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Abstract

We discuss the problem of nonlinear oscillations of a clamped plate in the presence of thermal
effects in a subsonic gas flow. The dynamics of the plate is described by von Karman system in the
presence of thermal effects, in which rotational inertia is accounted for. To describe influence of the
gas flow we apply the linearized theory of potential flows. Our main result states that each weak
solution of the problem considered tends to the set of the stationary points of the problem.
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1. Introduction

In the present paper we study stabilization of a coupled system of partial differential
equations, consisting of an undamped wave equation, defined on the half%})aaed
a nonlinear thermoelastic plate equation, defined on a two-dimensional bounded smooth
domaing2 C {x = (x1, x2, x3): x3=0}.

Nonlinear oscillations of a clamped plate in the presence of thermal effects are described
by the following equations:

Potts + A% —[u, v+ ]+ A0 = p(x', 1), x' €2, (1)

9; — Af — Au; = 0, (2)
Ju

ula.(z:a— =0y =0, (3
iy
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u) =uo, u/(0)=uz, 6(0) =6, (4)
wherev = v(u) is Airy’s stress function defined by
d
Ao =—[uul, o= =o (5)
on |0

£ is a smooth bounded domain iR?, n is the outward unit normal vector tos2,
A is the Laplace operato®, = (1 — aA). The von Karman brackets are defined by
[u, v] = 02 u - 02,0 + 0Zu - 03 v — 202 u - 92 v. The functionu = u(x', 1) describes
transverse displacement of the plate, the functica 6(x’, r) denotes the temperature;
n(x") € H*(R2) is a given function determined byauhanical loadsThe parametes > 0
accounts for rotational inertia.

In this paper we consider interaction of the plate with the linearized flow of gas. If the
gas moves over the plate in the directiorkgfaxis, the aerodynamic pressure on the plate
is given by the formula (see, e.g., [1])

p(x',t) = po(x") + v + Udyroylel, x €, (6)

wherepg € L2(£2). Here and below [¢] denotes a trace @f onto the plangx: x3 = 0},

ro is the operator of restriction frof2 onto £2. The parameter > 0 is proportional to
the intensity of interactiondtween the gas and the platé,> 0 (U # 1) is the velocity
of the unperturbed flow angdl(x, ¢) is the potential of the velocity of the perturbed flow. It
satisfies the following equations:

(a’+U8X1)2¢=A¢’ x = (x", x3) ERiZ{XZ x3 > 0}, 7)
% _ { O+ Udyu(x',t), x' €82, -
0x3 x3=0 0, X ¢,

¢ (0) = ¢o, ¢:(0) = ¢1. ©)

In recent years problems relatexthe stability of thermoeldie plates without transver-
sal loads (i.e., withp(x’, r) = 0) were studied by many authors. In particular, G. Avalos
and |. Lasiecka in [2,3] showed exponentialslity of linear thermelastic systems with
various boundary conditions. Uniform decaysaflutions to the ndimear thermoelastic
systems of the type (1)—(5) with various boundary conditionsraad, p(x’, r) = 0 was
established in [4]. For a survey of other thermoelastic models we refer to [2,3].

Only recently several authors have addrdgseblems of stability of interactive mod-
els consisting of wave and plate equations cedpt the interface. In particular, hybrid
PDE systems that arise from structural acoustic models were studied by I. Lasiecka and
C. Lebiedzik in [5-7]. In this case the undamped wave equation of type (7)0nt0 is
defined on a bounded three-dimensional dondaiand the thermoelastic plate equation is
defined on an interfac2, the flat part ob O. The domairO represents an acoustic cham-
ber and(2 represents a vibrating wall. The coupling between the acoustic and the structural
medium takes place af2. Asymptotic behaviour of solutions of such systems was studied
in [5-7]. The first paper is devoted to a linear model with free boundary conditions, the
others deal with nonlinear models. It was shown in [5-7] that such systems are uniformly
stable if some additional boundary disdipa is placed on a suitable portion 80 \ 2.
Moreover, in the case of a nonlinear themtastic system witliree boundary conditions
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(see [7]) some additional meahical damping acting ofs2 is assumed, but there is no
need for such damping in the case ofrafzed or hinged boundary conditions (see [6]).

The rigorous mathematical study of the PDE system that describes nonlinear oscil-
lations of an isothermal plate in a subsonic gas flow first appears in [8]. This system
corresponds to the problem of aeroelasticity. Further it was addressed in [9,10]. In [10]
another approach to the problem was suggested, that enables to treat both subsonic and
supersonic flows simultaneously. In this work it is also shown that, provided initial data
have compact supports, the problem can be reduces to a retarded PDE. The technique of
considering retarded PDEs is another approach to the problem of aeroelasticity, with the
aid of which existence of a global attractor for the plate can be achieved, for both sub-
sonic and supersonic flows (see, e.g., [11,12]), but no information can be obtained about
the behaviour of the gas flow. The result concerning stabilization of entire structure was
presented by I.D. Chueshov in [13]. The problem of type (1)—(9) with additional damping
terme P, 9;u and without thermal effects was considered there and for genepigit was
proved that for any weak solution of the problem there exists stationary @ifit¢, 0)
such that

Jim {Ju@) =il o+ [u®]5 o + V(@0 =) 5 + 6051 =0 (20)
foranyR > 0, whereB} = {x € Ri: Ix| < R}, || - o is the norm inL2(©®) and|| - i is
the Sobolev norm of orderon £2.

The main novelty of the present paper is that no mechanical damping (interior or bound-
ary) is included in the model. The stabilization obtained is of the same character as in [13].
In contrast to [13], structural damping (that is described Byo, ) is replaced with “less
strong” thermal damping. The main result of the present paper can also be regarded as a
complement to the results of [5-7] for the case of unbounded do@aiﬁRf’r. In our case
the stabilization obtained is not uniform, but there is no need for damping actia@on

This work relies on some results and ideas from [2,9,10]. To achieve our goal we decom-
pose the solutio (t) = (u, u;, 6, ¢, ¢;)(¢) to (1)—(9) into the sunV (r) = WL(r) + W2(r)
such thatwl(r) — 0, r — +oo, and W2(#;) is compact for every initial data and
tx — +00. We use the following decompositiow:(¢) = (ul, ul, 81, ¢*, $*) (1), W2(t) =
(u?, u?, 62, ¢**, ¢;*)(t), where components d¥1, W? solve the problems

Pyl + A% + 201 =0,

(ED:  {6— a0t — Aul =0,

ul(0)=uo, u(0)=u1, 61(0) =6

Pou? + A2u? 4 A0% = po + [u, v+ 9] +v(@; + Udy)royld* + ¢**1,
(E2: {62— 2462 Au?=0,

u?(0) = u?(0) = #%(0) =0,

wherev solves (5). The functions’, 6/, j = 1, 2 satisfy boundary conditions (3);

(3 + Udy))%9* = Ap*,
E3): ag* _ )G+ Udiut, x' e,
(E3) 0x3 lx3=0 { 0 o ¢ Q.
¢*(0) = ¢o, #(0) = ¢,
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(3 + Udx,) 9™ = Ag™,
Ea: | 20 _ @+ U u?, X e,
dx3 1x3=0 O, x! ¢ _Q,
¢**(0) = ¢;*(0) =0.
This decomposition enables us to prove our main result on stabilization which states that
every weak solution to (1)—(9) tends to the set of stationary points of this problem. That s,
in addition to convergence of type (10), the temperafidretends to zero ir.2(£2)-norm.

The paper is organized as follows. In Section 2 we introduce notations we need and
state our main results. In Section 3 we establish results concerning the pogetiiei
satisfies (7)—(9) with a given functian(z). In Section 4 we prove theorem of existence,
unigueness and continuity of solutions to the problem (1)—(9) and in Section 5 we prove
our stabilization theorem.

2. Notationsand main results

Before formulating our main results we inttuce the following notations. In addition to
the classical notations and the norms usedtie Sobolev spaces we define an equivalent
norm and inner product iffg (£2): (u, v)1.a = (1, V)2 + a(Vu, Vo), llulf, = [ulZ +
|| Vul%.

To describe behaviour of the plate, we will use the spaice HZ(2) x H}(£2) x
L2(£2) with the norm|| (u, us, )11 = | Aull%, + lu: 15 , + 1012, whereu(-, 1) € HZ(£2),

w (-, 1) € HX (), 6(, 1) € L3(£2) for almostaallr.

We define a homogeneous Sobolev spat&R3) (see, e.g., [14]) as a closure of
CS°(R3) with respect to the normu| 1 g3 = || Vullgs. ForH*(R3) defined as a space of
restrictions of functions frort{1(R3) ontoRi we will use the equivalent noqu&HRi.

We use two spaces to describe behaviour of the gas flow. The 3pace’(R3) x
LZ(R3) with the normil(go, @113, = IVollZ; + lle1l2; , whereg (1) € HA(RY) and
¢ (1) € L2(RY).

For (¢o, ¢1) € Y we define the local energy by

Er(¢o, 1) = / \V¢0(X)\2dx + / |¢1(X)\2dx, (11)
BY B}
whereBj = {x: |x| < R, x3> 0}. We define the spacE as the sep) with the following
convergence, which will be refeddo as a local energy convergence:
(@2, ¢") 2 (g0.¢1) ifandonlyif Eg(4l — 0. 4% —¢1) >0 VR >0,
We also introduce the energy functional
EV (1) = Egi(u(@), (1), 0()) +vE (6(1), ¢ (1)) + Eint(u (1), (1)),
whereEp (u(1), u,(t), 0(¢)) is the energy of the thermoelastic plate given by
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1 1
Epi(1(t). (1), 6(1)) = E(HLW) [2a + l4u®]G + Sl avm)lg

#1001 = (0], 1) = 20, 0), ).
the symbolEf(ll) (o (1), ¢ (1)) denotes the energy of the gas flow and is defined by

1
EP (00).000) = 5 (|10 [52 + Vo 0|23 = U[0ne0)]5s)
and the energ¥int(u(t), ¢ (¢)) of interaction of the plate and the flow is given by

Eint(u(1), p (1)) = vU (rey[$](1), 8x,u (1)) o

Our energy functional should be compared to the energy functi€éh@) used in [13].
Note that in the absence ofd¢hmechanical damping we needitworporate the thermal

energy term|6 (1) ]|
Our first result is the following theorem.

Theorem 1 (Existence and uniqueness of weak solutidiy. everyWp = (uo, u1, 6o, ¢o,
¢1) € X x Y andT > Othere exists precisely one weak solutidmi) = (u (), us(t), 6(t),
¢ (1), ¢: (1)) to (1)—(9)

(i) The solutionW (¢) possesses the properties
u(t) e C(0, T; HE($2)), u (1) € C(0,T; H3(£2)),
(1) € C(0,T; L3(2)) N L?(0, T; HF(£2)),
o) eC(0,T; HYR3)), ¢ (1) e C(0,T; LA(RY)).

(ii) The following energy relation holds

1
D) =£D(0) - / |voD)|? dx. (12)
0

(i) The problem(1)—(9) generates the evolution operatsy, defined by the formula
S Wo = W(t), where W(¢) is the weak solution tq1)—(9) with the initial value
Wo € X x Y. The operators; is continuous int’ x ) and in X' x Y in the fol-
lowing sense. LeW/ (1), j = 1, 2, be two weak solutions t1)—(9)with the initial
data W{, respectively, such thatw; ”fvxy < Q2. Then the following estimates are
validforallt < T

[ WD) = W20 5y < CT, Q| WE = W[5y
| (@), ul0), 61 @)) — (uP(0), u20), 6%)) | %
+Er(M0) — 921, 91 (1) — 92(1))

2
<C(T, Q, R)(|[(up, ui. 65) — (ug. uf. 68) | 5 + Ers (5 — 06, 61 — 83))
whereR; depends only oR, 7', U, 2.
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Remark 2. It is easy to see, that stationary solutions to the problem (1)—(9) have the form
(u(x"),0,0,¢(x),0), whereu(x") andg (x) solve the problem

A%u —[u,v+nl=po+vUdyroyldl, x €,
Ap—U?2¢=0, x=(x',x3)eR},

= — :O’
ulae on o
99 Z{Ufixlu(x’), x' € $, (13)
9x3 | =0 0, x' ¢ 82,

wherev is defined by (5). Solutions to the problem (13) were studied in [9]. Using the
Sard-Smale theorem (see, e.g., [1613 possible to prove that for geneng, n the set of
the stationary solutions to (1)—(9) is finite.

Our main result is the stabilization theorem for subsonic flows.

Theorem 3 (Stabilization).Let 0 < U < 1. Then for everyWg = (ug, u1, 6o, ¢o, ¢1) €
H2(2) x H}(2) x L2(2) x HY(R3) x L2(R3) the solutionS, Wy tends to the seM of
the stationary solutions to the problgih)—(9)in the local energy topology, i.e.,
it a@® = )G+ Va0 + [u® |5 + o]
(u*,¢*)eM $2 s s s
+ / (IV(p(x, ) — ") [*+ | (x, ) dx) 50, - +oo,

B

for every bounded s&® C Rﬁ. Here M is a set of solutions t@L3).

Corallary 4. If the setM is finite, then for everyWy = (ug, u1, 6o, ¢o, ¢1) € Hg(.(z) X
H}(2) x L2(£2) x HYR3) x L?(R3) there exists a unique poiri*, ¢*) € M, such
that S; Wo — (u*, 0, 0, ¢*, 0) in the local energy topology, i.e.,

t——+00

lim <||A(u<f> — )|+ Vu @ + g + 0]

+ / (V(¢x.0) = ¢*@) >+ | v, 0)[) dx) =0
B

for every bounded set c R3.

Remark 5. Theorem 1 is valid for allU # 1, but stabilization is established only for sub-
sonic flows. The proof of stabilization is heavily dependent on the boundedness of solutions
to the problem (1)—(9), but in the case of supersonic flow boundedness is not guaranteed,
as the energg @ () is not bounded below. We also note that the main mechanisms re-
sponsible for the stabilization of the entirewstture are thermal effects on the plate and
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local energy decay for the wave equation. Whethe structure stabilizes without thermal
effects, is still an open question.

3. Preliminary results

The main goal of this section is description of properties of the problem (7)—(9) with a
givenu(z). More precisely, we consider the potential gas flow equatidkﬁin

(& +Ud?p=Ap, xeR3, (14)

(0)=¢o, ¢:(0)=¢n, =h(x',1), x' eR? (15)

d¢

3X3 x3=0

wherego € HY(R2), ¢1 € L2(R3), h e L]

this section are close to the ones of [10].
In the case: = 0 this equation has precisely one solution for evefiy, ¢1) € ) (the

proof is similar to the one for the cage= 0, see, e.g., [16]), for which the energy conser-

vation law is valid:

(R4; H1(R?)) for somep > 2. The results of

1
E@ (9, $:(1) = E® (9o, ¢1) = 5 (|61 + Uduydollgs + Vol ).

The problem (14)—(15) with = 0 generates the elidion semigroupG;:Y — Y in the
following way: G (¢, ¢1) = (¢ (1), ¢:(¢)), where(o (7), ¢;(¢)) is the solution to (14)—(15)
with the initial valueS¢o, ¢1) and the boundary conditioris= 0 at the moment. For the
proof of continuity ofS, on X’ x ) we need continuity o6, on ).

Lemma 6. The evolution semigrou@, generated by the proble@4)—-(15)with » =0is
continuous ory.

The proof is based on the following representation of the solution to (14)—(15) (see
[10D):

1 - - _
b(x, 1) = E/ds‘f [¢0 — t0(5 — Ue1, Vo) + t0h1](x — (& + Uen)t), (16)
5

whereS is a unit sphere iR3, ¢1 = (1,0, 0) andq_bj are even extensions @f; on RS,
j=0,1. Itis easy to see that, fare B;g andr < T, values of¢ (x, t) depend only on
values of(¢g, ¢1) in B+1, whereRy =R+ (1+ U)T.

The following result on the decay of thedal energy is well known for the cage= 0.
To study problem (E3) we need similar result for the céise 0 (U # 1). The following
lemma can be proved by the methods presented in [16], for instance.

Lemma 7. For every solution¢(t), ¢, (t)) to the problem(14)—(15)with the initial data
(¢0, $1) € Y andh = Othe local energ¥z (¢ (¢), ¢;(t)) — Owhent — +oo forall R > 0.
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As it was shown in [10], the solution to (14)—(15) witlg = ¢1 = 0 is given by

t 2
¢(x,t)=—X(IT;X?’)/ds/d@h(xl—k1(9,s,x3),x2—kz(@,s,xg),t—s), 17)
0

X3

where

k1(6,s,x3) = Us + /52 — x2sind, k2(6, s, x3) = /52 — x3 cosh.

If h has compact support i2, it vanishes fos > r*(U, §2, x3). An argument similar to the
one given in [10] shows that we can assurh@/, £2, x3) = max(z(U, £2), w(U)x3), where

w=1/y/1— (U + 1)2/4forU < 1andw = 1forU > 1. We now have the following result
which will be widely used in Sections 4 and 5.

Lemma 8. For the solution to the probler(i4)—(15)with ¢o = ¢1 = 0 and providedr
has compact support if2 the following estimates are valid for eveRy> 0 and¢ > t* =
t*(U, 2, R):

(i) if h(x',7) € C(t — t*, t; H}(R2)), then
Er(B(0), ¢ (1))
2 2
<cmf( max [vha -o)],) +(r£?§§] [ =olo) 7} (18)

tel0,r*

(i) if h(x’, 7)€ HS(t —t*,1; HX(2)),0< s < 1/2, then
0

[Vo )] 5: + 9005 < CRIAIZ (19)

HS (tft*,t;Hé(Q));
(iii) if h(x',T) € HS(t — t*,t; H3(2)), h:(x', 7) € HS(t — t*,1; H}(R2)), 0 <5 < 1/2,
then
2 2
Vo1 5 + o1

< C(R{In)? + e ||?

HS (t—1%,1; H3($2)) HS (1—t%,1; HA(2) }; (20)

(iv) if h(x',7) € C(t —1t**,1; Hol(Q)), wherer** = inf{t: (x1 — (U +sinf)s, xo — s cOSH)
¢ 2 forall (x1,x2) € 2, 6 €[0, 2], s > t}, then
min{z,**}
[0 + Udepylol) |, < [hD 5 + / IVh@ —1)|,dr. (21)
0
Proof. In the proof of each inequality we fiR and assume > r* =*(U, £2, R), SO we

can replace the upper integration limit in (17) with
Inequality(i). Similarly as in [10] we obtain

2
o0 ¢ 0[5 < CR( max |t —1)],) (22)
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for j =1, 2. Further we denote

h*(x,t,5,0) =h(x1— Us —/s2 — x5sinf, x2 — /s2 — x5¢080, 1 — 5).

Using (17) and the formula
* d * *
oh (x,t,s,@):—d—h (x,1,5,0) —Udx, h™(x,t,5,0)
N

[ Myh*I(x, 1,5, 6), (23)
‘/Sz—x?,

whereMp = singd,, + cosd,,, we obtain

Oxs@(x,1) =h(x1— Uxs, x2,1 —X3)
t* J
L /de [Mph*](x. 1. 5.0) (24)
271' 2
X3 0

and

0 (x,t) =—h(x1— Ux3z, x2,t — Xx3)
t* 2

1
+E{U/ds/d98xlh*(x,t,s,9)

X3

n ©
B

t*
sds N
+/\/ﬁ/d9[M9h ](x,t,s,@)}.
X3 s 3 0

Itis easy to see, that fdr,¢ () andd;¢ (1) estimates similar to (22) are valid. Hence (i) is
proved.

Inequality (ii). In what follows we assume that(x’, ) € C®°(t — t*, t; Hol(Q)). To
prove (ii), we need another estimate for normgppfindd,,¢. Using Holder’s inequality
with p > 2,1/p 4+ 1/q =1, similarly as in [10] we obtain

Hax3¢('7x3s t) ||R2 + ||¢I(1 X3, t) ||R2

t*

< C(R,p)Q(xs)(/

X3

1/p
Hh(t—r)ili’,g) et -2,

where Q(x3) is a square-integrable a®, R) function. Squaring this inequality and inte-
grating with respect taz along(0, R), we get

[Vo ¢ 05 + 605

C(R p)(”h”Lp(, 11 H(:)L(Q)) + ||h||L2(l‘ *,1; Hl(ﬂ))) (25)
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Due to the Sobolev embedding theoréh(r — ¢*, t; H(}(SZ)) CLP(t—1%1, H(}(.Q)) for
p <2/(1-2s) (see, e.g.,[14]). AE®(t —t*, t; H}(£2)) is dense inH* (t —t*, t; H}(£2)),
(i) is proved.

Inequality(iii). In what follows we assumé(x’, t) € C*®(r — r*, t; Hg(SZ)). Differen-
tiating (24) with respect ta;, j = 1, 2, and repeating previous argumentation, we obtain
that

2 2
Hamw‘ﬁ(" ) H BY SCR, p) ”h”H~‘ (t—t*,1: H(£2))

fori=1,2,3andj=1,2.
After a simple calculation we get that

92,¢(x,1) = —Udy h(x1 — Uxz, x2,1 — x3) — dh(x1 — Ux3, x2,1 — x3)

t*—x3 2
1 : T+ X3

= IR e [ de (MeR1(x. 1. 7.6
T2 V(T + 2x9)32 T/ (Mol . 2.0)
0 0

t*—x3 2
X3 -
+ / mdf/d@ [(Uaxl+a[)M9h](x,t,T,9)
0 0
t*—x3 2

X3 2=
+ 0/ r 2 drO/dG[Mgh](x,t,r,Q)}, (26)

whereh(x,t,t,0) = h*(x,t, T + x3,0). Then we apply to (26) Hélder’s inequality with
p>2,1/q+1/p =1and integrate the inequality obtained al@AgR) with respect tocs.
Using Sobolev’s embedding theorem, we get the estimate

2 2 2 2
[050 G 05 < CR PG ez + Wi 1 i )

It is easy to see thaf, (x, ¢) is a solution to (14)—(15) witkhg = ¢1 = 0 and the boundary
conditionsi, (x’, 7). As the part (ii) of the lemma is proved, using (19) we get

2
IV N5 < WhelFs 11 iy

We finish the proof of (iii) by applying the density argument.
Proof of (iv) can be found in [10]. O

In the proof of Theorem 1 we will use the following property of the opera@tpr+
Udy,)ray[¢], which occurs in the aerodynamic presspfe’, t).

Lemma9. Let2 C {x": |x’| < R} = Bg and
peW= {qb(t) ec(0,7; HY(R2)), %q&(t) e C(0,T; LZ(Ri))}.
Then(d; + Udy,)reylpl(t) € C(O, T; HY/27%(2)) for everys > 0,7 > 0 and
| @ + UdravIdl0|2 55 o < Er(BO), B0 (1) (27)
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Proof. First we prove, thab,roy[¢](r) exists and belongs t&>°(0, T; H 1/2-%(2))
for all § > 0. Let w € (H Y275(2))* = H§/2+5(.Q). Then the extension by zero
lo:H()l/2+5(.(2) — HY2+(R?) and the lifting operatot: HY/2+%(R?) — H*(R3) are
continuous operators. l&(x) € C8°(R3) and a(x’,0) = 1 for x’ € 2, a(x) = 0 for
x ¢ B}, we obtain the operatdr = a(x) - [ o lg, such tharoy [Lw] = w, ”LleH,Ri <
Cllwll1/2+s,2 and supw C ng. Using integration by parts, we obtain the equality
(s Lw) gt + (@, dusLw) g = —(v[9). w) (28)
for somew € H01/2+‘3(.(2) ande € Hl(Ri). Letthe sequenceg, s, — 0 asm,n — +oo.
Using (28), we get

‘(V[¢](t+tm) —vI[e1()  yI[Pl +50) — y[P](D) w)
2

Im Sn

. lwll1/2+s,2 — 0,

<]
—8,B}

‘qb(t i) =) P +50) =0
tm

Sn

n,m— 400.

This implies that-oy [¢](7) is differentiable with respect toin H~127-3(2). Similarly
we obtain the inequality

lorayi@1®O]_y /o5 o < Clo®] - (29)
To estimated,, ro ¥ [¢](2), we consider the functiop(r) defined by

{Véar=V¢ox x € BY,
Vé(t) =0, x ¢ B,

such thaip(r) =0, x ¢ B}. Thus,4(t) has compact support i, andé (1) — ¢(t) = C.
Then

” 8X1VQ)/[¢](I) ”_1/2’9 = ” 3x1".(2)/[<13](t) H—l/Z,Q < CHV(b(I) ” B;g~ (30)

Combining (29) and (30) we obtain the inequality (27). Continuity with respecetsily
follows from (29) and (30). O

For the proof of stabilization we need the following criterion of compactne3s in

Lemma 10. Let{(¢g', ¢7")}._4 be a bounded sequencelhand let the constant > 0. If

m=1

for everyR > O there existsV(R) € N andC(R) > 0 such that
[V98' 15 52+ 87 [ 52 <CRY Torm > N(R), (31)
then{(¢g', $7)}>°_, is compact in.

Proof. As the sequence is bounded we can extract a subsequence that converges to
(0. $1) weakly in Y. Let g+ be the operator of restriction from?(R3) to L2(B}).



I. Ryzhkova / J. Math. Anal. Appl. 294 (2004) 462—-481 473

The sequence{sz; Vg hm=NR) and{rB;qu}m;N(R) are compact irLZ(B;g), therefore
(rp Vg rgr 1)) — (rB;vQ'so,rB;qSl)_ by_ norm~in L%(BY) x L?(BY) for every fixed
R > 0. Thus we have thaty', ¢7') — (¢o0.$1) INY. O

The next lemma will be used in our proof of stabilization.

Lemma 11. Let f(zr) > 0, f(r) € AC[O, +00), f'(t) < C or f/(t) > —C almost every-
where and/;° f (1) dt < oo. Thenf (1) — 0 whent — +oo.

Proof. We consider the casg () < C only. Let the statement be false, i.e., assume there
exista > 0 and the sequence, — +oo such thatf(x,) > a. We introduce the sets
B, ={x €[x, —1,x, +1]: f(x)> a/2}. Their measurep,, = u(B,) — 0, as far as
[Ooo f(@)dt < oco. We fixe > 0 andN such thatu, < € for n > N and choose, < x,
such thaty, — y, < 2¢ and f(y,) <a/2forn > N. Sincef(¢) is absolutely continuous,

FGn) = F ) + / F0ydr < f(30) +26C < % 4 2eC.
Yn

Choosinge < a/8C we get thatf (x,) < a. This contradicts the assumptigi(x,) > a.
The lemmais proved. O

4. Existence, uniqueness and continuity

This section is devoted to a proof of Theorem 1. To prove existence, uniqueness and
continuity of solutions to problem (1)—(9) we use the same method as in [10]. It uses the
regularized variant of Galerkin’s method for findingx’, r).

Let {ex} be eigenvectors of the positive self-adjoint operatdn H(}(.Q) with the do-
main H3($2) N HZ($2) defined by(Au, v)1.o = (Au, Av). Let{é;} be eigenvectors of A
with the Dirichlet boundary conditions, this a positive self-adjoint operator it?(£2). In
what follows Py and Py are orthogonal projections onto I }&_;) and Lin({éx}Y_,),
respectively,/ is the operator front ~1(£2) to H3(£2) such thatJu, v)14 = (u, v).

Similarly as in [10] we define an approximate solution of or¥eto the problem (1)—(9)
as a triple of the function8:y (¢), On (2), N (1)},

N
un(t) = gr()ex € LY = CY(0,T; PyHy (£2)),
k=1
N - —_
Oy () = ng(t)ék e LY =cY0, T; Py HE(2)),
k=1

which satisfy the following relations iﬂ(}(fz):



474 I. Ryzhkova / J. Math. Anal. Appl. 294 (2004) 462—-481

t
un (1) = un (0) + / dyun () dr, (32)
0
orupn (t) = oun(0)
t
+ / (—Aun () + Py ([un (0. v(un (D) + 1] — A0(0) + po) )} d

0
t

+vPyJro(y[on(®)] - vigol) +vU / PyJrooyy[on(m)]dr,  (33)

0
t

On () = On (0) + / {46n (1) + Py Aduy (1)} dt (34)
0
forall 0<r < T, whereuy (0) = Pyuo, d;un(0) = Pyu1, On(0) = PyOo; v(uy) is de-

fined in terms ofty by (5); ¢y is a solution to (14)—(15) with the initial dateo, ¢1) € Y
and the boundary conditions

0oN
0x3

@ +Uxn(x)oun(x',1), x' €82,

0. Y. (35)

=hN(X',t)={

x3=0

whereyy (x") € C§°(£2) is chosen so that§ xn(x') <1, xn(x) — 1 almost everywhere
and|Vxy (x")| dist(x’, 32) < C for x” € £2 with the constan€ independent oV .

Theorem 12 (Existence and uniqueness of approximate solutidfs)every(ug, u1, 6o)
e X, (¢o,91) € Y there exists precisely one approximate solution of orffeto the
problem(1)—(9) If (uy(2),0n(t), N (¢)) is an approximate solutions such thii y (0),
dun (0), 0n(0), g0, $1)115,,.y) < Q% then forr < T,

| (un @), B @), 63 0) |3 + | (@w ). 88 D) 5, < C(T. ). (36)

Approximate solutins depend continuously on initial dataihx ). The following energy
relation is valid

t
P =€) - f |Ven (@)% dr
0

t

- vadt/(l— XNy dun (T)y [N ]1(T) dx’, (37)
0 Q
where

EN(0) = Epi(un (6), dun (1), On (1)) + En(én (1), 3 (1))
+0U (y[on1(0), X dayun (1)) -
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The proof of this theorem is similar to the one in [10] and therefore it is omitted. To
obtain existence, uniqueness and continuity of weak solutions to the problem (1)—(9) we
pass to the limit in the same way as in [10]. LettiNg— +o0 in (37), similarly as in [10]
we obtain (12).

Theorem 13 (Continuity of approximate solution it x )7). Let (u;n(),0;n(),
d;n(@), j=1,2, be two approximate solutions such thiai ; v (0), 3;u j, 5 (0), 6, n (0),
b0, ¢j,1)||fvxy < Q2 Thenforallr < T andR > 0,
| (w18 @) — w2 v @) 3 o + | AQwrn @) —u2n )5 + |05 (0) = b2n ) [5,
<CT. O durn(0) = duznO)|; ;, + [ A(urn (0 — uz v ()5

+ 61,5 (0) — 62,5 (0) ||~ZQ + Ery (1.0 — $2,0. p1.1 — 2.1} (38)
Er(PLN (1) — P2 N (1), 0191 N () — Dih2.n (1))
<C(T. R Q||| dur.n (0) = bz v O |5 5 + [ Aurn(© - uz v (@)] %

+ 618 (0) — b2 8 (O3 + Ery (b0 — d20, b1 — b2.1)) (39)
whereC(T, R, Q) andC(T, Q) do not depend oW and R; dependsonly oR, U, T, £2.

Proof. We denotavy = u1 ny —uz n, N =601.8 — 02N, o8 = ¢1.N — ¢2.n. The functions
wy, ¢y satisfy the relations

t
ath(r)=ath(0)+/{—AwN(r)+PNJ([u1,N(r),v(ul,N(r))+n]
0

— [uan (@), v(uzn (D)) + 0] — Aln (1))} dT
t

+ / PyJra (3, + Uy lon](0) dr. (40)
0
t
() =ty (0) + / [ Ay (1) + Py Adywy (D)) dr. (41)
0

Taking in (40) the scalar product withwy in H3(£2) and in (41) with¢y in L2(£2), we
get

1
lown @3, + |ev @[5 + 5 |awv )[4,
> 2

1
= (3wn 0. 4wy (1), , + 5| Awn O
t
4 / [y (). oLy () + 1] = [0 (©), V(28 (D) + 1] dwn (D), dT
0
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t
+ (en (0, ev () —f |Ven @5 dr
0

t

+v f (r (s + Uy lon1(0). oy (1))  d. (42)
0
For the components of this expression the following estimates are valid:
|(@rwn (0, Bwn ), | <8[dwn®]7, +Cs|dwn @] . (43)
[(en (01, ev () | <8 en @ |2, + Cs[en O] 5, (44)
Using Lemma 2.2 from [10] and the estimate (36), we obtain
|([u.n (0. v(urn (D) + 1] = [u2.8 (), v(uz2.8 (D) + 1], dwn (D)) 5|
<CQ. 1) (|awn@|g + [3rwn],). (45)

To estimate the last term in (42), we represgqtasey, + ¢y, wheregy, is a solution to
(14)—(15) with = 0 and the initial datgy, (0) = ¢1,0 — ¢2,0, ¢} (0) = 1.1 — ¢21 and

@N" is a solution of (14)—(15) with zero iniizalues and the boundary conditions (35),
whereuy is replaced withwy . Due to Lemma 9 and the energy conservation law (3) we
have

|(re @ + Udy)y [ox] (@), dwn (1)) 4|
2
< C(Ery (10— h2,0. 81,1 — d2.1) + |drwn (D) (46)
Due to Lemma 8 and Theorem 12 we have the following estimate for the term including

Hk
N -

t
/ [(re 0 + Udy)y [ox (D). drwn (1)) 5 | dT
0

t
<C(T. Q) / ([3ewn @3 + v agw ()])%) dz
0

t min{z,t**}
+ C(T, Q)/dt / ds(|Vawn( — 9|2 + [ Vo dqwn) @ —9)]3).
0 0

Since forv € H(}(.Q) the estimatd xyvll1,o < [|v]l1.¢ is valid (see Theorem 11.8in [19]),
after a simple calculation we obtain

t
/ |(re 3 + Udx)y [ox](0). dwn (0)) 5 | dT
0
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< C(T, Q)/(HAwN(r)H_fZ + Ha,wN(t)HiQ)dt. (47)
0

Applying the estimates (43)—(47) to (42) and using Gronwall’s lemma, we obtain (38).
Taking into account Lemmas 6, 8 and (38), we have proved (39).

This theorem and the properties of weak convergence imply that solutions to (1)—(9)
depend continuously on initial data ik x ). Thus, the problem (1)—(9) generates the
continuous evolution operatsy on X' x Y described in (iii) of Theorem 1. The proof of
Theorem 1 is now complete.

5. Stabilization in the case of subsonic flow

In this section we prove Theorem 3. As we consider only subsonic flowsl{0< 1),
the energy¢ () is bounded below b¢'1 (Eo(:) + | - ||§,) — Ca, whereEg(ug, u1, o) =

1/2(Jlual? , + | Auoll, 4+ 1/2]| Av(uo) 14 + [160]1%,) (see Lemma 3.2 from [17]). Thus, the
energy of a solution to (1)—(9) is bounded by the initial data energy

Eo(u(t). us (1), 0)) + [ (6. ¢ ) [,

< C1(Eo(uo. u1.,60) + | (bo. ¢ [|3) + C2 (48)
and the energy equality (12) implies that
+00
/ |vo@)|?dr < +oc. (49)

0

Now we study problems (E1)—(E4) in detail.

Exponential stability of solutions to problem (E1) was shown in [2]. In particular we
have that there exist> 0, Ms > 1 such that](u?, u}, 6 (1)[| x < Mse || (uo, u1, 60) || x
for every(uo, u1, 6p) € X. To study problem (E2) we need a result on exponential stability
in stronger norms.

Lemma 14. Let X = H2(2) N H2(2) x Hy P (2) x H? (2),0< B < 1 (note, that
X0 =), and let(u(t), u; (1), 6(¢)) be a solution tqE1) with the initial data(uo, u1, 60)
€ X, Then the following estimate is valid

| (), i (1), 00)) || 3p < CMse™ | (o, u1, 60) | s (50)

Proof. The idea presented in [18] is used here. We define an approximate solution to the
problem (E1) as the functiomd' (1) = > }"_; fx(H)ex, 6™ (t) = Y ;-1 gk (t)ex (for notations
see Section 4) satisfying the relations

(Pouly, er) o + (Au™, Aep)o — (VO™ Ver)o =0, k=1,....m, (51)

(67" @) o + (VO™ , Ve o + (Vuy', Vér) o =0 (52)
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with the initial valuesu™ (0) = Pjuq, u}' (0) = Pyu1, 6™(0) = P,,60. Obviously, fi (1),
gk (¢) are infinitely differentiable. Differentiating (51)—(52) with respectstand denot-
ing w” =uj, {™ = 6" we obtain that(w™ (1), w}" (¢), ¢ (¢)) satisfy system (51)—(52)
with the initial valuesw” (0) = u!*(0) = P,u1, w(0) = u’(0), ¢"(0) = 6*(0). Let
(ug,u1,6o) € X1 Then

U (0) = — A Pyug — Py J Ao — —Aug — J Abp=u,(0) in HF(£2),

0" (0) = AP,00 + APyuy — A+ Aup =6,(0) in L2(£2).
Similarly to [18] we obtain

2 2 2 _ 2
[u" 03 o + [ A O + [ 46" O] < CMse™ [0, u1.60) [ .-

Hence, we can extract the subsequer(@é (r),u} (r),0™(t)) — (u(),u;(r),6(t))
s-weakly in L>(0, T; X1), where (u(r), u;(t), 0(¢)) is a solution to (E1) with initial
data (1o, u1, 6p) € X1. Thus, the problem (E1) generates the linear evolution operator
Ste £, x) N Lt &t such thatl| Sty < Mse™, ||SH y1 < CMse™®. Due to

the interpolation Theorem 5.1 from [19} € £([X, XY1g, [X, X1]p) = L(XF, XF) and
ISt s < CMse™, 0< B < 1, for somes > 0. Inequality (50) is proved. O

For problem (E2) the following result is true.

Lemma 15. The trajectory(u?(t), u?(t), 62(t)) is compact and Lipschitz ig# for 0 <
B<1/2

Proof. Obviously, every solution to (E2) can be written by means of Duhamel’s principle,
ie.,

t

(WP (1), u?(1), 6%(1)) :/S}_T(O, PN ([u(r). v(u(r)) +n] + po). 0) dr

0
t

+ / St (0. P (vre (8 + Udy)y[9)(D). 0)dr,  (53)
0

where St is the evolution operator generated by (E1). Using Lemma 2.1 from [10], we
obtain the estimate for von Karman brackets,

| (). v(u@) +n]|?, 5 < C(Eoluo. u. 60) + | (bo. ¢1)[3). > 0.

Since P, is a bounded linear operator frof* (£2) to H*+2(2) N H}($2) for s > -1,
using (53) and Lemma 9, we obtain

| (?@), u?(@), 62()) | s

t
< / Mae™309 | (0@, + Udy)y [61) (1)
0
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+ [u(), v(u(D) +n] + pol| _14p,247
< C(Eo(uo. u1.60) + || (0. 40 |3) %, 0< g <1/2. (54)
Hence, the trajectorgu?(t), u?(r), 62(¢)) is compact int’?. Similarly we obtain that it is
also Lipschitz int? and

| (62@), u2(0). 62@)) | . 0.1 a0y < C(Eolwo. ur. 60) + | (go. 61 [ 5). (55)

whereC*(0, T; XP) is a space ofi-Hélder continuoust?-valued functions. O

Due to Lemma 7 and inequality (18) we have the following estimate for the solutions to
problem (E3): for evenr > 0,

Er(9* (0.7 ) <CR(F 0+ max |uf@]f , + max |au'®)]3).

where f(t) — 0, t — 400 andr* = ¢*(U, £2, R) (see Section 3). Taking into account
exponential decay of the solutionsttoe problem (E1) we obtain th&p*(z), ¢; (1)) — 0
in Y ast — +oo.
Itis left to show that any sequence of the foggri™ (), ¢;*(t)), tx — +o0, is compact.
To prove that such sequence satisfies conditions of Lemma 10 we use the estimates (19) and
(20), so we need to interpolate functionaasps used there. Applying Theorem 13.1 from
[19, Chapter 1] about interpolation of intergions and the standard techniques presented
in [20] we obtain that

[H*((a, b); HE(2)) N H* " ((a, b); HF(£2)), H' ((a, b); H3(£2))],
= H*((a, b); HZ?(£2)) N H* T ((a, b); HE($2)).

This result and Lemma 8 imply that

V6= @2 s + 67 OI2

2 2
Hs*B (1—1%,1; Hy TP (2)) ) (56)

< CR)(||uf )] 4B (-0 B (@2)

+ ||lu?@)|

for s + 8 <1/2 andt > t* = *(U, 2, R). Due to the embedding#(0, T; X) C
H*(0,T;X),0<s <u<1/2, and estimates (54)—(56) we get

[v6= O 5 + 191 Ol

< C(Eo(uo, u, 60) + | (g p1)|3). 1>1%, p<1/2

Thus(¢™* (&), ¢** (1)), tx — +o0 is compact.
The analysis of problems (E1)-(E4) shows that there exists the decomposition of the
solution we described in Introduction. IndeefiWo = (u, us, 6, ¢, ¢:)(t) = (u, ul, 61,
O*, dF)(0) + WP u?, 62, 9™, ¢¥) (1), where(u?, ul, 01, ¢*, $*)(t) - 0in X x Y ast —
400 and (u?, u?, 62, ¢**, $**) (1) is compact inX’ x Y for any s — +o00. Thus, for an
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arbitraryWp € X x Y and#; — +oo the sequencs, Wp contains convergent subsequence

S, Wo Yy W. Now we prove thalié (1)||2, — 0 whens — +oc. Note that
d 1
o |5 <=Ivew |3+ Vo] o - [V g < 2V ® 1%

Thus by (48) we haved/dt)||9(t)||§2 < C(Eo(ug, u1, o) + || (¢o, ¢1)||§,). Therefore the
convergence|9(t)||_2Q — 0 follows from (49) and Lemma 11. Thus, any convergent se-
quence of the forns;, Wo, tx — +oo, tends to a poinW = (it, it1, 0, o, 1). Sinces;
is a continuous operato§; W = lim,, . 1~ Sy, (S Wo) for every fixedr. Thus,S, W =
(iio(7), @11(1), 0, ¢o(7), $1(1)). This implies that for the trajectory;, W 6(r) = 0. Equa-
tion (2) implies, thatu, (r) = O for this trajectory too. Hencdy = (iig, 0, 0, ¢o, ¢1). As
far asWp was chosen arbitrary, the result obtained means that any convergent sequence
S,, Wo, Wheret,, — +oo, converges to a point of the foriiio, 0, 0, ¢o, ¢1). Using the
standard contradiction argument we can prove #hab) — 0 whent — 4oco0.

To prove thatW is a stationary solution to the problem (1)—(9), it is enough to show that

**(1) — 0in Y along the trajectory. Obviously,

2
kk 1 *
t(x,t):—g ds | d9(0; +Udyu;(x,t,s,0),
0

whereu; (x,t,s,0) = u;(x1 — k1(0, s, x3), x2 — k2(8, 5, x3),t — 5). Let R > O be a fixed
value,xz < R, andr > t* =t*(U, §2, R). Using formula (23), we obtain

1 2 2
(x, 1) = Z:/d@u?‘(x,t,t*,@)—/d@uf(x,t,xg,@)
0 0

t* 2n
—i—U/ ds/d@ [Ocyuf](x,2,5,0)
0

/ /d@ Mouf (xts@)}
2
3 VS 2-x3%

Repeating arguments from the proof of Lemma 8, part (i), we get

6770155 < CR) max fus@|5 g 0. 1 +oo.

Henceg;*(t) - 0in Y whent — +oo andW = (ito, 0, 0, ¢o, 0). Th_us, we have proved
that every convergent sequerf;eWp converges to a stationary poii ast, — +oo.

Now we complete the proof of Theorem 3 by applying the standard contradiction argu-
ment.
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