@)

But VyY = Vy¥+A(X, Y), where V is the covariant derivative in the metric
of the fibre R*(Q), and A(X, Y) is the vector of the second quadratic form of
the fibre. From (27) it follows that V¥ is a vector tangent to the fibre,
Hence, A(X, ¥Y) = 0 and the fibre R5(Qy) is a totally geodesic submanifold.

“;c prove similarly that the fibre R5(Qy, &) is totally geodesic in the metric
of F'.

It is known that if F is a k-parabolic surface in Riemannian space and & is
a normal at a point Q for which the rank of the second quadratic form is
maximal, r(Q, £) = I—k, then the restriction of the second quadratic forms of
the surface to the plane L*(Q, £) C ToF' are zero forms [3*).

Consequently, the fibre R*(Qq, £) is a totally geodesic surface in the
ambient Riemannian manifold M”",

¢) Let O be a boundary point of R¥(Qy, £). Join @ to an interior point of
the fibre, by means of a geodesic v < R*(Qp, £). With no loss of generality,
we shall assume that this is precisely the point @, Let us direct the



1

coordinate line ! along v, introduce coordinates on the surface SO as (o hay,
l'fj = 0 along v, and choose normal vector fields n., so that Hapi = 0. Theg
the fibre is still the coordinate surface W u* Let AJ; be the second
quadratic form of F' corresponding to the normal n,, = €. Then the
parabolicity of the surface implies that Al; = 0. Hence, from (14) and (1g) ;,
follows that along the geodesic the Codazzi equations for the form 4} ; are
0d] /04’ = 0. Let ¥ be a vector at Q such that x C L(Q, &), that is,
ALX' =0, Let us perform a parallel translation of ¥ along the geodesic 4
Qo: then along the geodesic we get a vector field X(u'). Then

9F A.A. Borisenko and A1, Yampol'skii

a : r]Az-l {
T (AuX* (uh) = —2L X¥ ) = 0.

In other words, X(Qo) C LY 0,, ). This implies that the rank of the second
quadratic form of the surface with respect to the normal field £ at the points
of the boundary fibre R¥(Qy, £) cannot decrease, that is, r*(Q, &) = r(q,, £),
Let r(Qg, &) = 1y = Maxperir() and assume that the surface F' i complete,
Then r(Q, &) = r,. Through O there also passes a fibre for which Q is an
interior point. By the uniqueness of the fibre, it is an extension of R¥(Q,, E).
In other words, the geodesics of the fibre R5(Q,, €) can be extended
indefinitely, From the Hopf—Rinow theorem it follows that the fibre is
complete as a Riemannian manifold.

From the definition of the metric Ng on the normal bundle and the
fact that the mormal vector field § is parallel along RNy, E) in the
normal connection of the surface, it follows that the projection map
@ RYQp) - R¥(0,, &) is an isometry, Consequently, the boundary points of
R5(Q0) and those of RY(0,, B) correspond to each other and the completeness
of R¥Qy, E) implies that of R5(Qg). The proof is complete.

Remark. In a metric space there arises a difficulty when determining the
bundles between directions and tangent elements at different points of the
space. This difficulty is overcome by means of a non-regular analogue of the
Sasaki metric [8*].

§7. Questions and problems

In this section we shall state several unsolved problems that, in our
opinion, are not devoid of interest.

1. In [95] and [96] a classification is given of the geodesics in TAf and LM
when M is a manifold of constant curvature +1, —1, or 0. TM and T\ M are
spaces of a Riemannian submersion with totally geodesic fibres. The fibres
contain geodesics of vertical type.

The base M, embedded in TM via the zero section, is also totally geodesic.

Problem (Borisenko). Give a complete classification of totally geodesic
submanifolds in TM and T\ M when M has constant sectional curvature.
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Let (M, g) be a Riemannian manifold. A metric g is called strongly
rsphgriﬂﬂ! if at each point Q € M there is a lincar subspace Lo C ToM of
gmension ¢ such that if ¥ € Ly, then for every X, Z € ToM the curvature
ensor of M satisfies

R (X, V) = K ((Y, D)X — (X, DY),

is called the sphericity index, and K the sphericity magnitude. 1f K = 0,
then this is the definition of a strongly g-parabolic metric M.
A description of a strongly parabolic Sasaki metric on TM is given in [4].
If dim M = 2, the following cases are possible:
a) if M is not a constant curvature manifold, then g = 0;
b) if M has consant curvature Ko # 1, then ¢ =1 and K = K3/4;
¢) if M is a standard two-dimensional sphere, then ¢ = 3 and K = 1/4,
For higher dimensions it is only known that for T.S" (n = 3) we have
g = land X = 1|"4.

Problem (Borisenko and Yampol'skii). Prove that the sphericity index q for
M, if dim M = 3, is equal to:

a)g = 1if M = 8" here K = 1/4

b) g = 0 in the remaining cases.

3, Let F' be a surface in Euclidean space E'™? Then TF'is a surface in
TE*?. On TF' we can consider the Sasaki metric (that is, an internally
defined metric) and the metric induced from TE t+p = EY*P These metrics
are not isometric.

Problem (Borisenko). What is the minimal dimension of a Euclidean space in
which the Sasaki metric can be embedded (immersed) isometrically?

4. The curvature of the Sasaki metric T(M", K) (n = 3) is non-negative if
0 < p?K < 4/3, that is, for p* < 4/(3K). This estimate is sharp. If M" is
locally isometric and has positive curvature, then for sufficiently small p the
curvature of the Sasaki metric of T,M" is non-negative.

Problem (Borisenko). Find a sharp estimate for p for which the sectional
curvature of the Sasaki metric of T,CP" and T,HP" is non-negative.

5. Let M" be a pseudo-Riemannian manifold with metric of type (p. 9).
On TM" we can define a Sasaki metric of type (2p, 2g). Let T,M" be
the subbundle in TM" consisting of the tangent vectors of constant length
p (>0 or <0). Let us consider a pseudo-Riemannian sphere s of curvature
—1. Then for p = —1 the Sasaki metric of T,S"! has constant curvature
equal to 1/4. (This is an analogue of a theorem from [64]).

Problem 1 (Yampol'skii). Find the range of variation of the sectional curvature
of the Sasaki metric of TF,S”.
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Problem 2 (Yampol'skii). Give a classification of the geodesics on TS P4 and
TS89, Consider the problem on totally geodesic manifolds in these Spaces.
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6. In a large class of problems of Riemannian ECometry one uses assertigp,
concerning a certain k-dimensional distribution on a given Riemannian
manifold.

Problem (Borisenko), Carry over the definition of Sasaki metric 1o the
Grassmanian bundle of q given Riemannian marnifold and Study the properties of
the resulting metric for various types of Grassmanian bundles.

7. It is interesting to study the geometries of the normal and the spherjca]
normal bundles with Sasaki metric for various classes of surfaces, Thus, jf
V2 C §%is the two-dimensional Veronese surface, then for certain p the
manifold N,¥? has constant sectional curvature.

Problem 1 (Borisenko). Prove thag V2 is the only compact surface in §* for
which there is a p such that N,V? is a constans curvature manifold.

Problem 2 (Borisenko). Study the spherical normal bundie of a mulri-
dimensional Veronese surface.

8. In a way similar to the definition of strong k-parabolicity, on can define
the strong k-defectivity of the normal connection of a manifold.

Problem 1 (Borisenko). Study the structure aof the normal bunde of a
submanifold with Sasaki metric if the submanifold has q constant index of
normal defectivity.

Problem 2 (Borisenko). Assume that the Sasaki merric of NF' is strongly
k-parabolic. What can pe said about F' and its embedding (immersion) in a
given Riemannian manifold?

9. The following problem also arises in connection with the curvature tensor
of the Sasaki metric of NF',

Problem (Yampol'skii). Descripe the manifolds ( for instance, in E") having a
locally symmetric curvature tensor of normal connection.

Surfaces with parallel second quadratic form in E* are of this type. Are
there other examples?
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