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Step-like Cauchy problem for NLS

We consider the Cauchy problem for the focusing nonlinear Schrédinger (NLS)
equation

ig: + Gux + 2)q/*¢ = 0, z€R, t>0,
q(a:,O) = qo(x)v T € Ra

where the initial data are assumed to approach, for lagre |x
backgrounds:

, the non-zero

Aleid’le_mBlz, T — —00
qo(z) ~ igo . —2iBow
Aqse'®?e , X — 400,

where {A;, B;, $;}3 are real constants; A; > 0. The solution ¢(z,1) is
assumed to approach the associated plane wave backgrounds for all ¢ > 0
(“nontrivial boundary conditions”)

q(z,t) = qoj(,t) +o(1) as x — (—1)7 0o for all t,
where

qoj(x,t) = Ajel e 2Pttt with w; = A2 —2B;, j=1,2.
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Asymptotics in the case B; = By, A; = A,

E<Cy £> 0y
plane wave plane wave
genus 0 genus 0

@ [¢| > C(A, B) (here Cy = Co = C): modulated plane waves
q(flj,t) — AeQi(wthzf¢<§)) + O(tfl/Q)

@ |¢| < C: modulated elliptic wave

_ 29Bt+7) 2iwi-g) —1/2
q(ﬂC,t)—A@(BtJﬂ)e + 0@t 3.

Here A, 8, ¥, 4, v, d;) are functions of £ = ¥;
0(2) =3 .z eMTm I H2mImE s the theta function of invariant 7(&).
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Background solutions and Jost solutions

In what follows we are dealing with the case By # B2, A; #0, j = 1,2.

Q@ Determine solutions of Lax pair associated with background solutions of
NLS qoj (.’IZ, t) _ Aje—Qisz+2iwjt+id>j:

©0j(m,t,]€) _ e(*iBjZ#»iw] 03_/\/ ( ) (=X (k)z—iQ; (k)t)os

where X (k) = +/(k Y(k — E;), E; = B; +1iA;,

Q;(k) = 2(k + B;))X (k:),
L (52(k) + 525t (k) se5(k) — 555 " (k)
gj(k):2<;@(k)—%j‘l(k ~ )
/4

1 i¢ ié
with s (k) = (’Hi;") , Noj(k) = e 2 & (ke 2.

k—E,;

Q Let g(z,t) — qo;(z,t) as & — (—1)Pco. Then Jost solutions ®;(z,t, k)
of Lax pair are fixed by ini. conds.:

D, N‘boj,x—>(—1)joo, keRU(Ej,Ej)
Q scattering: ®o(z,t, k) = Pi(x,t,k)s(k), k €R;
s(k) = (—ab*(flz) ZEIZ))) where f*(k) := @

4/49



NLS with non-zero background: RH problem

Let g2 = 0, ¢ = ¢; 5 := (Ej, E;). Define
ﬁ q)éz) e(ik:c+2ik2t)037 keCH,
M(l‘,t,k) = a(k) @) ) s
q)(l) <I>17 e(lkz+21k t)os keC .
2 a(k) ’

Then M satisfies the RH problem:
@ Mi(z,t,k)=M_(z,t,k)J(z,t,k), k€E€X=RU U,
@ M(z,t,o0) =1,

where J(z, 1, k) = e~ (k2005 J (o (hat2ik* 005 \ith 1, (k) defined by
@ for k € R,

_(1+r(k)rr(k) (k) . b*(k)
Jo(k) = < (k) 1 with r(k) := (k)
e for k € 31 U 2o,
1 iel®
T e et kesineT
e ) 0
Jo(k) =3 p.""" Jo(k) =4 /a1
2= =
a0+ a+>7k622ﬂc+ T ,kedanC™
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RHP: dependence on x

E,
Ey
21* U2 A
R
,}B] - By -
By
E,

@ Dependence on x and t of jump matrix: same as in the case
of decaying ini. conditions, through elikz+2ik*t)os = (itd(Ek)os
where

0(&,k) =2k> + ¢k (€ =x/t).

@ For large-t analysis, it would be nice to have that as ¢t — oo,
J(x,t,k) — J (piecewise) independent of k. Then the
limiting RH problem can (hopefully) be solved explicitly, thus
giving explicit asymptotics for ¢(z,t).
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RHP: dependence on
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1
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1
1
1
I
1
1
1

Considering original RHP, we faces PROBLEM: at some parts of
contour, depending on value of Im (&, k),

ctt0(Ek) o o—it0(&,k) grows as t — ool
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“g-function mechanism”, |

@ SOLUTION: deform the contour and replace (in the jump
matrix) the original “phase function” (¢, k) by another phase
function g(&, k) (“g-function mechanism"), which has
appropriate behavior on the (deformed) contour. M +— M):

MO (2,1, k) = e 19O Nf (2 ¢, k)it 9(ER)—0(ER)os

e in order to keep large-k asymptotics for RHP:
g(& k) =2k + &k + ¢ () + O(k™1)

o deformed contour: 3 = {k : Im g(k) = 0}.

@ RESULT: (i) appropriate g(&; k) turn to be structurally
different for different ranges of &; (ii) asymptotic structure
depends on relationship amongst A;, B;.
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“g-function mechanism”, Il

@ for [¢] >> 1, the appropriate g-functions are (not surprising!) those
involved in the construction of background solutions :

(k) +EXa(k), €<<—1,

9(&:k) = {Qz(k) L EXa(K), €>> 1,

where X; (k) = /(k — E;)(k — E;), Q;(k) = 2(k + B;) X, (k)
@ in terms of derivative w.r.t. k: for £ >> 1,
(k= pa(§))(k — pa(§))
(k= E2)(k — E2)
with p1(€) < p2(€) real (similarly for & << —1, with E> replaced by Et).
@ Series of deformations of RH problem with this phase function lead finally

to two model RH problems (applicable for (—1)7¢ >> 1), each with a
single jump arc; for £ >> 1:

g (&k) =4

r(mod) 7\ _ 7 r(mod) 0 i § S
M (k) = MmeD (k) <i o)’ ke,

@ model RHPs have explicit solutions: M "% (k) = &;(k), leading to
e S N O
with () determined by A;, B;, with ¢(—0c0) = ¢1 and ¢ (+00) = ¢s.
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Signature table

“Signature table” (distribution of signs of Im g(&, k)) for £ >> 1:

+

|
|
|
|
I
|
|
|
|
I
|
|
|
|
I
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Here the jump matrix on X1 decays exponentially fast to I as
t — oo and thus gives negligible contribution to the large-t

asymptotics.
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RHP deformations, |

Q Introducing g-function. M — M®:
MWD (z,t,k) = efitym)(&)asM(m’ t, k)eit(o(ER)—0(ER)os

M (@t k) = MD (@, t,k) ] (2,1, k), keRUE; USs,

where

1+ r(k)r (k) r*(k)e_%tg(g’k)
°J(1)(x,t,k)= ( kER,

T(k)e%tg(&k) 1
a,(:) eitlo+—9-) i
1 a &
© J M (x,t, k)= [ +® 0 ar(k) _it(gs—g_y | FEZ2NCT
PN

(and by symmetry for £33 N C™). Here we have used (for matrix entry
(12)) that g4+ +g— = 0 on X.
Since Im g+ = 0 on X2, we have replaced the growth by oscillations
(w.r.t t)!

1

(1) 0 +
oJ (x,t,k) = ie—i® €2ig(£’k) 1/ keXinC
T (e B

(and by symmetry for 3, NC™).
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RHP deformations, Il

Since Im g(&,k) = 0 for k € R, we “do lenses” along k € R as in the decaying
case but with —¢ replaced by u;.

Q Preparation for lenses. M) s M.

M®P (z,t, k) == MY (z,t, k)0 72 (&, k)

H1(€)
with (s(f,k) —exp{zlﬂ_i f st},

— 00

MP (@, t, k) = MP (@, t,k) TP (2, 1,k), keRU:,

1 ,,:52672#5) 1 0
; , ke ,
<O 1 ) (_)\r52e21tg 1) (,Ul(g) OO)

[+ J(Q) — .
1 0 rofe Mo
( Ar =221t ) <1 1A ) ke (—oo, p1(§))
a_(k) 2itgy (€,k) i52(¢ &
2 _ a (k)e ? (£ ) - +
° S (z,t,k)= [ “* 0 0t (8) itg_(e.b) | keXnC
a_ (k)

(and by symmetry for 3, N C™),

12/49



RHP deformations, Il

Notice we have also oscillating jumps across 329, which means that
we need lenses near Yo as well, suggested by the algebraic
factorization (for Yo N C™)

eZito+(k) Y _ 1 0 0 Y 1 0
0 eQitg_(k) - Y71€2it‘(]7 (k) 1 _Y—l 0 _Yfle2itg+(k) 1

But in our case, the “lenses near R" serve Y5 as well.

o It would be nice to have Im g(k) > 0 for all k near £, N C*
(and, by symmetry, Im g(k) < O for all k near XN C™).
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RHP deformations, IV

Q@ Doing lenses. M® s M3,
M® (z,t,k) =

M (z,t,k)

M (z,t, k) = M©

@ J® across 'yj, j=1,.

(@, t,k)]

AT 2ztg(§ k) 1

1 k)62 (k)e~2it9(&k) R
0 T( , ke Qs

( r(k)éi(k)e—"’”q(& k)
- Alv\"‘ . ket
0
0 A
, ke
1

k € UJ 1’YJ UEZ,

0>7 k€Q2

[y

_Ar(k)sZ z(k)eQ”H(s k)
1—X\[r|2

&) (z,t, k),

,4 are triangular matrices as above

@ important: 3 € (o U Qg, then all these triangular jumps decay to [ as

t — 0o
0 J® — J®) (¢ k) = ( 0

i072(&, k)

large parameter!)

2
0 (57 k’))' k € ¥, (doesn’t involve
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RHP deformations, V

©Q Getting rid of k dependence of jump. M) s Mr(mo):
M(mod) (33, t, k‘) .— A3 (5, OO)M(S)(QZ’ t, k’)A_”-g (§ k)v

where A solves scalar RHP: find A(£, k) analytic in C\ £ and bounded
as k — oo satisfying "“jump” cond.

Ay (& R)A_(& k) =072(&, k), ke
Th .
en M_E_mOd)(SE',t, k’) M(mod) x t kZ ( > ke 22.

@ RHP for A reduces to: log A+ +logA_ =logd~? or
(ML —(g2) = logf , where X (k) = \/(k — E2)(k — Es).

X X
log 62 (&,s)ds }

@ Solution by Cauchy int. A(§, k) = exp{

@ RHP for M(™°%) s solved explicitly.

Q@ Following back the transformations
MeD s M s M@ s MDD 5 M — g we obtain

e S B O
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Why g-mechanism works

Properties of the g-function used in the deformations above:
Im g (k) =0, k € .

Im g(k) > 0 “near £, NC*T”, Im g(k) < 0 “near £, NC~"
Img(k) =0, k e R.

gi(k)+g-(k) =0, k € 5.

Img(k) >0, ke X NCt and Img(k) <0, ke X, NC™.
9(&, k) = 2k + &k + ¢°(€) + O(k™)

These properties determine g(k) uniquely!

©0 666040
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Bs < Bj: rarefaction, |

Decreasing |¢], this type of g-function stops to work when
@ either 11(€) and p2(€) collides,
@ or the infinite branch of {k : Im g(k) = 0} hits E;.
If B> < By, it is always (i) that occurs:

|
|
|
|
|
|
|
|
I
|
|
|
|
I
|
4 >
,g\ i llz\
|
| I
| I
|
|
|
|
|
I
I
|
|
|
|
I
I

p1(€) and p2(€) merge at € = Co = —4Bs + 44/24, and
& = C1 = —4B; — 4y/2A,, which signifies the ends of the plane wave sectors
and the necessity of a new g-function.
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By < Bj: rarefaction, Il

The transition to the new sectors is characterized by the emergence of two
complex zeros of g'(&; k), B(€) and B(£), at the place of merging real zeros
(keeping one real zero pu):

(k — u(&)(k — (&) (k — B(£))
V(k — E2)(k — E2)(k — B(€))(k — B(€))

for —4By < € < —4Bs + 41/2As; similarly for —4B; — 4v/2A; < £ < —4B;.

@ The associated model RHP has jumps across two arcs: ¥ = £, U 3,
M (2t k) =

g'(&k) =4

iz D a:+ith t+¢;

0
j = 1,2 (on each arc, the jump is independent of k!).

0 e ke,

mod
Mi )( 7t7k)( —izDjr—itGjt—¢;

@ The solution can be given in terms of Riemann theta functions of
dimension 1 (genus-1 solution):

_ A,G(ﬁ'tﬁ"Y) vt —1/2y.

where all coefficients are functions of £ = 7.
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By < Bj: rarefaction, Il

For —4B; < £ < —4B>: the original phase function it6(&; k) is such that the
jumps in the original RH problem across both arcs ¥; and X2 decay
(exponentially) to the identity matrix as ¢ — oo and thus one can keep

g(&; k) = 0(&; k) for this range. It follows that the asymptotic analysis in this
sector essentially follows that in the case of the zero background, giving

q(z,t) = O(t_1/2).

§=—4B;

§=0
elliptic wave
genus 1

plane wave
genus 0

slow decay
o(t~17?)

§= 4By

elliptic wave
genus 1

plane wave
genus 0
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Bs > Bjy: shock, |

The case By > B turns out to be much richer: there are several
asymptotic scenarios depending on the values A; /(B2 — B;) and
As/(By — B1), each being characterized by a set of appropriate
g-functions; but there are always two infinite branches of

Im g(&; k) = 0: the real axis and a branch approaching the vertical
line Rek = —¢/4.

In what follows, for simplicity we consider the symmetric case
where A1 = Ay = A and By = —B; = B > 0. In this case, the
asymptotic picture is symmetric in £ and thus it is sufficient to
consider £ ranging from +oo down to £ = 0.
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Bs > Bjy: shock, Il

As ¢ decreases from 400, there are three possibilities for ending
the plane wave sector:
Q If % > %(2 +34/2), then yi; and 2 merge, at
€ = Einbrge = —4B + 4V/2A, before the infinite branch hits
Fi and E;.
Q If A 2(2+43+/2), then the infinite branch hits Ey and E; at
the same moment £ = (4[4— 5)B as u1 and g merge.
Q If % < %(2 + Bﬂ) then the infinite branch hits F; and Ej,

at { = fgl) = 2(B + VA2 + B2), before p11 and po merge.
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Bs > Bj: shock, Il

Case (i):

BB

Case (jii):

V]
[
L
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B; > Bj, case (i): % > %(2 + 34/2). Four types of asymptotics, |

@ the asymptotics in the range ng <E< éﬁime is characterized, similarly
to the rarefaction case, by the genus-1 g-function

JEk) =4k pOIk— BEOIk— B(€))
V (k= B2)(k — E2)(k — B(€))(k — B(€))

@ The left end 55521) of the genus-1 range: when the infinite branch of g

function above hits E; and E;: for £ < 5;?1), a new, genus-3 g-function

g'(&k) =4 (k=p1(£)) (k= B(&)) (k= B(§)) (h—a(§)) (k—a(£))
’ V/(h=E1) (k=E1) (k= B2) (k—B2) (k= 8(€)) (h—B(€)) (k—a(&)) (k—a(€)

becomes appropriate, with «(&) “emerging from E;".

@ The left end of the genus-3 range is £ = 0: as £ — 0, a(§) and B(&) both
approach a single point iag = iv/ A2 — B? whereas p(§) — 0, and the
g-function takes a genus-1 form:

E(k* + ad)
(k= E)(k = B)(k — E2)(k — E2)

g (0;k) =4
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- +
P p2%

- + - + - +
+ - + - + -

+ X0

ag =
B<A £=0
A > 2(2+3v2)

2 2 2 1 1 1
g=0 [o<e<ed §=¢2) €0) <€ <Ehbrge | €= Enbrge | € Enlrge
genus 1 genus 3 genus 1 genus 0

«, B merge the infinite branch the real zeros
hits E1, F1 11, (o merge
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RHP for genus-N solutions

@ The model RHP associated with a genus-N solution has jumps across
N +1 arcs: X = UN+1Z
M(mod)( ¢ k) _
- jxDix+itGit+¢,;
mod) 0 e i jtté;
M( ($7t7k) ( —izDjz—itGjt—¢; 0
j=1,...,N+1 (on each arc, the jump is independent of k!); D;, G;
are determined by the arc ends.

,k‘EEjv

@ The solution M (™°®D (and, consequently, q(“‘”>(3:,t)) can be given in
terms of Riemann theta functions of dimension N (genus-N solution):

(ass) 1) = -
@) “oBt+F)

B and F are N-component vectors; all coefficients are functions of .

@ The Riemann theta function ©(u1, ..., un) associated with 7 (matrix of
periods) is defined for u € CV by the Fourier series

O(ut,...,un) = Z exp {7i(71,1) + 27i(l,u)},
lezN

where (1,u) = lius + ...+ l,un.
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B; > Bj, case (ii): % = %(2 + 3v/2). Three types of asymptotics

This case, comparing to Case (i), is characterized by the equality
51(;1) = S;Q,rge; thus, the genus-3 range 0 < £ < {1(7’27"96 is directly

adjacent to the plane wave range (no genus-1 range).

2 =2(2+3V2)

€= 0<g<ey) £ =€) = €hlrge € > Enbrge
genus 1 genus 3 genus 0
«, B merge the infinite branch hits E, E1
and the real zeros p1, p2 merge
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By > By, case (jii): 4 < 2(2+ 3v/2). Three different asymptotic scenarios, |

In this case, the infinite branch of the plane wave g-function hits E; and Fi,
leading, for £ just to the left of fgl), to a genus-2 g-function with the complex
zeros at a(€) and a(€) (“emerging” from E; and E;):

g€ k) =4 (k= p1(§))(k — p2(§)) (k — a(§)) (k — a(§))

V/ (k= E)(k = E)(k = E2)(k — E2))(k — o)) (k — a(9))

@ There is the second "bifurcation value" of A/B: A/B =1,

separating, when £ is decreasing, three different scenarios of
appearance of further asymptotic ranges.
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By > By, case (jii): 4 <

< 2(2+ 3v/2). Three different asymptotic scenarios, |I

@ Case (iii-a): & < 1. In this case, the left end fmerge of the genus-2

sector corresponds to merging of (&) and a(§) into a third real zero, po,
Ieadlng to a genus-1 anzats (different from above!) for the g-function in
(2)

&neme < € < &merge (thus including € = 0)

Sk — 4= m©)k —pa(€) (k — 10(6))
V k= Ex)(k — B)(k — Bs)(k — E))
0<#<1
0<¢< Ege)irge §= E'r('se)z'rge g'ggc)arge << EEl §= €E1 > EEl
genus 1 genus 2 genus 0
residual region «, & merge into transition region infinite branch | wave plane
a third real zero hits E1, Fq region
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By > By, case (jii): 4 < 2(2+ 3v/2). Three different asymptotic scenarios, |lI

@ Case (iii-b): 4

B

(©B=4, £€=0
A _
B = 1
520 0<§<£E1 £:€E1 £>£E1
genus 1 genus 2 genus 0
a, @, p all the infinite bEanch
merge at the origin hits F1, E1

= 1. In this case, gﬁiirge becomes 0 and thus the genus-1
range from Case (iii-a) shrinks to a single value £ = 0, with a9 = 0.
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By > By, case (jii): 4 < 2(2+ 3v/2). Three different asymptotic scenarios, IV

@ Case (jii-c): 1 < 4 < 2(2+ 3V/2). In this case, the left end {glme of the
genus-2 sector .E,(qflwe <€é< {Sﬁ corresponds to merging of the real zeros
p1(€) and p2(€) and emerging a pair of complex zeros 5(€) and 3(€)
thus leading to the genus-3 g-function for the range 0 < ¢ < g,ﬁfiTge.

1< 4 <2(2+3v2)
2 2 2 1 T T
§=0 [0<e<ellige | €=€ntge | Eonbrge <6 <E9) g=¢y) ¢ >¢y)
genus 1 genus 3 genus 2 genus 0
a, B the real zeros the infinite branch
merge 1, B2 merge

hits E1, E1
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Initial boundary value (IBV) problem for focusing NLS

Let ¢(z,t) be the solution of the IBV problem for focusing NLS:
® igs + qur + 2|a’¢ = 0, z>0,t>0,
@ ¢(z,0) = qo(x) fast decaying as = — +o0

o ¢(0,t) = go(t) time-periodic | go(t) = ae®™| a>0,weR
(q(0,t) — ae?™@ — 0 as t — +00)

@ Question: How does ¢(x,t) behave for large ¢ ?

@ Numerics: Qualitatively different pictures for parameter
ranges:

(i) w< —3a?

. 2 2
(i) —3a" <w< %
2

(i) w> S
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Numerics for w < —3a?, |

real part

i 7 /4',’

Real part Req(z,t)

a=+/3/8, w=-13/8

time

a0

35

30

25

20

imaginary part

7
)
7

o

Im

//l ik
N7/
ik

&0 80 100
space

aginary part Im ¢(z, t)

w(z) =0, go(t) = ae®t + O(e~10)
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Numerics for w < —3a?2, Il

Numerical solution for ¢ = 20, 0 < x < 100.
Upper: real part Req(z,20). Lower: imaginary part Im ¢(z, 20).

-1 —— —
(9 10 20 30 40 50 60 70 80 90 100
1
1
0.5
o
—o0.5|
=
-1 e e ==
(9 10 20 30 40 50 60 70 80 90 100
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Numerics for w > «

ampltude

Amplitude of ¢(z,1t)

a=0.5 w=1, w2a2/2,

Amplitude for t = 10,...

qo(x) =0, go(t) = ™™ + O(eflOﬁ)
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Numerics for —3a? < w < a?/2

Amplitude of g(x,t)

w=—-2a%>=-0.5
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General scheme for boundary value problems via IST

Goal: adapt (generalize) the RHP approach to boundary-value
(initial-boundary value) problems for integrable equations.

Data for an IBV problem (e.g, in domain = > 0, t > 0):
(i) Initial data: ¢(x,0) = go(x), z >0
(ii) Boundary data: ¢(0,t) = go(¢), ¢=(0,t) = g1(t),. ...

Question: How many boundary values?
For a well-posed problem: roughly “half” the number of x-derivatives.

For NLS: one b.c. (e.g., ¢(0,t) = go(t)).

General idea for IBV: use both equations of the Lax pair as spectral
problems.

Common difficulty: spectral analysis of the t-equation on the boundary
(z = 0) involves more functions (boundary values ¢(0,t), g.(0,1),...)
than possible data for a well-posed problem.

36/49



Half-line problem for NLS

For NLS: ¢-equation

o o2 0 qlz,t) —iXg* g

involves ¢ and g.; hence for the (direct) spectral analysis at 2 = 0 one needs
q(0,%) and ¢, (0,¢). Assume that we are given the both. Then one can define
two sets of spectral functions coming from the spectral analysis of x-equation
and t-equation.
@ q(z,0) — {a(k),b(k)} (direct problem for z-equ); s = al; Z)
{q(0,1),.(0,¢)} — {A(k), B(k)} (direct problem for t-equ)
@ From the spectral functions {a(k), b(k), A(k), B(k)}, the jump matrix
J(z,t, k) for the Riemann-Hilbert problem is constructed:
{a(k),b(k), A(k), B(k)} = Jo(k)
J(ZC,t, k‘) — efi(2k2t+kz)o-3 Jo(k)ei(2k2t+kz)o'3

(notice the same explicit dependence on (z,t)!) Jump conditions are
across a contour ¥ determined by the asymptotics of go(t) and g1 (¢)
@ Similarly to the Cauchy (whole-line) problem, the solution of the IBV
(half-line) problem is given in terms of the solution of the RHP:
q(x, t) = 2ilimg_ 0 (kM12 (3;‘, t, k‘))
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Eigenfunctions for NLS in half-strip x >0, 0 <t < T

Given g(z,t), how to construct M(z,t,k)?

Define U, (z,t, k), 7 = 1,2, 3 solutions (2 x 2) of the Lax pair equations
specified at all “corners” of the (x,t)-domain where the IBV problem is
formulated:

Q@ Ui (0,T,k) =e 2% T8 (W (0,t, k) ~ e 2175 a5 t — o0)

Q U,(0,0,k)=1

Q Us(x,0,k) ~e %73 as 1 — o0
Being simultaneous solutions of x-and t-equation, they are related by two
scattering relations:

Q Us(z,t,k) = Va(x,t,k)s(k) 5= <_ab b)

a
Q Vi(z,t,k) =Va(a,t,K)S(k;T) 5= _AB ﬁ

Then M is constructed from columns of ¥y, W5 and U3 following their
analyticity and boundedness properties w.r.t k, and the jump relation for RHP
is re-written scattering relations (i)+(ii) for ;.
For NLS in half-strip (" < c0) or in quarter plane (T' = co) with g;(t) — 0 as
t — oo: first column of Uy (x,t, l’c)e(_”“”_mkzt)”3 is bounded in
{k:Tmk > 0,Tmk* < 0}, etc., which leads to & = R U iR.
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Direct spectral problems for NLS in half-strip z > 0, 0 <t < T

® Given qo(), determine a(k), b(k): \a(k) = 5(0,k), b(k)=®1(0,k) \

where vector ®(z, k) is the solution of the z-equation evaluated at ¢t = 0:

B, +ikos® = Q(z,0,k)P, 0<x < o0o,Imk >0

®(z, k) = ™ <<(1]) + 0(1)> as x — 00,

_( 0 )
@ Given {go(t),g1(t)}, determine A(k;T), B(k;T):

Ak T) = ¥ TS (T, k), B(k;T) = —e* Tdy(T, k) |,

where vector ®(z, k) is the solution of the t-equation evaluated at = = 0:

b, 4 2ik’03d = Q(0,t, k), 0<t<T,

B(0,k) = (?)

5 _ —[go(t)]? 2kgo(t) — ig:1 (1)
Q(O’t”“)‘<2kgo<t>+m<w l90(t)? )

39/49



RHP for NLS in half-strip z >0, 0 <t < T

@ Contour: ¥ = RUIR

@ Jump matrix: J(z,t, k) = o~ (ke +2ik* o Jo(k)e<ikz+2ik2t>°3 with

1+ [r(k)|? r(k)> k>0
r(k) 1 ’ ’
( 1 O) s ke iRy,
To(k) = Ck;T) 1
(e k€ iR
0 1 ’ -
1+ |rk)+ Ck;T)*> 7(k)+ C(k; T)) k<0
r(k) + C(k;T) 1 ’ ’
where r(k) = % C(k;T) = —% with d = aA + bB

(also works for T' = +o0 if go(t), g1(t) = 0, t = o)
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Compatibility of boundary values: Global Relation

Q@ The fact that the set of initial and boundary values {go(z), go(t), g1(¢)}
cannot be prescribed arbitrarily (as data for IBVP) must be reflected in
spectral terms.

Indeed, from scattering relations (i)-+(ii):

ST k; T)s(k) = U~ (a,t, k)Us(x,t, k). Evaluating thisat z =0, t =T
and using analyticity and boundedness properties of ¥;, one deduces for
the (12) entry of S™'s:

A(k; T)b(k) — a(k)B(k; T) = O (T) , k— o0

ke D={Imk >0,Rek > 0}
@ This relation is called Global Relation (GR): it characterizes the
compatibility of {qo(z), go(t), g1(t)} in spectral terms.
Typical theorem: Consider the IBVP with given go(x) and go(¢). Assume g1(t)
is such that the spectral functions {a(k),b(k), A(k), B(k)} calculated from
{qo(x), go(t), g1(t)} satisfy Global Relation. Then the solution of the IBVP is
given in terms of the solution of the RHP above. Moreover, it satisfies also the
bc. 4.(0,8) = g1 (t).
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Resolving Global Relation (GR) in linear case ig; + ¢z = 0

@ construct the Dirichlet-to-Neumann map
{q0(2), 90(1)} = g1(1):

g1(t) = — 1/ dke #tg (/ qo(x)e*® dx)
™ JoD 0
1 ) ! ik?(T—t
—l—/ dk < ik / ek (7= )90(7‘) dr — go(t)
™ JoD 0
@ solve the IBVP:
1 > —ikx—i ~ ~
alant) == [ oG ) — (k) db

1 [ . L
—_ / dke—lkax—lkztk (/ elk27-go(7_)>
T J -0 0

where Go(k) = [3~ e**qo(x) da.
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Using Global Relation for NLS

GR can also be used to describe the Dirichlet-to-Neumann map:
ai(t) = QOT“) /e*“‘% (®a(t, k) — Pa(t, —k)) dk + % /e*ikz’fkr(k)ig(m k)dk

+ % e_Qik2t(k‘[él(t7 k) — él(t, _k)} + lg()(t))d]f (/ - /BD>

But: nonlinear! (g; is involved in the construction of <i>j)
@ In the small-amplitude limit, this reduces to a formula giving
g1(t) in terms of go(t) and go(x) (via r(k)); here NLS reduces
to a linear equation ig; + gz = 0.
@ This suggests perturbative approach: given go(t) say periodic
with small amplitude, derive a perturbation series for g;(t),
with periodic terms.
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IBV problem with oscillatory b.c.

For T' = oo: the approach can be implemented for boundary values
non-decaying as t — oco. But for this: one needs correct large-time
behavior of g(¢) complying with that of the given go(t); this is
because both go(¢) and g1 (t) determine the spectral problem for
t-equation and thus the structure of associated spectral functions
A(k), B(k).
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Dirichlet-to-Neumann map

Let q(0,t) = ae?@? (¢(0,t) — ae?™ — 0, t — )
Neumann values (g, (0,t)):

@ from numerics:

. 2_
42(0 t)NCGint - 2ia oc2w’ w < —3a?
z\U,l) = C - =

V2w — a2, wz%z

o theoretical (asymptotic) results: agree with numerics (for all
x >0, t > 0) provided ¢ as above.

Question: Why these particular values of ¢?

(the spectral mapping {90, 91} — {A(k), B(k)} is well-defined for
any ce C!)

Idea: Use the global relation (its impact on analytic properties of
A(k), B(k)) to specify admissible values of parameters o, w, c.
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The RHP for NLS: the co

for w < —3a?, assuming q(0,t) ~ 2iq

—|+
E Dy D,
—\+ T
0l
5. AR > £
- - 0
E Ds Dy
+ e

Y =RUyUAUTUT with E = -3 +ia.
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The RHP for NLS: the jump matrix

1 —p(k)e—2it0R)
—p(k)e? ™1+ |p(k)?

1 i (k)e2it00)
—r(k)e* "1 | (k))? )

1A O> kel
J(z,t; k) = Ec(k)e it0(k)

) ke (—OO,H+),

S (H+7OO)7

1 (ke 2ito(k) B
clk)e kel,

0 1

1 0
f(k)QQitQ(k) 1) ke s
1 7](7(1;)672it9(k) ~
0 1 '

where |0(k) = 0(k. &) = 24% + 4¢k | with |&= T
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@ T.Trogdon and S.Olver, Riemann-Hilbert problems, their
numerical solutions, and the computation of nonlinear special
functions, SIAM, Philadelphia, 2012.

o P.Deift, Orthogonal Polynomials and Random Matrices: A
Riemann-Hilbert Approach. Courant Lecture Notes in
Mathematics, New York, AMS, 2000.

@ L.D.Faddeev and L.Takhtajan, Hamiltonian Methods in the
Theory of Solitons, Springer, 1987.

@ M.J.Ablowitz and H.Segur, Solitons and the Inverse
Scattering Transform, Philadelphia, PA, SIAM, 1981.

48 /49



Il. Problems with step-like initial data

@ A.Boutet de Monvel, V.Kotlyarov and D.Shepelsky, Focusing
NLS equation: long-time dynamics of step-like initial data,
International Mathematics Research Notices (2011), no. 7,
1613-1653.

e G. Biondini, S. Li and D. Mantzavinos, Soliton trapping,
transmission and wake in modulationally unstable media,
Phys. Rev. E (2018), arXiv:1810.00388.

e G. Biondini and D. Mantzavinos, Long-time asymptotics for
the focusing nonlinear Schrédinger equation with nonzero
boundary conditions at infinity and asymptotic stage of
modulational instability, arXiv:1512.06095

@ |. Egorova, Z. Gladka, V. Kotlyarov, and G. Teschl,
Long-Time Asymptotics for the Korteweg-de Vries Equation
with Steplike Initial Data, Nonlinearity 26, 1839-1864 (2013).

@ K. Andreiev, |. Egorova, T. L. Lange, and G. Teschl,
Rarefaction Waves of the Korteweg-de Vries Equation via
Nonlinear Steepest Descent, J. Differential Equations 261,
5371-5410 (2016).

49 /49



