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Editorial Introduction

Daniel Alpay, Bernd Fritzsche, and Bernd Kirstein

Einmal werd ich die Wahrheit sagen – das meint man, aber die
Lüge ist ein Egel, sie hat die Wahrheit ausgesaugt.1

Max Frisch, Andorra [17, p. 35]

This volume is dedicated to Victor Emmanuilovich Katsnelson on the occasion
of his seventy fifth birthday. The volume contains biographical material written
by former students, colleagues and friends, and eleven refereed papers written by
experts in their fields. The papers in the biographical part give a picture of the
personality and achievements of Victor Emmanuilovich. One can also find relevant
information inside the research papers themselves; see for instance the first footnote
in the paper of A. Kheifets and P. Yuditskii, and the first section in the paper of
B. Fritzsche, B. Kirstein, and C. Mädler.

The life and work of Victor can be divided into three cities, Kharkiv, Leipzig,
Rehovot, and his scientific (and personal) impact in each of these cities, and beyond,
is very important. We mention in particular his huge influence in Schur analysis. The
paper [18] is of special interest. There, together with A. Kheifets and P. Yuditskii,
he develops one of the most powerful and versatile method of interpolation for
Schur functions, namely the Abstract Interpolation Problem setting. The list of
publications in the current MathScinet listing shows how selective Victor is in his

1One day I shall tell the truth-that’s what one says; but a lie is a leech, it sucks the truth dry.
Translation by Michael Bullock, see [16, p. 199].
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2 D. Alpay et al.

choice of research topics, not rushing after fashionable topics, and, to quote Harry
Dym in his contribution in this volume, not drilling where the wood is soft. Too
many accomplished mathematicians would stay in their zone of comfort, past the
first years after the thesis. This is definitely not the case of Victor.

As is illustrated in the sentence of Max Frisch in exergue of this introduction, it
requires character and willpower to go against the crowd and tell what one thinks.
Victor never hesitates to tell what he thinks, and his views on mathematical research,
and is ready to pay the price for his sincerity and frankness. His criticism can be
caustic (as the first named editor has experienced, in particular after a talk in Leipzig
in 2000), but they force the opponent to think, to reconsider one’s point of view on
a domain, or a topic.

Three names should be mentioned in particular, in connection with Victor.
Boris Levin, who supervised his PhD thesis, Vladimir Potapov, whose work
(and in particular the fundamental inequality method) was made well-known in
the west in great part thanks to Victor, and Moshe Livsic, the founder of the
characteristic operator function [12, 20–23]. From 1965 to 1990 V.E. witnessed
a golden era of mathematics in Kharkiv, marked by the work of N.I. Akhiezer,
I.M. Glazman, A.V. Pogorelov, V.A. Marchenko, Yu.I. Lyubich, V.P. Petrenko,
L.I. Ronkin, V.S. Azarin, L.A. Pastur, and F.S. Rofe-Beketov, amongst others.
The influence of this diverse set of mathematicians is one main cause for V.E.’s
impressive universality and his deep understanding for the links between only
seemingly distant subdomains of mathematics. In many discussions with the third
named editor, V.E. expressed his high esteem for V.I. Matsaev, whom he saw as a
special genius.

The first named editor first met Victor at the Weizmann Institute, and recall
driving to Tel-Aviv with Victor, where he gave a talk at Gohberg’s seminar (left
versus right factorizations of Blaschke products). The influence of Victor on the
first editor is multifaceted but let us mention the paper [14]; later, using realization
methods [2], one could “see” the underlying formulas in [14]. Finding them from
scratch is a real tour de force.

The first named editor was also very fortunate to have Vladimir Bolotnikov as a
doctoral student (Vladimir had begun to work with Victor in the Ukraine prior to his
arrival in Israel) and Dan Volok as a postdoctoral fellow after Dan finished his thesis
under Victor’s supervision. The collaborations with Vladimir and Dan continue to
this very day, and comprise, all-together, more than fifty-five papers, of which we
would like to mention [3–6] and [7–10] (Fig. 1).

The second and third named editors first met V.E. during a research stay at the
Kharkiv University in the spring of 1988. Since then we have established close
scientific and personal exchange of ideas with him. The scientific careers of both
of us were shaped in an essential way by this exchange. He is a universal erudite
mathematician, who not only is an expert on the classical works on Schur analysis
published in German (see [19]), but also able to identify striking links between
different problems, which significantly guided BF and BK’s choice of research
problems to work on. At the age of 46, his visit to Leipzig in the fall of 1989
was his first journey abroad. Since this year, V.E. spent a lot of time in Leipzig,
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Fig. 1 Picture taken at the Toeplitz Lectures a joint German–Israeli workshop on linear one-
dimensional singular integral equations in March 1995 in Tel-Aviv. From left to right: B. Fritzsche,
B. Kirstein, V.E., A. Böttcher, I. Gohberg

if added together in total about 3 years. V.E. spent almost the whole year of 1991 in
Leipzig, which thus makes up for a third. During that year, V.E. acquired exceptional
language skills, which enabled him to start conversations on varying topics with total
strangers without much effort when he was on his extended walks through Leipzig’s
parks. During the second half of 1991, he made the consequential decision to
accept a professorship at the Institute for Theoretical Mathematics at the Weizmann
Institute associated with the emigration to Israel. It was a tough decision to leave his
beloved hometown Kharkiv and its university, which has determined his academic
career up to this day. Shortly after his arrival at the Weizmann Institute, he started to
establish long-term collaborations between our group on Schur analysis and several
Israeli mathematicians working on this field (i.e. H. Dym, I. Gohberg, M.S. Livsic,
DA). Two highlights of this collaboration were a conference in August 1994 in
Leipzig in honor of the 80th birthday of V.P. Potapov and a seminar in November
1995 in Leipzig on Schur analysis in honor of the 100th birthday of Rolf Nevanlinna.

During V.E.’s first stay in Leipzig in 1989, we organized an excursion to the
Wilhelm Ostwald memorial site in Großbothen (a small town to the southeast
of Leipzig) for all the participants of the INTSEM Schur analysis. Wilhelm
Ostwald (1853–1932) quit university life even before he received the Nobel Prize in
chemistry and continued his research until his death as an independent researcher.
To this day the museum is worth a visit as his laboratory contains many self-built
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appliances on display, a comprehensive library and his exchange of letters with
eminent figures of his days. Every year the museum attracts many visitors. During
V.E.’s visit, he surprised us with his profound knowledge about Ostwald’s life
and his views on several topics in science. V.E. is a supporter of Ostwald’s
classification of scientists as classics or romantics, whereby he considered himself
as a prototypical romanticist. During his yearlong stay in Leipzig in 1991, he often
went to Großbothen and established a close friendship to Gretel Brauer (1918–2008),
Wilhelm Ostwald’s youngest granddaughter and director of the memorial site. Since
1991 he is an active member of the Wilhelm-Ostwald-Society, which is a charity that
advocates for the friends and supporters of Ostwald’s scientific heritage.

Many times he co-organized mathematical conferences held on the grounds of
the memorial site surrounded by the quiet atmosphere of the Wilhelm-Ostwald-Park
in Großbothen. V.E. is also an ardent admirer of the work of the German–
American social psychologist and psychoanalyst Erich Fromm (1900–1980). First
and foremost his book “Haben oder Sein” (engl. title “To have or to be” [15]) made
a big impression on him. He considered himself as a typical representative of the
“Sein-Mensch” (people of being rather than people of having). To continue this
thoughts, V.E. always views mathematics as an art, which should be able to evolve
in an environment characterized by the absence of any economic constraints that
urge for near-term applicability of theories.

Another topic of V.E.’s interest is sampling theory (see [11]). For this reason
he tried to attend important conferences in the field. In 1993, he registered for
a conference on sampling theory in Cairo organized by Ahmed I. Zayed. In the
meantime V.E. had become a citizen of the state of Israel, which led to the refusal of
his entry to Egypt. His counter reaction was to stop shaving his beard and he started
to grow a beard. He will only be willing to shave again, when he was able to enter
Egypt. To the best of our knowledge, V.E. wears his impressive beard to this very
day (Fig. 2).

Fig. 2 December 1994 in Leipzig, from left to right: W. Schempp, V.E., P.R. Masani
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A lasting impact on his future scientific career had a conference at the Technion
in Haifa in the spring of 1994, where he met Walter Schempp from Siegen, a
renowned specialist on harmonic analysis of the Heisenberg group. Schempp’s
publications on the mathematical foundations of magnetic resonance imaging
received special attention. V.E. informed Walter Schempp about a meeting on the
occasion of Norbert Wiener’s 100th birthday in December 1994 in Großbothen near
Leipzig, and asked us to invite him. The special highlight of this meeting was the
participation of Wiener’s co-author and biograph P.R. Masani (1919–1999). This
marked the beginning of a collaboration between Walter Schempp, V.E. and the
Schur analysis group in Leipzig around BF and BK which lasts to the present day.
Concerning the acquaintance with Walter Schempp later V.E. often recounted the
surprising insight of this encounter with a whimsical smile, the optimal route from
Siegen to Leipzig can pass Haifa at times.

The conference in Haifa had another surprise for V.E. in store. For the first
and only time he met Paul Erdős. The circumstances of this encounter deserve
some explanation. Paul Erdős had lost orientation on the Technion campus, when
V.E. passed by. In his desperation, Erdős asked V.E. for help—in German. V.E.
conciliated him, and explained him the way to the conference rooms—as well in
German.

Over the decades, V.E. got to know Leipzig very well. Unfortunately, his health
condition repeatedly did not allow him to see the new university building at the
Augustusplatz.

We received most valuable advise from V.E. when we were working on [13].
In this paper we study the truncated matricial moment problem on a finite closed
interval by using Potapov’s FMI method. Therein we are lead to a system of two
coupled fundamental matrix inequalities. The effective coupling is brought about
by an algebraic identity between two Block Hankel matrices (see Proposition 2.2).
Finding this identity was a pivotal step. V.E. had seen similar identities appearing in
related problems and thus knew exactly that this fact is meriting particular attention
of the reader.

The research papers can be divided, in a somewhat arbitrary manner, in the
following overlapping categories:

Function Theory Most, if not all, the papers in the volume involve function
theory, but in the following three papers, it is the major topic and tool. In On a
Blaschke-type condition for subharmonic functions with two sets of singularities
on the boundary, S. Favorov and L. Golinskii prove Blaschke-type conditions for
the Riesz measure associated to certain subharmonic functions. A two-dimensional
version of the Layer Cake Representation (LCR) theorem from measure theory plays
an important role in the arguments. Taylor domination consists in finding bounded
for the Taylor coefficients of an analytic function in terms of a number of the
first terms. De Branges’s theorem for univalent functions (i. e. the solution of the
Bieberbach conjecture) is a striking example of this domain. In Exponential Taylor
domination, O. Friedland, G. Goldman and Y. Yomdin use the Borel transform
to study the topic, comparing the valence of a function analytic in the open unit
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disk, to the valence of its Borel transform. H. Widom gave a characterization of
Hardy spaces on a Riemann surface. In the paper Martin Functions of Fuchsian
Groups and Character Automorphic Subspaces of the Hardy Space in the Upper Half
Plane, A. Kheifets and P. Yuditskii consider the related problem of characterizing
subspaces of the Hardy space of the open upper half-plane consisting of functions
character automorphic with respect to a discrete subgroup of SL2(R).

Schur Analysis, Moment Problems and Related Topics Unitary coupling, intro-
duced by V.M. Adamyan, D.Z. Arov in [1] are associated to operator-valued
measurable functions contractive in the open unit disk D (as opposed to analytic
contractive functions in D, corresponding to unitary colligations). In Extensions and
defect functions of contractive measurable operator-valued functions, S.S. Boiko
and V.K. Dubovoy study the regular extensions of unitary couplings. The next
two papers associated to Schur analysis deal with matricial moment problems.
Yu.M. Dyukarev considers the Hamburger moment problem in On conditions
for complete indeterminacy of the matricial Hamburger moment problem, while
B. Fritzsche, B. Kirstein, and C. Mädler present a precise study of the set of
solutions of the truncated moment problems for Stieltjes functions in terms of two
special solutions, which have underlying measures consisting of finite sets of jumps
in A closer look at the solution of the truncated matricial moment problem.

Extensions of Linear Operators and Linear Relations Krein’s formula describes
all compressed resolvents of self-adjoint extensions of a given symmetric relation
with equal (and possibly infinite) index in terms of a linear fractional transformation
with parameter a d×d Nevanlinna function. In Self-adjoint extensions of a symmet-
ric linear relation with finite defect: compressions and Straus subspaces, A. Dijksma
and H. Langer study relationships between the parameter, the compression of
the extension and connections with the Strauss extension of the given symmetric
relation. Sectorial relations are the topic of the paper On a class of sectorial relations
and the associated closed forms, by S. Hassi and H. de Snoo. In particular the
authors give an expression for the extremal maximal sectorial extensions of the sum
of sectorial relations, and characterize when the form sum extension is extremal.
Finally, in the paper Spectral decompositions of selfadjoint relations in Pontryagin
spaces and factorizations of generalized Nevanlinna functions by S. Hassi and
H.L. Wietsma, the authors consider the important setting of Pontryagin spaces. One
then has to replace Nevanlinna functions by their generalizations, defined in terms
of the number of negative squares of an associated kernel.

Non Commutative Analysis In the paper Interpolation by contractive multipliers
between Fock spaces, J. Ball and Vladimir Bolotnikov consider interpolation
problems for contractive multipliers between noncommutative reproducing kernel
Hilbert spaces. They develop in particular a noncommutative multivariable analogue
of the Abstract Interpolation Problem [18]. In classical probability theory the
Gaussian distribution plays a central role, while in free probability theory the
semicircular law is the key actor. In the paper Free-homomorphic Relations Induced
by Certain Free Semicircular Families, I. Cho and P. Jorgensen present a new
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construction of semicircular elements, based on a new analysis on the p-adic
number fields Qp, for primes p, and give a novel approach to calculus of free
random variables.

Acknowledgements Daniel Alpay thanks the Foster G. and Mary McGaw Professorship in
Mathematical Sciences, which supported this research.
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Part I
Personal Recollections



Victor Comes to Rehovot

Harry Dym

To Victor on the occasion of his seventy fifth birthday with best
wishes

Some recollections of Victor Katsnelson and how he came to join the Department
of Mathematics of the Weizmann Institute. I knew his name because Professor
Tsuyoshi Ando of Hokkaido University had very generously translated and dis-
tributed a number of papers on themes connected with the work of the Potapov
school from Russian to English, and one of these was a 150 page monograph by
Victor: Methods of J -theory in continuous interpolation problems of analysis, Part I.
Consequently I was very much in favor of this visit, and managed to arrange support
for a 1 month visit. The logistics turned out to be somewhat complicated. This was
still in the early days of Perestroika and there were no direct flights between Ukraine
and Israel. Victor had to make his way to Budapest, where a prepaid ticket was
arranged for him on an El Al flight to Tel Aviv. Somehow we managed to coordinate
this (though his part was much more difficult than mine) and I went to meet him at
Ben Gurion airport. He arrived in the early hours of the morning carrying two linen
bags. I believe one was for spare clothing and the other was for books and papers.

At that time Victor’s knowledge of English was somewhat limited. Nevertheless
he managed to deliver a couple of impressive lectures, at least one of which was
on his work with his former students Alexander Kheifets and Peter Yuditskii on
the Abstract Interpolation Problem and some of its applications. Also, in private
discussions, he exhibited familiarity with a wide array of subjects, including an
understanding of Louis de Branges’ fundamental work on the inverse problem for
2 × 2 canonical systems. During that visit Victor walked around with a Russian-
English dictionary attached to his belt, which he seemed to be able to thumb though
at lightning speed.
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12 H. Dym

Victor returned to Kharkov and sometime thereafter applied for a permanent
position at the Weizmann Institute. The application was successful, and in the latter
half of 1991 he was offered a Full Professorship in the Department of Mathematics.

Victor arrived in Rehovot with his wife and (I think) one of his three daughters
towards the end of February in 1992.

Victor adapted rapidly to his new environment. He thoroughly mastered latex
and became a fountain of knowledge in that area. He convinced me to switch from
Unix to WinEdt, for which I shall be forever grateful. He also learned to drive, with
perhaps a little less proficiency than his skill in latex. But he survived Israeli traffic,
which is no mean feat.

Although Victor can be very critical, he has a generous nature. He helped to
support a postdoc with a sizeable chunk of the funds that had been made available
to him upon joining the Institute, even though there was absolutely no benefit to him.
This generosity manifested itself in other ways that led him on occasion to agree to
supervise students at the PhD level who were not fully qualified and hence were
unable to finish.

The decade starting in the early nineties was one of the most active in the
general area of operator theory and analysis in the department. Michael Solomyak
had just recently joined the department and there was an influx of talented young
doctoral students (Michael Shmoish, Boris Freydin, Iosif Polterovich, Katherine
Naimark, Victor Olevskii) and postdoctoral fellows (Alexander Kheifets, Michael
Gekhtman, Alexander Stolin, Ilia Videnskii, Michael Shapiro, Nikolai Bykov,
Michael Simbirskii) from the former Soviet Union. Peter Yuditskii visited and
a number of established professors from the Odessa circle also visited. (Lev
Sakhnovich, Vadim Adamjan, Israel Kac for short periods and Damir Arov, who
became a regular visitor.)1

Victor has an impressively wide range of interests. Although many of his
publications focus on the interplay between complex analysis and operator theory,
he has also made serious contributions to other areas, including Fuchsian systems of
linear differential equations (with his doctoral student Dan Volok), many aspects of
time frequency analysis (partially with Ronny Haim Machluf), the BMV conjecture
and a probabilistic analysis of Schur parameters, to mention just a few.

Victor does not drill where the wood is soft. Here are two excerpts from Math
Reviews:

The review of his 2002 paper A generic Schur function is an inner one (2002),
in which the Schur parameters of nonrational Schur functions are identified as
independent identically distributed random variables, notes that

. . . the author’s proofs involve skillful exploitation of the intricate connection between [cer-
tain classes] of Schur functions and its sequence of Schur parameters. On the probabilistic
side the main tools are theorems from multiplicative ergodic theory of H. Furstenberg and
H. Kesten, H. Furstenberg, and V. I. Oseledets. The author presents in admirably clear detail
the preliminary ideas and results that form the basis of his proofs.

1These three lists of names are based on incomplete records. My apologies for oversights.
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The reviewer of his 2016 paper On the roots of a hyperbolic polynomial pencil,
writes that it

includes an independent proof of a simplified version of the BMV theorem, . . . which is
. . . practically a model proof . . . In this way Katsnelson obtains the connection of the Laplace
transformation with the trace function, in a better and deeper way than was done previously
in the literature. . . . . the paper is full of technical masterpieces

Over the years, Victor also offered a wide range of courses in the Feinberg
Graduate School (which is the graduate school of the Weizmann Institute). In addi-
tion to courses on Complex Analysis, Functional Analysis and Harmonic Analysis,
which one might expect, the list of his offerings includes courses on Differential
Geometry, Riemannian Geometry, Topology, Inverse Problems of Spectral Analysis
and Random Matrices.

To my great regret we only collaborated together on one paper, a tutorial on I.
Schur’s contributions to analysis, that appeared in a volume Studies in Memory of
Issai Schur; most of the rest of this volume has a distinctly algebraic flavour. We did,
however, serve together as editors of a volume OT 95 (jointly with Bernd Kirstein
and Bernd Fritsche from Leipzig) Topics in Interpolation Theory.

In recent years Victor has suffered from ill health which has seriously affected his
vision, but he still continues to work when he can. In addition to the great personal
difficulties that this entails, it is also a great loss for the mathematical community
that he cannot work at his normal full pace.



My Teacher Viktor Emmanuilovich
Katsnelson

Yu. M. Dyukarev

Dedicated to Viktor Emmanuilovich Katsnelson, with gratitude,
on occasion of his 75th birthday

It was early September 1971 when I sighted Viktor Emmanuilovich for the first
time. I had just began my studies at the Faculty of Mechanics and Mathematics
at Kharkov National University. An utterly extraordinary man entered the lecture
hall to teach the course of Mathematical Analysis. He was very young, rather
short, had long wavy hair and expressive, intelligent eyes. Viktor Emmanuilovich’s
appearance alone was an indication of the strong and exceptional personality before
us. But most fascinating was his lecturing style. Viktor Emmanuilovich constantly
moved around the lecture hall and accentuated essential moments via intonation
and gestures. His enthusiasm used to captivate everyone to such an extent that
not until the end of the lecture did we notice his suit, his hair even, all whitened
with chalk. Viktor Emmanuilovich quickly became my favorite teacher, my idol.
Viktor Emmanuilovich’s presentation style, manners and even his very appearance
are forever ingrained in my memory as a multitude of bright events and images,
making up for the deepest impressions of my university years.

When I was close to finishing my studies, Viktor Emmanuilovich proposed that
I write my dissertation under his supervision. I agreed, of course. It was a very
pleasant surprise for me, somehow even an honor. But that was only the first
surprise of many. After the completion of my dissertation, Viktor Emmanuilovich
offered me to become his PhD student. Thereafter began our collaboration and
friendship of many years. Upon recommendation of Viktor Emmanuilovich, in
1977 I took up a role of researcher at the Department of Mechanics and Math-
ematics at Kharkov National University. Then in 1978 I became a PhD student.
For bureaucratic reasons, Viktor Emmanuilovich could not act as my academic
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supervisor. Therefore, Vladimir Petrovich Potapov became the official supervisor
of my PhD dissertation by request of Viktor Emmanuilovich, who remained my de-
facto supervisor. However, Vladimir Petrovich did have an interest in my research as
well. I recall a conversation between Vladimir Petrovich and Viktor Emmanuilovich
about the topic of my future dissertation. This took place in Vladimir Petrovich’s
apartment in the summer of 1978. Viktor Emmanuilovich suggested the study of
interpolation problems in the Stieltjes class as my dissertation topic. Vladimir
Petrovich approved but then suddenly said: “How about he tries to take the bull by
the horns and tackle the problem on deficiency numbers of differential operators?”
I did not understand what they were talking about, I was prepared to accept any
topic. But Viktor Emmanuilovich replied: “No, he should better work of Stieltjes
interpolation.” Thus, with the easy hand of Viktor Emmanuilovich, the topic of my
scientific research was set. To my knowledge, the problem of deficiency numbers of
differential operators has not been fully solved to this day.

At that time, and we are talking about the second half of the 1970s and the
beginning of the 1980s, mathematical life in Kharkov was in full swing. In 1976,
Vladimir Petrovich Potapov and Irina Vasilevna Kovalishina relocated from Odessa
to Kharkov. Vladimir Petrovich, Irina Vasilevna and Viktor Emmanuilovich were
intensely engaged in the study of analytic interpolation problems; an important role
in their research played the fundamental results of V. P. Potapov in the theory of
J -contractive analytic matrix functions. With those results and ideas they became
a center of attraction of many mathematicians in Kharkov. Amongst the beginner
and young mathematicians who under supervision of Vladimir Petrovich and Viktor
Emmanuilovich actively worked on interpolation problems, were L. B. Golinskii, I.
V. Mikhailova, P. M. Yuditskii, A. Ya. Kheifets, Yu. M. Dyukarev, M. F. Bessmertnyi
and others. More experienced mathematicians V. K. Dubovoy, V. A. Zolotarev, A.
G. Rutkas, A. A. Yantsevich, I. E. Ovcharenko and others also developed interest in
this subject matter.

In the Soviet Union many people would often meet in the kitchens of their small
apartments in the evenings. The conversation topics were most diverse: science,
literature, history, politics, etc. It was possible to bring up any topics that led
to an interesting discussion. I remember well conversations in the kitchens of
apartments of Viktor Emmanuilovich and Vladimir Petrovich, where I got to know
so much, learnt a lot, and used to get a huge pleasure from the connection with such
different, but extraordinarily bright and talented people. Typically, these kitchen
conversations were accompanied with tea, alcoholic beverages, and cigarettes.
Viktor Emmanuilovich did not smoke and did not like alcohol. In his kitchen, the
discussions were usually over tea. The still very young Viktor Emmanuilovich
used to sit at the table, his intelligent eyes gleaming. He surprised me with his
ability to comment on any topic unpredictably, brightly and often in a somehow
paradoxical manner. He kept everyone on their toes and often joked sharp-wittedly
when someone expressed their thoughts inaccurately. I recollect working on our
only joint mathematical article, which became my first scientific publication. Upon
resolving all issues with regards to the core content, the phrasing of the text was next.
I was not yet skilled at it at all, but Viktor Emmanuilovich began teaching me the
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knacks. In the evenings, we made tea and settled in the kitchen. I had to write the text.
Virtually after each sentence Viktor Emmanuilovich would interrupt me and say:
“But what exactly are you trying to express with this phrase?” I explained thoroughly.
“Correct”, Viktor Emmanuilovich replied. “But what have you written?!...” In this
way we worked for many days until finally Viktor Emmanuilovich suggested to
finish the draft of the article saying “The best is the worst enemy of the good.”

In spring 1980 Viktor Emmanuilovich suggested that I take a position teaching
higher mathematics at the Department of Physics at Kharkov National University. I
replied that I did not want to leave the Department of Mechanics and Mathematics.
But Viktor Emmanuilovich noted that at that moment there was no vacant teaching
position at the Department of Mechanics and Mathematics, and added: “Maybe you
should switch to the Department of Physics for awhile?” In this suggestion I liked
the sound of the word “awhile” and I agreed. But, as Viktor Emmanuilovich often
said, temporary circumstances are the most constant circumstances in life. I have
already been working at the Department of Physics for nearly 40 years.

In December 1980 Vladimir Petrovich Potapov passed away. The death of this
indisputable leader and bright exceptional personality was a big loss to us. We,
the mathematicians who stood at the beginning of their mathematical careers,
now glanced with hope at Viktor Emmanuilovich, and he more than lived up
to our hopes. In spring 1981, a big conference was held in Odessa in honor
of Vladimir Petrovich Potapov. The legendary mathematician Mark Grigorievich
Krein took part in that conference. During the plenary lectures he sat in proud
solitude in the middle of the hall. He made various remarks during the speeches.
His comments were frequently along the lines of: “This follows from my more
general results” or “That is not interesting”. Viktor Emmanuilovich also presented.
He was visibly nervous and all through the presentation, he kept clutching a folder
with his left hand whilst writing essential notes on the blackboard with his right.
Mark Grigorievich commented on Viktor Emmanuilovich‘s presentation with two
remarks. Evidently jokingly he asked: “Did the folder that you kept holding in your
hand the whole time help you with your presentation?” But then he added earnestly
that new ways for mathematical research have been shown in the presentation.
Such an evaluation delighted us greatly. We were going back to Kharkov full of
new hopes and expectations. I received my PhD title in the fall of 1982. Viktor
Emmanuilovich providing me with all-round help and support. That way, my years
as a student ended. During that time, the major foundations for my later life were
established. And in many of the important events of those years, my teacher Viktor
Emmanuilovich Katsnelson played a big role.



Some Impressions of Viktor
Emmanuilovich Katsnelson
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Viktor Emmanuilovich in the 1960s
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After graduating high school in 1965, I began my studies at the Faculty of
Mechanics and Mathematics of the Kharkiv University. Around that time, Viktor
Emmanuilovich Katsnelson finished his degree at the Faculty of Mechanics and
Mathematics of the Kharkiv University and got employed as assistant in the
Department of Mathematical Analysis. I heard that Boris Yakovlevich Levin, who
was the Head of the Department of Mathematical Analysis back then, had wanted
to have V. E. as a PhD student, but due to his last name, which sounded very Jewish,
he was unable to. This is why it took great effort to find a workplace for him at the
university. Thus, it happened that, chronologically speaking, I became one of V. E.’s
first students. Since the beginning of our first year of study V. E. has taught the
exercise class for mathematical analysis. Then I wrote my first scientific work under
his supervision and later we published a joint work. He was also the supervisor of
my diploma thesis. What follows, are my fragmentary memories of V. E.

Boris Yakovlevich Levin (22.12.1906–24.08.1993)

The 1960s were the golden age of Kharkiv’s mathematics. Back then, many
extraordinary mathematicians worked in Kharkiv. Among the young mathemati-
cians Viktor Emmanuilovich was not only one of the leading ones but he was the
best. No-one has ever expressed doubts about that. Of course, there was Vladimir
Igorevich Matsaev, who was considered as a mathematical genius. However,
Matsaev was 6 years older than Viktor Emmanuilovich and had already moved from
Kharkiv to Chernogolovka at that time.

In B. Ya. Levin’s seminar, V. E. has always been very active. I myself did not visit
this seminar very often. Each time I did attend it though, V. E. was the one person
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Vladimir Igorevich Matsaev (30.04.1937–25.02.2013)

in the audience, who stood out the most. He often asked very profound questions
and it turned out that he understood the nature of the subject better than the lecturer
himself.

V. E. has never particularly cared about his attire nor his appearance and
oftentimes he did not look very well groomed. He was not at all bothered by that.

He has once said to me, and ever since I have remembered it, that role models
in mathematics are such mathematicians whose example he could follow and
mentioned V. I. Arnold, since Arnold is not only an exceptional mathematician, but
also has excellent knowledge of physics and mechanics.

I attended numerous courses of specialization lectures of V. E. He talked
about difficult topics with great enthusiasm. He loved Privalov’s book “Boundary
properties of analytic functions” and a few times he held a special lecture based
on this book. He also held a very profound lecture series on operator theory, which
contained sufficiently advanced topics as e. g. Hellinger’s theory of spectral types.

V. E. was very proud that his famous work “Conditions under which systems of
eigenvectors of some classes of operators form a basis” was published in one of
the first issues of the journal “Functional Analysis and Its Applications”. Back then,
the journal had only just been established. He told me that his work was originally
supposed to appear in the very first issue of the journal, but for technical reasons
it was only included in the second one. At the same issue of the journal there were
published articles by F. A. Berezin, D. P. Zhelobenko, V. D. Lidskii, R. A. Minlos,
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G. E. Shilov, I. Ts. Gokhberg, and among these famous mathematicians was very
young V. E. At that time he did not defend his PhD thesis yet.

During my fourth year of studies, I prepared my first work for publication under
guidance of V. E. There have not been computers yet, the manuscripts were drafted
on type writers, and in the end the formulas were written by hand. Adding bulky
calculations by hand accurately was not easy. V. E. demonstrated me how to do this
and, eventually, it resulted in him adding formulas on a few pages of my article
himself in order to show me how it has to be done.

V. E. was particularly proud that he was able to do various manual works himself,
e. g., regarding electronics or metalworks. He was convinced that he was pretty well
versed in techniques.

V. E. loved giving characterizations of mathematicians. In my opinion they have
not always been quite objective. Oftentimes, on varying occasions, he expressed
paradox evaluations, but arguing with him was useless.

V. E. with Vladimir Solomonovich Azarin

Finally, I want to add some words about the Thursday Seminar at Kharkiv
University in analysis which was started by B. Ya. Levin in the year 1956. For about
40 years it has been a school for Kharkiv mathematics working in analysis and has
been a center of active mathematical research. The major parts of seminar talks con-
cerned complex analysis and its applications. Nevertheless, there was no restriction
on the subject: There were talks on Banach spaces, spectral theory of operators,
and differential and integral equations. A meeting of the seminar usually lasted
more than 2 h, with a short break. In most cases detailed proofs were presented.
Its active participants in different years included P. Z. Agranovich, V. S. Azarin,
G. R. Belitskii, G. P. Chistyakov, A. E. Eremenko, S. Yu. Favorov, A. E. Fryntov,
L. B. Golinskii, A. F. Grishin, V. P. Gurarii, M. I. Kadets, V. E. Katsnelson,
A. Ya. Kheifets, S. A. Kupin, V. N. Logvinenko, Yu. I. Lyubarskii, Yu. I. Lyubich,
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V. I. Matsaev, V. D. Milman, M. V. Novitskii, I. V. Ostrovskii, I. E. Ovcharenko,
V. P. Petrenko, A. Yu. Rashkovskii, L. I. Ronkin, A. M. Rusakovskii, M. L. Sodin,
V. A. Tkachenko, A. M. Ulanovskii, P. M. Yuditskii, and many others. B. Ya. Levin
has always been proud and delighted with achievements of the participants of his
seminar.



The Good Fortune of Maintaining
a Long-Lasting Close Friendship
and Scientific Collaboration
with V. E. Katsnelson

Bernd Kirstein

Fig. 1 V. E. in Großbothen 1994

B. Kirstein (�)
Fakultät für Mathematik und Informatik, Universität Leipzig, Leipzig, Germany
e-mail: kirstein@math.uni-leipzig.de

© Springer Nature Switzerland AG 2020
D. Alpay et al. (eds.), Complex Function Theory, Operator Theory, Schur Analysis
and Systems Theory, Operator Theory: Advances and Applications 280,
https://doi.org/10.1007/978-3-030-44819-6_5

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44819-6_5&domain=pdf
mailto:kirstein@math.uni-leipzig.de
https://doi.org/10.1007/978-3-030-44819-6_5


26 B. Kirstein

1 First Steps in Schur Analysis

After the defense of our joint dissertation on problems of the filter theory of
multidimensional stationary sequences in December 1983, Bernd Fritzsche and I
decided to aim our future research at the analytic foundation of prediction theory
of multivariate stationary sequences. Against this background, we took up intense
studies of the trend-setting works of the Soviet school (Kolmogorov, Rozanov,
Matveev) as well as of American scholars (Wiener, Masani, Helson, Lowdenslager).
During this process, we became aware of V. P. Potapov’s fundamental work [45]
about the multiplicative structure of J -contractive matrix functions for the first
time and we began to study the basics of J -theory systematically. Our choice
of this research field was considerably encouraged by P. R. Masani. During
Masanis’s visit of Leipzig University in May 1986 we had profound discussions
about the state of prediction theory at that time and its prospects. P. R. Masani
revealed to us that in collaboration with Norbert Wiener, following the works
[43, 44, 50, 51], further research on an application of the results of V. P. Potapov
in prediction theory was planned. However, the realization of this intention became
unattainable due to Norbert Wiener’s death on March 18, 1964. Without Norbert
Wiener P. R. Masani was reluctant to tackle this project and he turned towards
a systematic elaboration of the theory of measures with orthogonal values in a
Hilbert space or rather of the theory of orthoprojector-valued measures. P. R. Masani
encouraged us to get in direct touch with the students of V. P. Potapov, who had
passed away in the year 1980. V. P. Potapov had been employed at the FTINT
(Russian abbreviation for B. Verkin Institute for Low Temperature Physics and
Engineering of the National Academy of Sciences of Ukraine in Kharkov) during
the last period of his life (1976–1980) and he was able to contribute significantly to
the popularization of J -Theory. In particular, he managed to assemble a group of
exceedingly committed mathematicians in Kharkov who devoted themselves with
great enthusiasm to the application of Potapov’s method of fundamental matrix
inequalities to matricial versions of classical interpolation and moment problems.
Among others, I. V. Kovalishina, V. E. Katsnelson, V. K. Dubovoy, L. B. Golinskii,
I. V. Mikhailova, and Yu. M. Dyukarev belonged to this circle of mathematicians.
In the summer of 1986, Bernd Fritzsche and I decided to invite one representative
of the circle of the above mentioned mathematicians to a month-long work visit at
Leipzig University in the year 1987.

Luckily, in the 1980s, numerous alumni of the University of Kharkov were
employed at the mathematical department of Leipzig University, whom we were
now able to ask for their advice. In particular, we contacted Rainer Kaiser and Frank
Löffler from the department of “Functional Analysis and Mathematical Physics”.
Both recommended to extend an invitation to V. K. Dubovoy first, as he had already
held office as dean of the Mechanical Mathematical Faculty at the University of
Kharkov for a certain period and because he was the one most likely to be able to
avail himself of the invitation. This hope was fulfilled.
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In May 1987, V. K. Dubovoy stayed about a month in Leipzig. This was the onset
of a scientific partnership and friendship of our group and several mathematicians
from Kharkov, which should last right up to the present day. During V. K. Dubovoy’s
visit in Leipzig, essential steps for the future collaboration were established. In
this regard, two points are worth to be emphasized. First, our joint monograph
(see [16]) on the matricial Schur problem and second, Bernd Fritzsche and I spent
one semester for postgraduate studies at the University of Kharkov in 1988. The
exact German notion for these studies was “Zusatzstudium”, which carried the
meaning of additional studies after graduation. These postgraduate studies were
effectively realized from mid-March to mid-May of 1988 due to the invitation of
V. K. Dubovoy. We were accommodated in a guest apartment of the University of
Kharkov in the Street Otokara Yarosha 16A, where we found good facilities for
undisturbed research. For this reason, Bernd Fritzsche and I typically only went to
the university, which was accessible from our housing in about 25 min by bus, for
lectures or agreed meetings. Our scientific work was divided into two lines. On the
one hand, we worked on elaborating the manuscript for our joint Teubner-Text with
V. K. Dubovoy, whereas, the second line fully measured up to the term “additional
studies”. That is because we studied several manuscripts on J -theory in thorough
detail, which were deposited in special Soviet or Ukrainian institutions and which
were, as a result, accessible to foreigners only with extreme difficulties. In a first
step, we translated these texts from Russian to German. In the second step, we tried
to comprehend the respective proofs in detail.

Our first encounter with V. E. Katsnelson (Fig. 1) happened, to our surprise, on
April 2, 1988, precisely 2 weeks after arriving in Kharkov. Viktor Emmanuilovich
showed up in our accommodation and brought us a journal containing
Yu. L. Shmulyan’s classical work [48] on operator balls. Just at that time, Bernd
and I were engaged in drafting the section on matrix balls for our Teubner-Text
and, accordingly, we had asked V. K. Dubovoy whether he could provide the work
of Shmulyan. Since the journal in question was not available in the library of
the University of Kharkov, V. K. Dubovoy asked V. E. for help. This launched
a scientific collaboration which lasts for more than 30 years, and even more
importantly, a close friendship. During that first encounter, he informed us that
the inventory of mathematical literature in the university library of Kharkov was
limited and, moreover, he let us know that, concerning current literature, his private
library was many times richer. In the continuation of this thought, he offered to
extensively use his private library during our stay in Kharkov. In order to convince us
entirely, he spontaneously invited us to come along to his apartment in the Prospect
Pravdy 5A to have a look at everything ourselves. Once we had arrived, we were
deeply astonished when we found ourselves in a huge room which reminded us of
the stack-rooms of our institute in Leipzig. It was densely filled with book shelves
tightly packed, which V. E. had built on his own, as we found out later. The books
in the shelves were carefully and systematically sorted by topic. The following
day, Bernd and I were invited to lunch at his home. It was Sunday April 3, 1988,
accordingly, it was the 81st birthday of Mark Grigorevich Krein. Over the course
of the afternoon, V. E. noticed this fact and sent a congratulatory telegram to Mark
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Grigorevich adding both congratulators. This was the only personal contact Bernd
and I had ever had with Mark Grigorevich, who was one of those mathematicians
that had the strongest influence on the direction and aims of our research, in
retrospect. At the end of our postgraduate studies in Kharkov, Bernd and I outlined
further steps of our collaboration with V. K. Dubovoy as well as the establishment
of a long-term research contact to V. E. in regard to the topics of Schur analysis.

2 Viktor Emmanuilovich’s First Visit to Leipzig

Over the course of planning the research activities for the year 1989 in fall 1988,
Bernd Fritzsche and I intended to hold a week-long international seminar on Schur
analysis. This request was complied with by the administration of the Center for
Theoretical Sciences (NTZ). The week from October 16–20, 1989 was specified as
the date of the event. In connection with this seminar, we requested a 3-week stay
for V. E. at Leipzig University. This request was granted as well. On September 23,
1989, he arrived in Leipzig. Aged 46 years it was his very first travel abroad. At
the beginning of his stay it was unforeseeable that during his visit certain incidents
would happen in Leipzig, which should stir up the political situation in the GDR
significantly. V. E. became an eye-witness of the massive Monday protests in the
city center of Leipzig on both October 9th and October 16th that set the decay of
the GDR in motion. Within a personal evaluation of these events, he reasoned that
the reunification of Germany was the only consequence that seemed logical. We
ourselves considered his prognosis very utopian at the time. History proved, though,
that he had predicted everything completely correctly. Less than 1 year later, on
October 3, 1990, the reunification of Germany was in fact enforced. During the first
3 weeks of his stay in Leipzig, Bernd and I had profound mathematical discussions
with him, where he drew our attention to central problems in Schur analysis and,
moreover, imparted to us fundamental aspects of the research of the Kharkov school.
At that time, his lectures were held in Russian and I acted as interpreter into
German for the audience (Fig. 2). At the end of his stay in Leipzig, the INTSEM
(International Seminar) on Schur Analysis took place. It was P. R. Masani who
had suggested the event during his first visit to Leipzig in 1986. The aim of this
seminar was to gather leading specialists from the East and the West working on
Schur analysis. This goal was successfully pursued. Among the Western participants
were P. R. Masani, A. Dijksma, H. S. V. de Snoo, S. Hassi, and others. The list of
Soviet participants included I. V. Kovalishina, V. E. Katsnelson, V. K. Dubovoy,
Yu. L. Shmulyan, and I. M. Spitkovskii (Fig. 3). On October 17, 1989, the second
day of the seminar, Mark Grigorevich Krein, one of the greatest mathematicians of
the twentieth century, who had made fundamental contributions to Schur analysis
and numerous other fields passed away. For this reason, D. Z. Arov has not been
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Fig. 2 V. E. in Leipzig, autumn 1989

Fig. 3 INTSEM Schur Analysis, Leipzig October 16–20, 1989. Front row from left: B. Kirstein,
B. Fritzsche, Yu. L. Shmulyan, P. R. Masani, H. J. Girlich, G. Heinig, V. E. Katsnelson. Second
row from left: A. Böttcher, far right I. V. Kovalishina

able to come to Leipzig for the seminar in time. He arrived on October 21st, that is,
1 day after the end of the seminar. Following the seminar, it was intended that he
would stay in Leipzig for another 3 weeks. During this time, the foundation for a
long-term scientific collaboration with D. Z. Arov was set.
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3 Viktor Emmanuilovich’s Year as a Visiting Professor
at Leipzig University

In order to deepen the scientific collaboration with Viktor Emmanuilovich, Bernd
and I intensively thought about possibilities to invite him to Leipzig for a longer
period. This aim could indeed be pursued in 1991 on a large scale. At this point a few
further words are advisable. One of the most famous scientists in history of Leipzig
University is undoubtedly Wilhelm Ostwald (1853–1932), one of the founding
fathers of physical chemistry, who was honored with the Nobel prize in chemistry
in 1909. In honor of Wilhelm Ostwald, a chair named after him was established
at Leipzig University, which was assigned to exceptionally renowned foreign guest
researchers by the Faculty of Sciences of Leipzig University. Due to V. E.’s extensive
publications in function theory and functional analysis, he had already gained a
high reputation in the 1980s. Among other things, this was particularly shown by an
invitation to a week-long guest stay at the famous Weizmann Institute of Science
Rehovot in summer 1990. This sparked the idea to put forward the proposal to
assign the Ostwald Chair to V. E. in the first half of 1991. To our great delight,
the proposal was accepted by the Faculty of Sciences of Leipzig University. From
today’s perspective, Viktor Emmanuilovich turned out to be the last holder of
the Ostwald Chair. The profound changes at Leipzig University after the political
turnaround resulted in the abolishment of the Ostwald Chair for guest researchers.
During the time of his visit to Leipzig, a big part of V. E.’s family emigrated to
Israel. For this reason, he was unsure how and where he could continue his academic
career. In order to support him, Bernd and I considered it advisable to extend his
stay in Leipzig beyond the duration of the Ostwald Chair. The realization of this
idea was complemented by a fortunate circumstance. The DFG offered multiple
funding opportunities in order to support universities in the former GDR. Taking
advantage of one of these programs, Bernd and I managed to arrange a DFG visiting
professorship at Leipzig University for V. E. for the second half of 1991. Eventually,
he stayed in Leipzig for an entire year. On January 22, 1992, he then left Leipzig
for the Weizmann Institute, where he was offered a professorship for Theoretical
Mathematics (see Fig. 4).

I now want to address the mathematical achievements of V. E. in Leipzig in 1991.
Due to his presence in Leipzig, Bernd and I decided to organize an international
seminar on Schur analysis on short notice . It took place from March 12–13, 1991.
Among others, H. Langer, A. Dijksma, H. S. V. de Snoo, S. A. M. Marcantognini,
and P. Bruinsma appeared on the list of participants. As holder of the Ostwald
Chair, V. E. naturally offered a series of special lectures. Roughly spoken, he talked
about two topics, the first was Schur analysis, of course. In particular, he touched
upon the method of fundamental matrix inequalities created by V. P. Potapov and
its applications to continuous problems in analysis. The second topic contained
special problems of complex analysis. Thanks to the work of B. Ya. Levin and
I. V. Ostrovskii, this field had a long tradition in Kharkov. As B. Ya. Levin’s
Ph. D. student and longtime employee in the department of complex analysis
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Fig. 4 V. E. in Leipzig, January 1992

at the University of Kharkov, Viktor Emmanuilovich had an exceptional level
of knowledge on complex analysis and its application to certain problems of
probability theory. The intersection of these topics was extensively studied by the
group led by I. V. Ostrovskii in Kharkov and by the group led by Hans-Joachim
Roßberg in Leipzig.

When talking about the scientific activities of V. E. in Leipzig in 1991, it is
inevitable to mention the monograph [31], which is available as an unpublished
manuscript in Russian. This book treats various extremal problems for holomorphic
functions, which are closely related to topics in mathematical analysis such as the
asymptotic behavior of orthogonal polynomials, Beurling’s theorem about shift-
invariant subspaces, various problems on positive definiteness (in particular, the
trigonometric moment problem as well as power moment problems), problems of
weighted approximation, Wiener-Hopf factorization of positive functions, which are
defined on the unit circle or the real axis, as well as problems about the analytical
background in prediction theory of weakly stationary stochastic processes. V. E. put
special emphasis on identifying the connections between complex analytical interpo-
lation problems (coefficient problems by Schur and Carathéodory, Nevanlinna-Pick
problem, etc.). It is also worth mentioning that he focused strongly on the historical
retrospective and emphasized the largely unnoticed but significant contribution of
V. I. Smirnov. While diligently working out the historical contexts, V. E. drew upon
the rich inventory of the library of the Mathematical Institute at Leipzig University
and received a wide range of assistance from the librarian Ina Letzel. We had the
opportunity to observe the development of that manuscript right from the beginning
and to discuss many of the arising questions with V. E. This way, we witnessed his
working methods over several months. It left a lasting impression on Bernd and me
for our future career in mathematics. He finished the script for the monograph [31]
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in August 1991. He felt relieved that the political coup in Moscow during those days
could be subdued and dedicated the monograph to that incident.

One experience that remained unforgettable for V. E. was the visit of Ilya
Prigogine (1917–2003) to Leipzig at the beginning of September 1991. In 1977,
Prigogine received the Nobel Prize in chemistry for his work on non-equilibrium
thermodynamics. On September 6, 1991, V. E. had already attended a lecture of
Prigogine at Leipzig University. Impressed by this lecture, he convinced me to
attend a second lecture of Prigogine on September 7, 1991 that took place in the
course of the discussion series at the Wilhelm-Ostwald memorial in Großbothen,
which lies approximately 30 km south-east of Leipzig. Wilhelm Ostwald, who
received the Nobel Prize in chemistry in 1909 after retiring from Leipzig University
as an independent researcher, worked there until his death. The title of Prigogine’s
lecture in Großbothen was “The time paradox and its resolution”. This topic
determined Prigogine’s research significantly. In Kharkov, V. E. had already studied
several of Prigogine’s works thoroughly and, in particular, he had analyzed the role
of the arrow of time in chaos theory. Therein lied one of the main emphases of
Prigogine’s lecture in Großbothen. Finally, it should be mentioned that, in the mid-
1990s, V. E. gave a talk at the Institute for Physics and Chemistry in Brussels, which
was headed by Prigogine, and this way he was able to get in personal contact with
Prigogine.

From September 16–20, 1991, another INTSEM on Schur Analysis took place
in Leipzig. Among others, L. A. Sakhnovich, V. Pták, M. Dritschel, A. Dijksma,
H. S. V. de Snoo, S. A. M. Marcantognini, H. Waadeland, D. Alpay, H.-J. Runckel
participated. In the second half of 1991, V. E. worked on profound problems of the
theory of pseudocontinuable meromorphic matrix functions in special consideration
of the phenomenon of Arov-singularity.

Already in his native language Russian V. E. is fond of wordplays. During his
year long stay in Leipzig he made great efforts to learn German. This efforts went to
such a level of mastery, that he was quickly able to carry over his love for wordplays
into German. Whilst extended walks through Leipzig’s parks he not only acquired
a good sense of orientation in the city, but furthermore started conversations with
strangers, which helped him to improve even further. This enabled V. E. to cultivate
his wit and led to a myriad of anecdotes. Let me share some of them.

For instance, one day we worked at my place, when my younger son approached
me with a question. Overhearing our conversation, V. E. commented: “Remarkable
boy, this young Niels, only 4 years of age and already so versed in German.”

Even years later, V. E. was still capable of his typical jests. One of V. E.’s favorite
jokes involved an imaginary mathematician Hermann Amandus Lunke. Note the
first names are taken from the famous German mathematician Hermann Amandus
Schwarz (1843–1921). He used to register himself and Mr. Lunke at conferences
and was happy to see when a certain H. A. Lunke appeared in the list of participants.
In the English-speaking world, this imaginary mathematician would correspond
for example to Thomas Rickster or T. Rickster. This proves yet another time his
extraordinary level of understanding for the subtleties of the German language.
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Another joke reads as follows: In the fall of 1996, we attended a conference on
complex function theory in Trondheim. On arrival at the hotel, we were asked to
complete a form and had to state the reason for our stay. V. E. quickly realized, that
likely nobody will ever have a look on the forms and took the bet that his statement
will not cause any trouble. He had written: “um eine Bank auszurauben”, which
is German for “to rob a bank”. Completely relaxed, he told me: “It is in German,
nobody will notice.” Of course, nobody read it and we could also leave Norway
again.

Shortly before the end of V. E.’s year-long stay in Leipzig, Bernd and I managed
to fulfill a particular scientific wish of his. In fact, we succeeded in inviting Herbert
Stahl to Leipzig for the colloquium lecture on January 8, 1992. In 1974, Herbert
Stahl had done his doctorate on Padé approximations at the TU Berlin with Christian
Pommerenke. Thereafter, he wrote highly regarded papers at the intersection of
complex analysis, potential theory, and approximation theory. Soon after their
publication, V. E. had already realized the importance of Herbert Stahl’s work and
was hence eager to get to know him personally. The colloquium lecture in Leipzig
and the get-together thereafter with our research group on Schur analysis in Leipzig
played an essential role in the realization of this plan. It quickly became obvious
that the chemistry between V. E. and Herbert Stahl was right. This close connection
with Herbert Stahl is particularly substantially demonstrated by V. E.’s reaction to
Herbert Stahl’s last great mathematical thunderbolt. Herbert Stahl died on April
22nd, 2013. Shortly before his death, he had received confirmation from the journal
Acta Mathematica that his work [49] about the proof of the BMV conjecture would
be published. However, he was not able to lay eyes upon the published version.
Inspired by a problem in quantum physics, the BMV conjecture was stated in 1975
by D. Bessis, P. Moussa, and M. Villani in their work [9] and withstood all attempts
to prove it until Stahl’s breakthrough. Initially, the BMV conjecture could solely be
proved for a few special cases. The proof by Herbert Stahl is based on very profound
considerations of Riemann surfaces of algebraic functions. In various of his more
recent examinations (see [34–38]), V. E. addressed different aspects of the nature of
the BMV conjecture. For example, he once again investigated various special cases,
which reveal new aspects of the underlying phenomenon. In this regard, I refer, in
particular, to the work [37] in which V. E. pointed out a connection of the Laplace
transform and the trace function of a matrix, which had not been observed deeply in
the mathematical literature before. Regarding further contributions to the proof of
the BMV conjecture by Herbert Stahl, I refer to Eremenko [20] and Clivaz [13].

4 Viktor Emmanuilovich’s Views on Mathematics

In 1991 I had the chance to spent a lot of time with V. E. when we shared an
office at the Institute of Mathematics. We spent many days discussing mostly
mathematical content until the early evening. He had arrived in Leipzig with seven
suitcases, which carried predominantly books. These books again represented only
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a tiny fraction of his enormous private library. The suitcase selection conveyed an
objective idea of what was dearest to him. As a first approximation one could come
to the conclusion that the area of spectral function theory—a mathematical field at
the intersection of complex function theory and functional analysis—was of special
importance. The function classes named after Hardy, Nevanlinna, Smirnov and
others were of special interest to him. Thereby he was interested in the unit circle as
well as in the half-planes. V. E. was also an expert on the following monographs by
[17, 22, 24, 27, 40, 46, 47].

A special status had the just published masterpiece on The Logarithmic Integral I
(see [41]) by Paul Koosis, who personally send V. E. a copy of this book (later he
received also the second part [42] once it got published). Koosis’ books treated
in particular the interplay between harmonic analysis and potential theory, which
originated from the work of Arne Beurling (see esp. Beurling/Malliavin [12]). V. E.
is a profound adept of Beurling’s work. He praised the extraordinary depth of
Beurling’s thoughts and as well as the fact that the library of our research group on
Schur analysis contained the two volumes of the Collected Works of Arne Beurling
[10, 11].

During our conversations I quickly realized his exceptional knowledge of the
classical texts on the origin of Schur analysis and his interest in their matricial
generalizations. This foundation was the essential motivation for our scientific
collaboration over the following decades. In particular he is a passionate admirer and
excellent connoisseur of Issai Schur’s work (see the survey article Dym/Katsnelson
[19]). Another joint research topic is the theory of outer matrix functions. This
function class is of central importance in prediction theory of stationary sequences
and thus moved quickly into the focus of attention of Bernd Fritzsche and me.
Viktor Emmanuilovich was led to this function class while studying certain extremal
problems in the context of factorization problems, which also led him to the work of
Norbert Wiener and Masani (see [43, 44, 50, 51]) and Helson/Lowdenslager [25, 26].

Another of V. E.’s favorite topics are de Branges-Hilbert spaces of entire
functions (see de Branges [15]). For V. P. Potapov this theory was “one of the
main achievements in mathematical analysis of the 20th century”, which is why
he strived for a clearer exposition of this theory compared to the presentation in
de Branges’ monograph [15]. A result of this effort is the paper by L. B. Golinskii
and I. V. Mikhailova [23], initially published in Russian as preprint No. 28-80
of the Kharkov Institute for Low Temperature Physics and Engineering, 1980.
Throughout the genesis of this preprint, V. E. was in close contact to the project’s
mentor V. P. Potapov and the authors L. B. Golinskii and I. V. Mikhailova. Later
V. E. translated this preprint into English and catered its publication in [18] in
order to popularize V. P.’s view that this topic belongs by its nature to J -theory.
Apparently, the essential theorems of de Branges’ theory are statements about
analytic 2×2 matrix functions, which often allow for generalizations to q×q matrix
functions. Regrettably, on December 21, 1980 this line of work was put to an abrupt
end with the untimely death of V. P. Potapov.

Viktor Emmanuilovich’s interest in the theory of de Branges-Hilbert spaces of
entire functions remained vivid, especially after Louis de Branges’ announced a
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Fig. 5 V. E. with Louis de Branges in fall 2005

proof of the famous Riemann hypothesis—which is about nontrivial roots of the
Riemann zeta function—-with the help of this theory. In the fall of 2005, V. E.
followed an invitation of A. E. Eremenko and spent several months at Purdue
University in Lafayette (Indiana), where Louis de Branges worked. He interacted
closely with de Branges, to the extent that he was his only listener in a series of
lectures on Hilbert spaces of entire functions (Fig. 5).

He mentioned later the very positive impression de Branges’ seminars left on him.
Replying to my specific enquiry, he revealed that he didn’t believe, that de Branges’
ansatz is capable to generate a proof of the Riemann hypothesis. His prophecy is
correct to this day.

At this point I want to emphasize, that V. E. due to his many years of attendance
of B. Ya. Levin’s legendary Thursday seminars in Kharkov, acquired a superb
knowledge about many attempts to prove the Riemann hypothesis. In particular, he
is an expert on the classical studies by J. L. W. V. Jensen, G. Pólya, I. Schur and of
more recent work by T. Craven, G. Csordas, T. S. Norfolk, R. S. Varga and others.
For comments on the work of G. Pólya and I. Schur we refer to [19, Section 8].

An important aspect V. E. taught us while referring to V. P. Potapov is that
often the nature of a scalar holomorphic function is better understood if it can be
determined whether it is possible to embed it as an element of a holomorphic matrix
function of a distinguished class. For instance, D. Z. Arov was led to such a situation
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of the problem in [3], when he studied the problem of Darlington realization. This
problem is equivalent to the problem of embedding a function as an element of an
inner matrix function. Hence, the original function needs to be pseudocontinuable,
which is even not only necessary but also sufficient. In the proof of this statement
the maximum principle of V. I. Smirnov is instrumental. V. E. as well as D. Z. often
reminded me about its relevance.

If I am asked to talk about V. E.’s views on mathematics, I feel urged to mention
a particular aspect he repeatedly pointed out in numerous personal conversations—
his extraordinary fascination for the number π and its mysticism. As a profound
expert of the history of mathematics and the work of its leading figures, he realized
the tremendous influence this number had in the works of many geniuses like Euler,
Gauß and Ramanujan; and how this generated a feedback effect on the direction of
mathematics. Therefore, V. E. likes to think of the works of mathematicians in terms
of the relation of their oeuvre and the number π .

I felt particularly honored by a very special vote of confidence, when V. E.
entrusted me with exceptionally valuable literature for safekeeping, which he
considered of eminent significance. These are a copy of V. P. Potapov’s habilitation
in which V. P. himself added the formulae by hand, one copy of his own PhD thesis
which was supervised by B. Ya. Levin and which he defended in 1967, and finally
the Russian edition of the collected works in four volumes of S. N. Bernstein (1880–
1968).

At the end of this section I want to add some remarks about V. E.’s affection
for books of all kind. As the owner of a private library of gigantic size, he found
in me a congenial collocutor. His gift of Hermann Hesse’s “Das Glasperlenspiel”
(“The Glas Bead Game”) marked my 38th birthday on July 9, 1991 as a very special
occasion. This novel played an important role in the last years of V. P. Potapov’s life.
Especially the poem “Die Stufen” (“The Steps”) contains many messages which not
only moved Vladimir Petrovich but also V. E. Furthermore, V. E. always supported
my endeavor to acquaint my sons Mark and Niels with literature. On the occasion of
one of his frequent visits to our place, he gave them the German edition of Winnie-
the-Pooh by A. A. Milne as a present with the Russian epigraph “To Mark and
Niels from a small furry teddy bear”. The deeper meaning behind this inscription
was that V. E. carried “Pu” as a nickname himself during his youth. Among others
B. Ya. Levin called him “Pu”. Another remarkable book gift has been the famous
Latin-German glossary “Stowasser”. His message was to reiterate the importance of
mastering foreign languages, which he not only led by example but underpinned it
with a funny story from the animal kingdom pasted into the front binding.

5 My First Visit to Israel in March 1992

Upon invitation of Daniel Alpay, from March 17 to 24, 1992, I visited Israel for the
first time. This invitation had already been expressed at the time of V. E.’s visit
to Leipzig and had initially been referring to the Ben Gurion University of the
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Negev in Beer Sheva. However, at the actual time of the travel, V. E. had already
been nominated as professor for Theoretical Mathematics at the Weizmann Institute
in Rehovot Fig. 6. This is why I spent about half of this week-long stay in Israel
in Beer Sheva and the other half in Rehovot Fig. 7, where I was lodged in the
accommodation of V. E. This trip should become unforgettable for me. A main
reason therefore were all the personal conversations with renowned mathematicians
like H. Dym, V. I. Matsaev, and N. S. Landkof. One afternoon, which V. E. and
I spent in M. S. Livsic’s office at the University of Beer Sheva, however, left the
most long-lasting impression Fig. 8. That afternoon, Mikhail Samuilovich talked a
lot about his student years in Odessa and his many years of friendship and scientific
collaboration with V. P. Potapov. V. E. mentioned that the work of V. P. Potapov
was met with great interest from Leipzig University and that, as a result, the idea
of arranging an international conference on Schur analysis in Leipzig in 1994 on
the occasion of the 80th birthday of Vladimir Petrovich had emerged. It was an

Fig. 6 V. E. at the campus of the Weizmann Institute in Summer 1992
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Fig. 7 At the campus of the Weizmann Institute, from left to right: D. Alpay, V. E., B. Kirstein,
H.-J. Runckel, H. Dym

Fig. 8 From left to right: V. E., N. S. Landkof, B. Kirstein, M. S. Livsic
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unforgettable moment when M. S. Livsic supported this thought and spontaneously
declared his willingness to participate in this event. Thereby, the decisive impulse for
the realization of this conference was given. Together with V. E., Bernd Fritzsche
and I began to work out the scientific conception in detail. In preparation of this
conference, V. E. visited Leipzig several times.

6 Mathematician from Israel in Leipzig – Prof. Viktor
Katsnelson: Expanding Joint Work

This section contains the English translation of an article in “Journal Universität
Leipzig, May 1994, 3/94”. This article was based on an interview that the editor
Bärbel Adams conducted in Leipzig in March 1994 with V. E. and me (Fig. 9).

In February/March, Jewish mathematician Prof. Dr. Viktor E. Katsnelson stayed in Leipzig
once again. Native of Kharkov, he has lived in Israel for two years and has had the
fortune to be employed at the renowned Weizmann Institute in Rehovot on a permanent
basis. However, he continues to maintain close scientific contact to his Ukrainian home
and Leipzig University at which he has already worked as a guest professor several times,
including in fall 1989, for the entire year of 1991, and during the summer semester of 1993.

Thus, Prof. Katsnelson has become a witness of the profound changes of the past five
years. He sees the increased opportunities for scientific work and the exchange between
scientists, but at the same time he notices the dangers for science occurring from a mone-
tarily oriented society. “Pure science” will quickly lose reputation; its instrumentalization
for career advancement will become the sole purpose for a merely shallow activity in it.
In the old states of Germany he heard many colleagues complain about this. Not only
does he plead for a strict scientificity in research and studies, but at the same time for
a literally universal education at universities. A too narrow specialization will be just as

Fig. 9 V. E. with B. Kirstein in March 1994



40 B. Kirstein

dangerous as the commercialization of science. However, he has not yet noticed that the
problems of commercial science play a role in Leipzig. The young people deciding to study
mathematics or wanting to work in this field scientifically are highly motivated, so that
he has great interest in intensifying and expanding the working relationship. Currently,
two young scientists of the mathematical institute are using a two-month research stay
at the Weizmann Institute in Rehovot for a self-optimization in Schur analysis, Viktor
Katsnelson’s field of work. Schur analysis, named after the Jewish mathematician Issai
Schur who, native to Belarus, spent most of his life in Germany before having to emigrate
in 1939, requires a universal mathematical knowledge. Being located at the interface
between different mathematical disciplines at once, Schur analysis helps to demonstrate
the interrelationship of the subfields as well as the oneness of mathematics as a whole.
Nowadays, Prof. Katsnelson is considered one of the protagonists in this area. In 1992, he
received the Barecha award for his merits concerning Schur analysis that is awarded every
two to three years to outstanding Jewish scientists, who have immigrated to Israel – an
honor that the “thoroughbred scientists” as his Leipzig partner Prof. Dr. Bernd Kirstein
calls him can be particularly proud of. Back in the days, Viktor Katsnelson emigrated
via Germany to Israel with seven suitcases full of books. The joint work of the two
mathematicians reaches back to the year 1988 when the then junior scientists from Leipzig
Dr. Bernd Kirstein and Dr. Bernd Fritzsche (current dean of the Faculty of Mathematics
and Computer Science) stayed in Kharkov for an exchange regarding the topics of Schur
analysis. The work group emerging thereof has continued to exist until today and includes
others as well. The exchange of scientists is almost a part of the routine: with the aid of
Minerva scholarships and the DAAD a few students were able to go to Israel; conversely,
the Science and Technology Centre (STC) of Leipzig University funded guest stays here.
Joint research projects in Schur analysis and related problems are already an integral part of
the scientific program of the STC. There is an international conference planned for August
that is dedicated to the 80th birthday of the Odessa mathematician Vladimir Petrovich
Potapov, one of the fathers of Schur analysis. Around 40 guests from all over the world
are expected, among which are many students and contemporaries of Potapov, inter alia,
Michail Samuilovich Livsic, who is considered the last living legend among mathematicians.
Viktor Katsnelson is one of the initiators of the event that cannot take place in the Ukraine
for financial reasons.

7 The Years 1994 and 1995: Three Remarkable Conferences
in Leipzig Under the Influence of V. E. Katsnelson

The year 1994 held two highlights for Leipzig’s Schur analysis group, that were
significantly influenced by V. E. First, the conference “Recent Developments in
Schur Analysis – A Seminar in Honor of the 80th Birthday of V. P. Potapov”
from August 22 to 26, 1994 needs to be mentioned. Numerous mathematicians
connected with V. P. Potapov attended the conference. First and foremost, I mention
M. S. Livsic, who, together with V. P. Potapov and M. S. Brodskii, had been
working on fundamental problems in the interface of operator theory and complex
analysis after World War II. Further participants of the conference in Leipzig,
that were considerably inspired by their personal contact to V. P. Potapov, were
L. A. Sakhnovich, D. Z. Arov, A. A. Nudelman, I. V. Kovalishina, V. E. Katsnelson,
and V. K. Dubovoy. In the context of a special memorial day for V. P. Potapov, that
took place at the Wilhelm Ostwald memorial site in Großbothen (see Fig. 10), the
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Fig. 10 August 24, 1994, Potapov memorial session in Großbothen, from left to right: V. E., Gretel
Brauer (youngest granddaughter of Wilhelm Ostwald), M. S. Livsic

mentioned scientists remembered the scientist and person V. P. Potapov by sharing
personal anecdotes. V. E. was the last of these people to talk about V. P. Potapov’s
years in Kharkov and he particularly touched upon the thoughts that had moved
Vladimir Petrovich during the last months of his life. In this context, the novel “The
Glas Bead Game” by Nobel Laureate in literature Hermann Hesse played a special
role. In particular, it was the poem “The Stairs” therein, which left an indelible
impression on V. P. Potapov. At the end of the memorial service in Großbothen,
V. E. recited both the Russian and the English translation of this poem and asked
me afterwards to read the original German version of it. This marked the end of an
unforgettable afternoon in remembrance of V. P. Potapov.

The conference itself reflected the current state of Schur analysis in the mid
1990s. Fundamental contributions are contained in the book “Topics in Interpolation
Theory”, which was published as volume 95 in the OT-series (see [18]).

After the conference V. E. and also D. Z. Arov stayed for some more weeks
in Leipzig. In this context, it is particularly notable that he celebrated his 51st
birthday on September 3, 1994 in Leipzig. We gathered for a small celebration in
the apartment of Bernd Fritzsche and were joined, besides by V. E., also by Damir
Zjamovich Arov and his wife Natalya Grigorevna (Fig. 11).

The second highlight in 1994 at the mathematical institute of Leipzig University
that V. E. played an influential part in was a 2-day workshop in December 1994
on the occasion of the 100th birthday of Norbert Wiener. The focus of this
event lay on the interdisciplinary and universal nature of the work of Norbert
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Fig. 11 September 3, 1994: V. E. with D. Z. Arov

Wiener, which reached far beyond mathematics and included, among other things,
cybernetics, control theory, physiology, and philosophy. The talk of V. E. touched
upon more recent developments in harmonic analysis, that were originally initiated
by Norbert Wiener. The workshop turned out to be particularly attractive thanks
to the attendance of P. R. Masani, one of the main students of Norbert Wiener,
who shared many personal impressions of the views and visions of his teacher.
Incidentally, that was the third and last visit of P. R. Masani to Leipzig. After a
relaxed get-together in a restaurant with P. R. Masani on the last evening after
the conference and after then saying good-bye to him, V. E. commented that this
might have been our last encounter with P. R. Masani. This was in fact the case, as
P. R. Masani passed away on October 18, 1999 and none of us had met him again.

In the early stages of the development of Schur analysis, Rolf Nevanlinna (1895–
1980) made fundamental contributions by successfully applying Schur’s idea to an
interpolation problem that is now called the Nevanlinna-Pick problem as well as to
the Hamburger moment problem. In honor of the 100th birthday of Rolf Nevanlinna,
an international seminar on Schur analysis took place at Leipzig University from
November 6 to 10, 1995. This event was jointly co-organized by Leipzig University
and the Weizmann Institute. On part of the Israeli side, V. E., D. Alpay, and
Y. Yomdin were the ones in charge. Due to the assassination of Israel’s prime
minister Yitzhak Rabin on November 4, 1995, Yosef Yomdin was not able to come
to Leipzig himself. Striking achievements of his research group were presented
by Dmitri Novikov and Nina Roytvarf. V. E. himself gave a two-part lecture on
continuous analogues of the theorems of Hamburger and Nevanlinna in which he
explained the main contents of his cycle of substantial work on the topic (Fig. 12).
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Fig. 12 V. E. lecturing at the Nevanlinna seminar

8 The 60th Birthday of Viktor Emmanuilovich

In honor of V. E.’s 60th birthday on September 3, 2003, we organized a workshop
at Leipzig University which was among others attended by V. K. Dubovoy,
W. Schempp, B. Silbermann, G. Heinig, A. Lasarow. Of course, a scientific
contribution of the jubilarian was a must as well. He gave a two-part lecture about
rational solutions of Schlesinger’s equation and their tau functions. At the end of
the workshop on September 10, 2003, V. K. Dubovoy gave a very appropriate
description of V. E. in form of an entry in the guest book of the Mathematical
Institute of Leipzig University:

First and foremost, I would like to cordially thank Professor Bernd Kirstein and Professor
Bernd Fritzsche for the invitation to Leipzig and the opportunity to speak at the conference
in honor of the 60th birthday of Viktor Emmanuilovich Katsnelson.

I first encountered Viktor Emmanuilovich in spring 1963. Forty years have already
passed since then. The predominant part of these years, I stood in close contact with Viktor
Emmanuilovich. How many different topics were elucidated throughout!!! Regardless of a
certain severity in his judgments, Viktor Emmanuilovich is very democratic company and
also willing to expose himself to sharp criticism, which he did sufficiently often compared
to others, too. To me, the contact with the mathematician Viktor Emmanuilovich was
extremely valuable. I learnt a lot from him; talking to him enriched me extraordinarily
and allowed me to give up a whole series of illusions. I know Viktor Emmanuilovich as a
person, who feels mathematics deeply and subtly and who strives to convey this feeling to
others. He has written scientific papers that identify him as a great master.

You can compare Viktor Emmanuilovich to a singular point in our lives from which a
mighty stream of energies emerges. It has not always been easy (just how it is not always
easy for him), but without him the world would be poorer.

I express my wishes for Vitja through a passage from a poem by Boris Pasternak, which
he loves a lot:
“. . . but be alive – this only matters – alive and burning to the end.”
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9 Schur Analysis Workshop at Leipzig University in October
2006 in Honor of the 60th Birthday of V. K. Dubovoy

On July 19, 2006 it was V. K. Dubovoy’s 60th birthday. In recognition of his
merits in developing Schur analysis and his long standing collaboration with the
Leipzig group, we decided to organize a workshop on Schur analysis in Leipzig
shortly before the winter semester started (see Fig. 13). This workshop took place
from October 4 to 6, 2006. V. E., D. Alpay, A. Böttcher, A. Dijksma, A. Lasarow,
A. L. Sakhnovich, W. Schempp, E. Wegert and many others followed our invitation
(see Figs. 14 and 15).

In many respects, V. E.’s participation has been a highlight. First, his mathe-
matical contribution, of course. But even apart from that, V. E. knows V. K. very
well and treasures his friendship since the mid 1960s. He enriched the whole event
beyond its mere scientific programme to an extent we as organizers couldn’t foresee.
V. E. shared many anecdotes about his friendship and shared experiences with V. K.
Thus many participants got a first-hand impression of V. K. the person behind his

Fig. 13 V. K. Dubovoy lecturing on October 6, 2006
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Fig. 14 V. K. Dubovoy with D. Alpay in the office of B. Kirstein

Fig. 15 From left to right: A. Dijksma, L. A. Ostromukhov, V. E., D. Alpay

mathematics. During their many previous research visits in Leipzig V. E. as well
as V. K. developed an affection for the valley of the river Mulde, a lovely scenery
located in the southeast of Leipzig. For this reason we organized an excursion with
the participants of the workshop into this area (see Fig. 16). The social highlight
was a guided tour through Colditz castle, which was used as a detention center for
prisoners of war of the rank of officers of the allied forces during WWII. There were
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Fig. 16 V. E. with D. Alpay during lunch in Lastau guesthouse

Fig. 17 V. E. with V. K. Dubovoy reenacting an attempted escape during the excursion to Colditz
castle

many attempts to escape from this detention center. A TV series that run for many
years in Great Britain may have contributed to the castle’s particular fame there.
With this in mind, please enjoy V. E. and V. K.’s reenacting of an attempted escape
in Fig. 17. This excursion with a savory lunch break in the Lastau guesthouse left
the participants and the organizers with a pleasant impression of these memorable
workshop.
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10 The Workshop “25 Years of Schur Analysis in Leipzig”
in Fall 2009

The year 2009 has a special place in the history of Leipzig University. On December
2, 2009, the 600th anniversary of its foundation was celebrated. Tied in to this
anniversary, numerous scientific conferences were held at Leipzig University in
2009. One of these events was significantly shaped by V. E. More precisely, it
was the workshop “25 years of Schur analysis in Leipzig”, which took place
from September 29 to October 1, 2009 in Leipzig. In the opening speech for
this workshop, I outlined major milestones of the development of Schur analysis
in Leipzig between 1984 and 2009 (see also [39]). The close collaboration with
representatives of the schools of V. P. Potapov and M. G. Krein played a special
role in that process. Besides V. E., one should in particular mention D. Z. Arov,
L. A. Sakhnovich, and V. K. Dubovoy, whom we owe important impulses. It was
particularly delightful that as renowned representatives of the Ukrainian school
A. L. Sakhnovich and A. Ya. Kheifets also participated in the conference, who both
belonged to the following generation. The main contributions of the workshop are
contained in Complex Analysis and Operator Theory 5 (2011), Issue 2. The paper by
V. E. treated problems concerning the stability of certain classes of entire functions,
which are of interest in connection with the classical Stieltjes moment problem (see
[33]).

Figures 18, 19, 20, 21, 22, 23, and 24 convey some impressions of the Workshop
“25 years of Schur analysis in Leipzig”:

Fig. 18 V. E. giving comments to the lecture of M. Yu. Tyaglov
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Fig. 19 October 2009 in Leipzig, from left to right: A. Ya. Kheifets, V. E., V. K. Dubovoy

Fig. 20 S. V. Khrushchev in discussion with V. E.

11 Viktor Emmanuilovich’s Last Visit to Leipzig in July 2010

In July 2010, the 21st IWOTA took place in Berlin. The list of participants
included V. E., who had been planning this trip to Germany for a while. Due to
the geographical proximity of Berlin and Leipzig, it was not surprising that he
spent some days in Leipzig before the IWOTA. In particular, he was present at
the celebration of my 57th birthday at my home on July 9th, 2010. So far, this
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Fig. 21 V. E. with B. Fritzsche

has been my last personal encounter with V. E. On July 11th, 2010, he took the
train from Leipzig to Berlin to attend the IWOTA. Apart from me, the rest of the
Schur analysis group of Leipzig was there as well some of the days for selected
lectures of the IWOTA. V. E. met numerous colleagues from the former Soviet
Union again. Being pretty familiar with the city of Berlin since 1991, he served
as a tour guide for two of his former students from Kharkov, O. M. Katkova
and A. M. Vishnyakova. On that occasion, he also got to know Tanja Eisner (née
Lobova), who wrote her diploma thesis at the University of Kharkov in 2002 under
supervision of A. M. Vishnyakova before moving to Germany together with her
family after completing her studies. Tanja then continued her mathematical career in
Tübingen under the supervision of Rainer Nagel and eventually acquired her Ph. D.
in 2007 with the work “Stability of operators and C0-semigroups”. Since September
1, 2013, Tanja Eisner has been holding the chair for functional analysis at Leipzig
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Fig. 22 D. Z. Arov with V. K. Dubovoy

Fig. 23 From left to right: A. L. Sakhnovich, D. Alpay, B. Kirstein, V. E., B. Fritzsche

University. This marks an extraordinary milestone in the history of the connection
of the mathematical faculties of the two universities in Kharkov and Leipzig. For the
first time a female Ukrainian mathematician, who had graduated in Kharkov, was
appointed to a chair at Leipzig University. V. E. was particularly delighted by this
circumstance (Fig. 25).

Much to our regret, V. E. was not able to accept various invitations for research
visits to Leipzig due to health reasons. In honor of V. E.’s 70th birthday on
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Fig. 24 From left to right: V. E., V. K. Dubovoy, A. L. Sakhnovich, L. A. Ostromukhov

Fig. 25 IWOTA 2010 in Berlin, from left to right: O. M. Katkova, V. E., A. M. Vishnyakova,
T. Eisner

September 3rd, 2013, his former Ph. D. student P. M. Yuditskii organized a mini-
workshop on complex analysis and spectral theory at the Johannes Kepler University
Linz from May 13 to 14, 2014. V. E. intended to attend this event and to give
a lecture on the topic of his work [33]. Unfortunately, he had to cancel his
participation due to medical reasons.
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12 The Influence of V. E. Katsnelson and D. Z. Arov
on the Direction of Our Research Group

While working on generalized matricial Nehari problems (see [21]), Bernd and I
made first contact with the works of V. E. Katsnelson. The problem is stated as
follows:

GENERALIZED MATRICIAL NEHARI PROBLEM: Let p, q ∈ N. Further, let F11 and F22
be a non-negative Hermitian p × p and a q × q measure, respectively, on the Borelian
σ -Algebra BT on T := {z ∈ C : |z| = 1} and let (βk)∞k=0 be a sequence of complex
p × q matrices. Describe the set F(F11, F22, (βk)

∞
k=0) of all σ -additive mappings F12 from

BT into the set of all complex p × q matrices fulfilling the conditions

∫
T

z−kF12(dz) = βk, k = 0, 1, 2, . . .

and for which

(
F11 F12

F ∗12 F22

)

is a non-negative Hermitian (p+q)×(p+q) measure on BT. In particular, state necessary
and sufficient conditions such that the set F(F11, F22, (βk)

∞
k=0) is non-empty.

The problem stated above leads one to studying kernels on N0 ×N0 of so-called
mixed Toeplitz-Hankel type. To see this, for all k ∈ Z, set

αk :=
∫
T

z−kF11(dz) and δk :=
∫
T

z−kF22(dz)

and, for all (m, n) ∈ N0 × N0, define

K(m, n) :=
(
αm−n βm+n
β∗m+n δn−m

)
.

The kernelK being non-negative definite turns out to be necessary and sufficient for
the set F(F11, F22, (βk)

∞
k=0) to be non-empty.

The just defined kernelK is also important because of the following observation.

GENERALIZED HERGLOTZ-BOCHNER THEOREM: Let p, q ∈ N and let (αk)∞k=0, (βk)∞k=0,
and (δk)∞k=0 be sequences belonging to C

p×p, Cp×q , and C
q×q , respectively. Then there

exists a non-negative Hermitian (p + q)× (p + q) Borelian measure on T such that for all
m,n ∈ {0, 1, 2, . . . } the equation

K(m, n) =
∫
T

[
diag(z−mIp, zmIq)

]
F(dz)

[
diag(z−nIp, znIq )

]∗

is satisfied if and only if K is non-negative definite.

In opposition to the classical matricial Herglotz-Bochner theorem the non-
negative Hermitian (p + q) × (p + q) measure is not uniquely determined by the
above integral formulas.
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Fig. 26 From the left: V. E., C. Sadosky, V. Vinnikov, B. Fritzsche

The above introduced kernelK appears for the first time in works of R. Arocena,
M. Cotlar and C. Sadosky [1, 2, 14], where it is referred to as the generalized Toeplitz
kernel. This kernel was studied and renamed by V. E. in [29] who called it kernel
of mixed Toeplitz-Hankel type which brings the nature of this object better to the
point. The generalized Herglotz-Bochner theorem appears for the first time in [14].
In autumn 1990, I spent a month at the Mittag-Leffler Institute in Djursholm and
encountered Mischa Cotlar. In our conversations I realized immediately, how highly
he spoke of V. E. When I later told V. E., he asserted me how highly he thought
of him. I am not aware of any personal encounters of V. E. with Mischa Cotlar
(01.08.1913–16.01.2007). In any case, I became an eye-witness of many encounters
of V. E. and Cora Sadosky (23.05.1940–03.10.2010), who in the summer of 1993
visited Leipzig University which is where she also met V. E. A second place of many
encounters of V. E. with Cora was the IWOTA 1993 in Vienna (Fig. 26).

Cora Sadosky and V. E.’s relation has always been a very warm one, characterized
by their great respect for each other’s great mathematical achievements.

By using the matricial version of the F. Riesz-Herglotz theorem, V. E. observed
in [34] that the above formulated generalized Nehari problem is closely related to
the following problem of block completion for holomorphic matrix functions:

PROBLEM OF THE TROIKA: Let p, q ∈ N and let α : D → C
p×p , β : D → C

p×q , and
δ : D→ C

q×q matrix functions, which are holomorphic in D := {z ∈ C : |z| < 1}. Describe
the set NC(α, β, δ) of all q × p matrix functions γ , which are holomorphic in D and for
which

(
α β

γ δ

)

is a (p+ q)× (p+ q) matrix function that belongs to the Carathéodory class. In particular,
characterize the case that the set NC(α, β, δ) is non-empty.
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In [21] we obtained a description of the solution set of the “Problem of the Troika”
in terms of their Taylor coefficients. Our approach is based on a combination of
Schur analysis methods with an application of the theory of matrix balls developed
by Shmulyan in [48].

In this case, drawing on the theory of matrix balls developed by Shmulyan [48],
a description of the set NC(α, β, δ) was given by means of the sequences of their
Taylor coefficients.

In continuation of the subject matter of [21], we then intensely studied the works
of V. E. on integral representations of non-negative definite kernels in the light of
Potapov’s method of fundamental matrix inequalities.

During the study visit in Kharkov in spring 1988, Bernd and I received access
to numerous deposited manuscripts of V. E., which were in general very difficult to
access for foreigners. Among others, this included the monograph [28], which fea-
tures a comprehensible introduction to the techniques developed by V. E. regarding
the usage of methods of J -theory in continuous interpolation problems in analysis.
In particular, problems fall within this class of problems which are connected with
integral representations for various classes of holomorphic matrix functions. In this
context, the moment problems named after Hamburger and Stieltjes, respectively,
are particularly remarkable special cases. At that time, Bernd and I had not yet
sensed that the matricial versions of these moment problems would dominate our
joint research with Conrad Mädler from 2005 until the immediate present. In the
second half of the 1980s, we were mainly interested in matricial versions of the
interpolation problems named after Schur and Carathéodory, respectively, and the
studies of the Weyl matrix balls associated with those. Against this background, the
corresponding explanations in [28] concerning the theory of Weyl balls were hence
particularly useful to us.

In the year 1991, which V. E. spent entirely in Leipzig apart from one 2-
week work visit of A. Dijksma and H. S. V. de Snoo in Groningen, Bernd and I
experienced the best opportunity to be a part of his mathematical thought processes.
One problem area that V. E. dealt with distinctively at the time was the factorization
theory of J -inner functions. Regarding this subject matter, in the second half of
the 1980s essential new findings were achieved by D. Z. Arov and proved to
be an enrichment of the factorization theory of V. P. Potapov [45]. Following
his studies of the matricial version of the classical Nehari interpolation problem,
D. Z. Arov encountered fundamental classes of J -inner functions, which had
not been observed before, namely, the so-called Arov-regular as well as Arov-
singular J -inner functions, respectively. D. Z. Arov showed that each J -inner
function can essentially be represented as a product of an Arov-regular and an Arov-
singular J -inner function. (The terminologies “Arov-regular” and “Arov-singular”
were introduced upon recommendation of V. E. Earlier D. Z. Arov simply called
these types of functions regular and singular.) More precisely, one actually has
to distinguish between left-hand Arov-regular and right-hand Arov-regular J -inner
functions. An example for a right-hand (resp. left-hand) Arov-regularJ -inner matrix
function are left (resp. right) Blaschke-Potapov products. In [28], V. E. found
remarkable connections between left and right Blaschke-Potapov products. E. g.
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he showed the existence of a left Blaschke-Potapov product B(l) that is no right
Blaschke-Potapov product, i. e. B(l) has a non-constant Arov-singular right-hand
divisor. Thus, he obtained a factorization B(l) = E · B(r) with a non-constant Arov-
singular J -inner function E and a right Blaschke-Potapov product B(r) (see [30,
Theorem I]). Even more surprising seems the following result: If E is a given Arov-
singular J -inner matrix function, then there always exists a right Blaschke-Potapov
product B(r) such that the function W := E · B(r) is a left Blaschke-Potapov
product (see [30, Theorem II]). Unfortunately, the work [30] does not contain
any proofs, because it was written during a short stay of V. E. at the Weizmann
Institute by invitation of Harry Dym, which was his second trip abroad ever after
his visit of Leipzig in fall 1989. In the year 1992, V. E. wrote an elaborate Russian
manuscript in which he picked up the topic of the work [30] once again and which
provided proofs and numerous illustrating examples. We were able to watch the
arrangement of this manuscript step by step. This way, we got an immediate idea
of his impressive creativity combined with the ability to efficiently apply various
mathematical methods. We will never forget these months of 1990 and are extremely
thankful to V. E. for sharing his mathematical thoughts. At this point, I would like to
point out that, as far as I know, V. E. has unfortunately not yet published the Russian
manuscript mentioned above with its proofs for the work [30].

In his work [32], V. E. took up the subject of the main results in [30] once
again. There, he explained the strategy to justify the proof of Theorem II in [30].
In order to reduce technical difficulties, he focused on the special case of the 2 × 2
signature matrix j1,1 := diag(1,−1) and elucidated an important intermediate step
that had to be done in the proof of [30, Theorem II]. The statement of Theorem II in
Proposition 19 is formulated as follows:

Theorem Let E be an Arov-singular j1,1-inner matrix function. Then there exists
an infinite right Blaschke-Potapov product B(r) with poles in the open unit disc
D := {z ∈ C : |z| < 1} such that the function W := E · B(r) is an infinite left
Blaschke-Potapov product.

We will now outline some of the core concepts of the proof strategy of V. E. The
first consideration is based on the observation that an infinite left Blaschke-Potapov
product is always the resolvent matrix of some infinite Carathéodory problem
with infinitely many solutions. It hence matters to determine the interpolation
data (zk, pk)k∈N on the basis of the given Arov-singular j1,1-inner function E.
Consequently, the problem is to find a description of the set of all functions
f ∈ C(D) satisfying the condition f (zk) = pk for all k ∈ N, where C(D) denotes
the set of all functions with non-negative real part, which are holomorphic in D.
The determination of the data sequence (zk, pk)k∈N can be broken down into two
subtasks. Determining the sequence (pk)k∈N is decidedly easier. To do this, let

E =
(
a b

c d

)
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be the element representation of the matrix function E. Due to the choice of E, the
function

Ppr := (a · 1+ b)(c · 1+ d)−1

belongs to the class C(D). Let T := {z ∈ C : |z| = 1} be the unit circle and let m
denote the normalized Lebesgue measure on the Borelian σ -algebra of T. Since Ppr
belongs to C(D), there then exist a measurable function Ppr : T→ C and a m-zero
set B0 such that the condition

lim
r→1−0

Ppr(rz) = Ppr(z), z ∈ T \ B0

is fulfilled. Setting

wpr := RePpr,

it follows
∫
T

lnwprdm > −∞.

Considering a Blaschke sequence (zk)k∈N, i. e., a sequence (zk)k∈N of distinct points
in D which fulfill the Blaschke condition

∑
k∈N

(1− |zk|) <∞,

then the Carathéodory problem with interpolation data (zk, Ppr(zk))k∈N has
infinitely many solutions. Now the Blaschke sequence (zk)k∈N needs to be chosen
in such a manner that the desired connection with the function E is reached. This
can be achieved via an appropriately constructed problem of approximating pseudo-
continuable holomorphic functions by rational functions with prescribed poles. The
study of this approximation problem is the actual central topic of [32]. Once the
construction of the sequence (zk)k∈N is done, it follows the consideration of the
sequence of resolvent matrices (Bn)n∈N belonging to the interpolation problem
((zk, Ppr(zk))k≥n)n∈N for the class C(D). It turns out that this sequence (Bn)n∈N
converges and satisfies the condition limn→∞ Bn(z) = E(z) for all z ∈ D. In a
natural way, this consideration of the sequence (Bn)n∈N can be viewed as an inverse
Schur-type algorithm.

It shall be mentioned that Viktor Emmanuilovich submitted the work to the jour-
nal “Zeitschrift für Analysis und ihre Anwendungen” on March 16, 1992. Recalling
that he left Leipzig for Israel on January 22, 1992, this shows that he has already
written the work [32] in pretty much its entirety in Leipzig and that, in fact, he let us
partake in every phase of its creation. This way, we got to convince ourselves first-
handedly of the exceptional creativity, the broad mathematical knowledge, and the
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virtuous mastery of even highly demanding mathematical techniques. The time in
1991, which Bernd and I spent with him in Leipzig, shaped our way of approaching
mathematical problems significantly. It is our most inner need to express our deepest
gratitude to V. E.

Another fortunate circumstance in our mathematical career was working together
with Damir Zjamovich Arov. Our first direct contact to Damir Zjamovich occurred
in early summer of 1989 during the annually organized summer school by Vlastimir
Pták on functional analysis, which took place in Liptovský Ján in the Tatra
Mountains that year. There, I met D. Z. and invited him to an international seminar
on Schur analysis in Leipzig planned for October 1989. I also had first conversations
with D. Z., which have already indicated that there are numerous overlaps regarding
joint research interests. A deepening of this discussion was arranged for D. Z.’s
first visit in Leipzig in October 1989. Due to the decease of Mark Grigorevich
Krein on October 17, 1989, this visit was delayed by 1 week. D. Z. only arrived
in Leipzig 1 day after the end of the seminar on Schur analysis. Following the
seminar, a 3-week work stay in Leipzig was planned for D. Z. This plan could
then be realized. In the first of those 3 weeks in Leipzig, D. Z. had the chance
to talk to P. R. Masani several times. Masani’s results about analytic foundations
of prediction theory of multivariate stationary sequences and related problems had
provided important sources for the works of V. M. Adamyan and D. Z. Arov.
During the International Congress of Mathematicians in Moscow in 1966, both
V. M. Adamyan and D. Z. Arov had already had profound professional conversations
with P. R. Masani. Between the years 1989 and 1997, Bernd and I were fortunate
to work on various problems regarding J -inner functions with D. Z. Arov. This
included, e. g. the analysis of the block structure of J -inner functions as well as the
construction of J -inner functions from given blocks (see [4–8]).

In the joint work [7] with D. Z., we addressed some of the problems raised
by V. E. in [30]. In particular, we obtained an alternative proof of a theorem by
V. E. Katsnelson about the Potapov factorization. Moreover, an inverse problem
for Arov-singular J -inner functions in the case of the special signature matrix
J := diag(1,−1)was solved via crucial usage of [30, Theorem II] (see [7, Theorem
12]).

Looking back, Bernd and I are very thankful that we had the opportunity to
gather plenty of helpful information about the essence of J -inner functions and their
role in Schur analytical contexts during our conversations with V. E. Katsnelson
and D. Z. Arov. It should be mentioned that D. Z. Arov pointed out an essential
difference regarding their respective conceptions of this object to us. While he
himself focused more on Arov-regular J -inner functions, V. E. was particularly
interested in the Arov-singular world.

V. E.’s view of mathematics can be accurately described by him mainly consider-
ing distinctive special cases, which were not overpowered by technical difficulties
and which thus conveyed the nature of the underlying phenomenon more clearly.
His principle has always been:

The best is the worst enemy of the good.
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A Piece of Victor Katsnelson’s
Mathematical Biography

Mikhail Sodin

Abstract We give an overview of several works of Victor Katsnelson published in
1965–1970, and pertaining to the complex and harmonic analysis and the spectral
theory.

1 A Preamble

As a mathematician, Victor Katsnelson was raised within a fine school of function
theory and functional analysis, which was blossoming in Kharkov starting the
second half of 1930s. He studied in the Kharkov State University in 1960–1965.
Among his teachers were Naum Akhiezer, Boris Levin, Vladimir Marchenko. That
time he became acquainted with Vladimir Matsaev whom Victor often mentions as
one of his teachers. In 1965 Katsnelson graduated with the master degree, Boris
Levin supervised his master thesis. Since then and till 1990, he teaches at the
Department of Mathematics and Mechanics of the Kharkov State University. In
1967 he defends the PhD Thesis “Convergence and Summability of Series in Root
Vectors of Some Classes of Non-Selfadjoint Operators” also written under Boris
Levin guidance. Until he left Kharkov in the early 1990s, Katsnelson remained
an active participant of the Kharkov function theory seminar run on Thursdays by
Boris Levin and Iossif Ostrovskii. His talks, remarks and questions were always
interesting and witty.

Already in the 1960s Victor established himself among the colleagues as one
of the finest Kharkov mathematicians of his generation, if not the finest one.
Nevertheless, he was not appointed as a professor and was never allowed to travel
abroad.

Most of Katsnelson’s work pertain to the spectral theory of functions and
operators. I will touch only a handful of his results, mostly published in 1965–1970,
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that is, at the very beginning of his mathematical career. A big portion of his works
written in Kharkov appeared in the local journal “Function Theory, Functional
Analysis and Their Applications” and were never translated in English. Today, this
journal is available at http://dspace.univer.kharkov.ua/handle/123456789/43.

In this occasion, let me mention two wonderful books carefully written by
Katsnelson [18, 19]. They exist only as manuscripts, and curiously, both have “Part I”
in their titles, though, as far as I know, no continuations appeared. In both books
mathematics interlaces with interesting historical comments. Last but not least, let
me also mention an extensive survey of Issai Schur’s works in analysis written
jointly by Dym and Katsnelson [7].

2 A Paley-Wiener-Type Theorem

The paper [14] was, probably, the first published work of Katsnelson. Therein, he
studied the following question raised by Boris Levin. Given a convex compact set
K ⊂ C with the boundary � = ∂K , let L2(�) be the L2-space of function on �
with respect to the Lebesgue length measure. How to characterize entire functions
F represented by the Laplace integral

F(z) = 1

2π i

∫
�

f (w)ewz dw, (2.1)

with f ∈ L2(�)?
In the case when K = � is an interval, the answer is provided by the classical

Paley-Wiener theorem. In this case, it is convenient to assume that � ⊂ iR. Then
we can rewrite (2.1) as follows

F(z) = 1

2π i

∫ ib

ia
f (w)ewz dw = 1

2π

∫ b

a

ϕ(t)eitz dt , ϕ ∈ L2(a, b) ,

and, by the Paley-Wiener theorem, a necessary and sufficient condition for this
representation with some a < b is that F is an entire function of exponential type
(EFET, for short) and F ∈ L2(R).

Now, assume that the convex compactK is not an interval, that is, is a closure of
its interior, and put �K = C \ K . Note that the Laplace transform of F coincides
with the Cauchy integral of f :

∫ ∞
0

F(z)e−λz dz = 1

2π i

∫
�

f (w)

λ−w dw .

The RHS is analytic in �K , vanishes at infinity, and belongs to the Smirnov space
E2(�K), which can be defined, for instance, as the closure in L2(�) of analytic
functions in �K , continuous up to the boundary, and vanishing at infinity. Thus,

http://dspace.univer.kharkov.ua/handle/123456789/43
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Levin’s question can be reformulated as follows: Given a convex compact set K
with non-empty interior, find a complete normed space BK of EFET such that the

Laplace integral L defined in (2.1) gives a bounded bijection E2(�K)
L→ BK . Note

that the representation (2.1) yields that all functions F ∈ BK have the growth bound

|F(reiθ )| � C(�) ‖f ‖L2(�) exp
[
max
w∈K Re(weiθ )r

] = C(�) ‖f ‖L2(�) e
hK(−θ)r ,

where hK(θ) is the supporting function of K .
The first result in that direction is due to Levin himself who considered in [24,

Appendix I, Section 3] the case when K is a convex polygon and noticed that in
this case the answer is a straightforward consequence of the classical version of the
Paley-Wiener theorem. Then, M. K. Liht [26] considered the case when K is a disk
centered at the origin and of radius h. He showed that in this case one can take BK
being a Bargmann-Fock-type space, which consists of entire functions F satisfying

∫ ∞
0

∫ π

−π
|F(reiθ )|2 e−2hr √r dr dθ <∞ .

The starting point of Katsnelson’s work [14] was a remark that a more accurate
version of the Liht argument yields an isometry

∫
�

|f |2 |dw| =
∫ ∞

0

∫ π

−π
|F(reiθ )|2 e−2hr ρ(hr) dr dθ ,

where

ρ(r) = 2r
∫ ∞

0

e−2t r

√
2t + t2 dt .

Then, Katsnelson proves that representation (2.1) yields a uniform bound

sup
|θ |�π

∫ ∞
0
|F(reiθ )|2e−2hK(−θ)r dr � C(�) ‖f ‖2L2(�)

.

The proof is based on the following lemma close in the spirit to known estimates
due to Gabriel and Carlson.

Lemma 2.1 Suppose that K is a convex compact set, � = ∂K , �K = C \ K , and
f ∈ E2(�K). Then, for any supporting line � to �,

∫
�

|f |2 |dw| � C(�)

∫
�

|f |2 |dw| .

The constant on the RHS does not depend on � and f .
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One can modify Levin’s question replacing the space E2(�K) by another space
of functions analytic in �K . If functions in that space do not have boundary values
on �, then one needs to replace the integral over � on the RHS of (2.1) by the
contour integral

1

2π i

∫
γ

f (w)ewz dw,

where γ is a simple closed contour in �K , which contains K in its interior. This
integral is called the Borel transform of f . It acts on the Taylor coefficients as
follows:

f (w) =
∑
n�0

an

wn+1 
→ F(z) =
∑
n�0

an

n! z
n.

One of possible modifications of Levin’s question was considered in [14].
Katsnelson introduces the weight

ρ�(w) = 1

|w − a1(w)| + |w − a2(w)| ,

where aj (w), j = 1, 2, are supporting points for the line supporting to � that passes
throughw ∈ �K (the weight ρ�(w) is not defined whenw belongs to the supporting
line to � that has a common segment with �). The last result proven in [14] is a
curious isometry

∫ ∞
0

∫ π

−π
|F(reiθ )|2 e−2hK(−θ)r dr dθ = 1

2π

∫∫
�K

|f (w)|2ρ�(w) dσ(w) ,

where σ is the Lebesgue area measure.
Works of Liht and Katsnelson had follow-ups. In [30], Lyubarskii extended Liht’s

theorem to convex compact sets K with smooth boundary. The decisive word was
said by Lutsenko and Yulmukhametov. In [29] they proved that the Laplace integral
L defines an isomorphism1 between E2(�K) and a space of EFET such that

∫ ∞
0

∫ π

−π
|F(reiθ )|2 dr d�(θ)

K(reiθ )
,

where

K(z) = ‖ewz‖2E2(�K)
=

∫
�

e2 Re(wz) |dw| ,

1Understood as an isomorphism between Banach spaces.
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and d�(θ) = (h′′(−θ) + h(−θ))dθ (understood as a distribution). One of the
novelties in their work is the fact that the identity map provides an isomorphism
between the Smirnov space E2(�K) and the space of analytic functions in �K
vanishing at infinity, with finite Dirichlet-type integral

∫∫
�K

|f ′(w)|2 dist(w, �) dσ(w) <∞.

The proof of that fact relies on Lemma 2.1. We mention that Yulmukhametov
together with his pupils and collaborators proved several other non-trivial results
related to Levin’s question (see, for instance, [13, 28]) and that Lindholm [27]
extended the Lutsenko-Yulmukhametov theorem to analytic functions of several
complex variables.

3 Riesz Bases of Eigenvectors of Non-selfadjoint Operators

One of the central questions in the spectral theory is the expansion in eigenfunctions
(more generally, in root vectors) of non-selfadjoint operators. It originates in the
theories of ordinary and partial differential equations and of integral equations.
In the middle of the 1960s the corresponding completeness problem was already
understood relatively well, first of all, due to the pioneering works by Keldysh and
Matsaev. A portion of their works can be found in the classical Gohberg-Krein
book [10], another portion became available later in [22] and in [31, 32]. The
situation with convergence of the series of eigenfunctions was understood much
less clearly. Though a few results, due to Glazman, Mukminov, and Markus, were
known (all of them were summarized in [10, Chapter VI]), no general methods
existed until in [15] Katsnelson discovered a novel approach to the Riesz basis
property of eigenfunctions of arbitrary contractions and dissipative operators. His
approach is based on a deep result of Carleson pertaining to the interpolation by
bounded analytic functions in the unit disk.

We start with some definitions. First, we remind the notion of Riesz basis of a
system of subspaces (Xk) of a Hilbert space H. The details can be found in [10,
Chapter VI]. In the case when all subspaces (Xk) are one-dimensional, this notion
reduces to the usual notion of the Riesz basis of vectors in H.

Let (Xk) be a collection of linear subspaces of H, and X be the closure of their
linear span. The subspaces (Xk) form a basis in X if any vector x ∈ X has a
unique decomposition into a convergent series x = ∑

k xk, xk ∈ Xk . To simplify
notation, we assume that the linear span of the subspaces (Xk) is dense in H, i.e.,
that X = H. Let Pk be projectors on Xk . Then the system (Xk) forms a basis if
and only if PkPj = δkjPk , and supn

∥∥∑n
k=1 Pk

∥∥ < ∞. The subspaces (Xk) form
an orthogonal basis if all Pks are orthogonal projectors, that is, for any x, ‖x‖2 =
‖Pkx‖2 + ‖(I − Pk)x‖2. The subspaces (Xk) form a Riesz basis if there exists an
invertible operator A from H onto H such that subspaces (AXk) form an orthogonal
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basis. Gelfand’s theorem [10, Chapter VI, $ 5] says that a basis of subspaces (Xk) is
a Riesz basis if and only if it remains a basis after any permutation of its elements.

In [15] Katsnelson studies the question when the collection of root subspaces
of a non-selfadjoint operator is a Riesz basis in the closure of its linear span.
He considers two general classes of non-selfadjoint operators, contractions and
dissipative operators. A linear operator T on a Hilbert space H is called a contraction
if ‖T‖ � 1. Given an eigenvalue λ ∈ D, the linear space

X(λ) =
⋃
n�1

Ker
[
(T− λI)n

]

is called the root subspace corresponding to λ. The eigenvalue λ has finite order if
there exists a positive integer m such that

X(λ) =
⋃

1�n�m
Ker

[
(T− λI)n

] = Ker
[
(T− λI)m

]
.

The least value m is called the order m(λ) of the eigenvalue λ. The following
theorem is the main result of [15].

Theorem 3.1 Let (λk) be some eigenvalues of a contraction T, let (Xk) be the
corresponding root subspaces, and let (mk) be the orders of (λk). Suppose that

inf
j

∏
k �=j

∣∣∣ λk − λj
1− λj λ̄k

∣∣∣mjmk � δ > 0 , (3.1)

Then the system of root subspaces (Xk) forms a Riesz basis in the closure of its
linear span.

In [15] Katsnelson only sketches the proof of this result, some details can be
found in Nikolskii’s survey paper [36, § 3]. Here are the main steps of the proof.

First, Katsnelson observes that in the assumptions of Theorem 3.1 only those λk
that lie in the open unit disk matter, while the unitary part of the operator T can be
discarded. He also assumes that the linear span of the root subspaces X(λk) is dense
in H (otherwise, he considers the restriction of T on the closure of this linear span).
Keeping in mind Gelfand’s theorem, it suffices to find projectors Pj : H → X(λj )
such that PjX(λk) = {0} for j �= k, and

sup
J

∥∥∑
j∈J

Pj
∥∥ <∞ ,

where the supremum is taken over all finite subsets J of the set of all indices j .
Fix a finite set J . Suppose that we succeeded to find an analytic in the unit

disk function fJ such that fJ (λj ) = 1 for j ∈ J , f (ν)J (λj ) = 0 for j /∈ J

and 0 � ν � m(λj ) − 1, and supD |fJ | � M , with a constant M independent
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of J . Suppose momentarily that the function fJ is analytic on a neighbourhood
of the closed unit disk (that is, that the set (λj ) is finite). Then, by the F. Riesz
operator calculus [38, Chapter IX], fJ (T) is well-defined and, by von Neumann’s
theorem [38, Section 153, Theorem A], ‖fJ (T)‖ �M .

At the next step, Katsnelson again uses a piece of the F. Riesz operator calculus.
The projectors Pj can be defined by the contour integrals

Pj = − 1

2π i

∫
Cj

(T− ζ I)−1 dζ ,

where Cj is a circumference of a small radius which separates the point λj from the
rest of the spectrum and traversed counterclockwise. Whence,

fJ (T) = − 1

2π i

∫
T

fJ (ζ )(T− ζ I)−1 dζ =
∑
j∈J

Pj ,

and therefore,

∥∥∑
j∈J

Pj
∥∥ = ‖fJ (T)‖ = sup

D

|fJ | �M .

To get rid of the assumption that the function fJ is analytic on the neighbourhood
of the closed unit disk, Katsnelson applies a classical result due to Pick and Schur,
which says that given a bounded analytic function f in the unit disk and given a
finite set of points � ⊂ D, there exists a rational function R which interpolates f
at �, that is, R(λ) = f (λ), λ ∈ �, and maxD |R| = supD |f |, see, for instance, [8,
Corollary IV.1.8].

At the final step, Katsnelson deduces the existence of the analytic function fJ
with the properties as above from Carleson’s “0− 1-interpolation theorem”, which,
in turn, was the main step in his solution to the corona problem [5, Theorem 2]. �

This chain of arguments discovered in [15] had a significant impact on works
of many mathematicians, notably from the Saint Petersburg school, cf. Nikolskii-
Pavlov [34, 35] (apparently, Nikolskii and Pavlov rediscovered some of Katsnelson’s
results), Treil [40, 41], Vasyunin [45], see also [37, Lectures IX and X].

Katsnelson also notes that condition (3.1) in Theorem 3.1 cannot be weakened.
Given a sequence (λk) ⊂ D satisfying the Blaschke condition

∑
k(1 − |λk|) < ∞

and such that

inf
j

∏
k �=j

∣∣∣ λk − λj
1− λj λ̄k

∣∣∣mjmk = 0,



68 M. Sodin

he brings a simple construction (the idea of which, according to [15], is due to
Matsaev) of a contraction T such that

(i) (λk) are simple eigenvalues of T and the whole spectrum of T coincides with
(λk), and

(ii) the eigenvalues of T are complete in H but are not uniformly minimal.2

Furthermore in this construction, the operator I− T∗T is one-dimensional.
Among other results brought in [15], there is a version of Theorem 3.1 for

dissipative operators, i.e., the operators A such that Im〈Ax, x〉 � 0, for any x in
the domain of A. This version is reduced to Theorem 3.1 by an application of the
Caley transform A 
→ (A− iI)(A+ iI)−1.

4 Series of Simple Fractions

Let C0(R) be the Banach space of complex-valued continuous functions on R,
tending to zero at infinity, equipped with the uniform norm ‖f ‖ = supR |f |.
Fix finite subsets in the upper and lower half-planes {zk}1�k�n ⊂ C+ and
{wk}1�k�m ⊂ C− and denote by E+ = E+(w1, . . . ,wm), E− = E−(z1, . . . , zn)

the subspaces in C0(R) generated by the simple fractions {1/(t −wk) : 1 � k � m}
and {1/(t − zk) : 1 � k � n}. The functions in E+ are analytic on C+, the functions
in E− are analytic on C−. Furthermore, E+ ∩ E− = ∅ and the sum E = E+ + E−
is a direct one, i.e., for any function f ∈ E, there exists a unique decomposition
f = f+ + f− with f± ∈ E±. In [16] Katsnelson estimates the norms of the
projectors P± = P±(z1, . . . , zn;w1, . . . ,wm) from E onto the corresponding
subspace E±. The main result of that work is the following theorem:

Theorem 4.1 There exists a positive numerical constant C such that

‖P±‖ � Cmin(m, n) (m+ n) .

The main point in this theorem is that the upper bound it gives does not depend
on the positions of zks and wks.

Note that in the space L2(R), by one of the versions of the Paley-Wiener theorem,
the functions analytic in the upper and lower half-planes are orthogonal to each
other, which makes the corresponding projectors orthogonal. In view of this remark,
it is quite natural that the proof of Theorem [16] uses the Fourier transform. The
proof is nice and not too long and the reader can find its details in [16]. Bochtejn
and Katsnelson bring in [2] a counterpart of Theorem 4.1 for the unit circleT instead
of the real line R.

2 A system of vectors {xn} in the Hilbert space H is called uniformly minimal if there exists δ > 0
such that for all n the distance between xn and the linear span of {xk : k �= n} is at least δ.
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Likely, the upper bound given in Theorem 4.1 is not sharp. In [16], Katsnelson
conjectures that, for m = n, the sharp upper bound should be C log(n+ 1), and, as
far as we know, this conjecture remains open till today. As a supporting evidence
towards this conjecture, he brings the following result.

Theorem 4.2 Given two finite sets of points {zk}1�k�n ⊂ C+ and {wk}1�k�n ⊂
C−, consider the functions

g+(t) =
n∑
k=1

1

t −wk , g−(t) =
n∑
k=1

1

t − zk ,

and let g(z) = g+(z)+ g−(z). Then

max
R

|g±| � C log(n+ 1) ·max
R

|g| .

with a positive numerical constant C.

A simple example shows that the order of growth of the RHS cannot be improved.
Put

g+(t) =
n∑
k=1

1

t + ik
, g−(t) =

n∑
k=1

1

t − ik
.

Then

g(t) = g+(t)+ g−(t) =
n∑
k=1

2t

t2 + k2
,

and

max
R

|g| �
∫ ∞

0

2t

t2 + x2
dx = π,

while

max
R

|g−| = |g−(0)| =
n∑
k=1

1

k
= logn+O(1) .

The proof of Theorem 4.2 is short and elegant (and accessible to undergraduate
students). As a byproduct of that proof he obtains

Theorem 4.3 Let P be a polynomial of degree n � 2 such that

sup
R

∣∣∣P ′
P

∣∣∣ �M .
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Then P has no zeroes in the strip

| Im z| � c

M logn
,

where c is a positive numerical constant.

Slightly earlier a similar estimate was obtained by Gelfond [9]. Gelfond’s proof
was rather different (and more involved). The question about the size of the strip
around the real axis free of zeroes of P was raised by Gorin in [11], first results in
that direction were obtained by him and then by Nikolaev in [33]. The final word in
this question was said by Danchenko, who proved in [6] that under assumption of
Theorem 4.3, the polynomial P has no zeroes in the strip

| Im z| � c

M
· log logn

logn
,

and that the order of decay of the RHS cannot be improved.
Twenty five years later, Katsnelson returned in [20, 21] to the linear spans of

simple fraction but from a different point of view. That time his work was motivated
by Potapov’s results on factorization of J -contractive matrix functions.

Let m be the Lebesgue measure on the unit circle T, and w : T→ [0,∞] be an
m-integrable weight, satisfying the Szegő condition

∫
T

logw dm > −∞. (4.1)

By PCH2(w) Katsnelson denotes the Hilbert space of functions f analytic on C\T
and satisfying the following conditions

(a) The restriction of f onto D+ and D− belongs to the Smirnov class, i.e., log+ |f |
has positive harmonic majorants both in D+ and D−.

(b) The boundary values of f
∣∣
D+ and f

∣∣
D− coincide m-a.e. on T, that is,

lim
r↑1

f (rt) = lim
r↓1

f (rt) (=: f (t) ) m− a.e. on T.

(Conditions (a) and (b) together provide the so called pseudocontinuation
property of the function f .)

(c)

‖f ‖2w =
∫
T

|f |2w dm <∞ .
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Note that whenever w−1 ∈ L1(m) the space PCH2(w) is trivial, i.e., contains
only constant functions f . Indeed, convergence of the integrals

∫
T

|f |2w dm <∞,
∫
T

dm

w
<∞

yields that f ∈ L1(m), and then, by a version of the removable singularity theorem
that goes back to Carleman, the function f is entire, and since it is bounded, by
Lioville’s theorem it is a constant function.

Given a set of points S ⊂ D+ ∪ D− satisfying the Blaschke condition

∑
λ∈S∩D+

(1− |λ|) <∞ ,
∑

λ∈S∩D−
(1− |λ|−1) <∞ , (4.2)

denote by R(S;w) the closure of the linear span of the simple fractions {(t −
λ)−1}λ∈S together with the constant functions in the space L2(w). Let S = S1 ⊃
S2 ⊃ . . . be a chain of sets such that

⋂
n Sn = {∅}.

The starting point of Katsnelson’s work [20] is the inclusion
⋂
n R(Sn;w) ⊂

PCH2(w), which follows from classical results of Tumarkin [42], see also [43, 44]
and [46]. Katsnelson observes that this inclusion might be a strict one, that is,
generally speaking, not every function in the space PCH2(w) can be approximated
in L2(w) by a sequence of functions rn ∈ R(Sn;w). The main result of [20] is the
following approximation theorem.

Theorem 4.4 For any non-negative m-integrable function w on T satisfying the
Szegő condition (4.1), there exists a set S ⊂ D+ ∪ D− satisfying the Blaschke
condition (4.2) such that

⋂
n R(Sn;w) = PCH2(w).

In [21] Katsnelson extends this result to a more general approximation scheme
by simple fractions with poles at a given table of points in C \ T. In [23] Kheifets
used Katsnelson’s construction to answer a question raised by Sarason.

5 Spectral Radius of Hermitian Elements in Banach
Algebras and the Bernstein Inequality

One of the most important properties of EFET is the classical Bernstein inequality,
which states that if F is an entire function of exponential type σ , then

sup
R

|F ′| � σ sup
R

|F | ,

and the equality sign attains if and only if F(z) = c1 cos σz + c2 sin σz. Different
proofs, deep extensions, and various applications of the Bernstein inequality can be
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found in the books [1, 24, 25] and in the survey paper [12]. Interestingly, Bernstein’s
inequality is also closely related to the theory of Banach algebras.

An element a of a Banach algebra A is called hermitian if ‖eiat‖ = 1 for every
t ∈ R. For instance, hermitian elements of the algebra of all bounded operators
in a Hilbert space are self-adjoint operators. Another, more special, example is the
differentiation operator D = 1

i
d

dx considered in various Banach spaces of EFET
equipped with some translation-invariant norm, in which case the exponent eiDt

is realized by the translation. It is well-known that the operator norm of a self-
adjoint operator in a Hilbert space coincides with its spectral radius. Making use
of the Bernstein inequality, Katsnelson proved in [17] the following result, which,
independently (and more or less simultaneously), was also found by Browder [4]
and Sinclair [39].

Theorem 5.1 For every hermitian element in a Banach algebra, the norm coincides
with the spectral radius.

Moreover, as both Katsnelson and Browder observed, this result is equivalent to
the Bernstein inequality, that is, the latter follows from the former, applied to the
differentiation operator D in the Bernstein space Bσ of EFET at most σ bounded
on the real axis and equipped with the uniform norm.

The proof of Theorem 5.1 is short and elegant: Let a be a hermitian element in
a Banach algebra A. Take an arbitrary linear functional ϕ ∈ A∗ with the unit norm,
and consider the EFET

F(z)
def= ϕ

(
eiaz) =∑

n�0

ϕ(an)
zn

n! .

Applying, first, the formula, which expresses the exponential type of an entire
function via its Taylor coefficients, then a crude estimate of n!, and then Gelfand’s
formula for the spectral radius, we estimate the exponential type of F :

σF = 1

e
lim sup
n→∞

n
( |ϕ(an)|

n!
)1/n

� 1

e
lim sup
n→∞

n
(‖an‖
n!

)1/n = lim sup
n→∞

‖an‖1/n = ρ(a) ,

where ρ(a) denotes the spectral radius of a. Since the element a is hermitian, we
have |F(x)| = |ϕ(eiax

)| � ‖eiax‖ = 1, whence, by the Bernstein inequality,

|ϕ(a)| = |F ′(0)| � σF sup
R

|F | � ρ(a) ,

and then, by the Hahn-Banach theorem, ‖a‖ � ρ(a). This completes the proof of
Theorem 5.1 since the converse inequality ρ(a) � ‖a‖ is obvious. �
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The proof of the result which goes in the opposite direction is also quite simple.
Let D be the differentiation operator in the Bernstein space Bσ of EFET at most σ
bounded on R. As we have already mentioned, the exponential function eiDt acts on
Bσ as the translation by t , so D is a hermitian operator in Bσ . To evaluate the spectral
radius of D, we need to estimate from above the norms ‖Dn‖, that is, supR |F (n)|,
F ∈ Bσ . By Cauchy’s estimate for the derivatives of analytic functions, combined
with the bound |F(x + w)| � eσ |w| supR |F | valid for any F ∈ Bσ , we obtain
|F (n)(x)| � n! r−neσr‖F‖ for any r > 0 and any x ∈ R. Optimising the RHS,
we get |F (n)(x)| � n! exp[n − n logn + n log σ ] ‖F‖, that is, ‖Dn‖ � n! exp[n −
n logn + n log σ ], and finally, ρ(D) = lim ‖Dn‖1/n = σ . Thus, for any function
F ∈ Bσ and any x ∈ R, we have

|F ′(x)| = |(DF)(x)| � ‖D‖ · ‖F‖ = ρ(D)‖F‖ � σ‖F‖,

proving the Bernstein inequality. �
In this context, it is also worth mentioning that a bit later Bonsall and Crabb [3]

found a simple direct proof of Theorem 5.1, which yields another proof of the
Bernstein inequality. Their proof is based on the following lemma, which is a simple
exercise on the functional calculus in Banach algebras:

Lemma 5.2 Let a be a hermitian element in a Banach algebra with ρ(a) < π/2.
Then, a = arcsin(sin a).

Now, Theorem 5.1 follows almost immediately. Proving Theorem 5.1, it suffices,
assuming that a is an arbitrary hermitian element with ρ(a) < π/2, to show that
‖a‖ � π/2. Let cn be the n-th Taylor coefficient of the function z 
→ arcsin z,
|z| � 1. The values cn are positive and their sum equals arcsin(1) = π/2. By
Lemma 5.2, ‖a‖ � ∑

n�1 cn‖ sin a‖n. Since the element a is hermitian, ‖ sin a‖ �
1, and therefore, ‖a‖ � ∑

n�1 cn = π/2. �
* * *

In the reference list, referring to the papers in Russian published in journals
translated from cover to cover, we mention only the translations. Today, the original
Russian versions of these papers can be found at the Math-Net.Ru site (http://www.
mathnet.ru).
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1 Introduction

To define the vector-valued-coefficient Fock space H 2
Y(F

+
d ) as in (1.2) below (our

free noncommutative analogue of the vector-valued Hardy space H 2
Y over the unit

disk), we first introduce the unital free semigroup (i.e., monoid) generated by the
set of d letters {1, . . . , d} which we denote as F+d . Elements of F+d are words of the
form iN · · · i1 where i� ∈ {1, . . . , d} for each � ∈ {1, . . . , N} with multiplication
given by concatenation. The unit element of F+d is the empty word denoted by ∅.
For α = iN iN−1 · · · i1 ∈ F

+
d , we let |α| denote the number N of letters in α and we

let α� := i1 · · · iN−1iN denote the transpose of α. We let z = (z1, . . . , zd) to be
a collection of d formal noncommuting variables and given a Hilbert space Y , let
Y〈〈z〉〉 denote the set of noncommutative formal power series

∑
α∈F+d fαz

α where
fα ∈ Y and where

zα = ziN ziN−1 · · · zi1 if α = iN iN−1 · · · i1. (1.1)

The Fock space H 2
Y(F

+
d ) is defined as

H 2
Y(F

+
d ) =

{ ∑
α∈F+d

fαz
α ∈ Y〈〈z〉〉 :

∑
α∈F+d

‖fα‖2Y <∞
}
. (1.2)

We let Rz denote the tuple of right coordinate-variable multipliers

Rz = (Rz1, . . . , Rzd ), Rzj : f (z) 
→ f (z)zj (1.3)

(called the shift operator-tuple of H 2(F+d ), whereas we refer to the tuple

R∗z = (R∗z1
, . . . , R∗zd ), R∗zj :

∑
α∈F+d

fαz
α 
→

∑
α∈F+d

fαj z
α (1.4)

consisting of the adjoints (in the metric of H 2
Y(F

+
d )) as the backward shift operator-

tuple.
Given two coefficient Hilbert spaces U and Y , we let Mnc,d(U,Y) denote the

space of multipliers from H 2
U (F

+
d ) to H 2

Y(F
+
d ), that is, formal power series

S(z) =
∑
α∈F+d

Sαz
α

with coefficients Sα ∈ L(U,Y) such that the associated multiplication operator

MS : u(z) =
∑
α∈F+d

uαz
α 
→ S(z)u(z) :=

∑
α∈F+d

( ∑
βγ=α

Sβuγ

)
zα (1.5)
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is a bounded operator from H 2
U (F

+
d ) to H 2

Y(F
+
d ). It is not hard to show that

Mnc,d(U,Y) is the intertwining space for the shift tuples Rz ⊗ IU and Rz ⊗ IY .
More precisely, an operator � ∈ L(H 2

U (F
+
d ),H

2
Y(F

+
d )) equals � = MS for some

S ∈Mnc,d(U,Y) if and only if

(Rzj ⊗ IY )� = �(Rzj ⊗ IU ) for j = 1, . . . , d.

We define the noncommutative Schur class Snc,d(U,Y) to be the closed unit ball of
Mnc,d(U,Y):

Snc,d (U,Y) = {S ∈Mnc,d(U,Y) : ‖MS‖op ≤ 1},

that is, the set of all contractive multipliers from H 2
U (F

+
d ) to H 2

Y(F
+
d ). If M is

a closed subspace of H 2
U (F

+
d ) which is invariant under the backward shift R∗z

(i.e., R∗zjM ⊂ M for j = 1, . . . , d) and S ∈ Mnc,d(U,Y), then the operator

� = PMMS ∈ L(H 2
U (F

+
d ),M) (where PM denotes the orthogonal projection of

H 2
U (F

+
d ) onto M) satisfies conditions ‖�‖ ≤ ‖MS‖ and (the details will be given

below)

PMRzj� = �Rzj (j = 1, . . . , d). (1.6)

Recovering S ∈ Mnc,d (U,Y) from its projection onto a backward-shift invariant
subspace is a problem of interpolation nature. This problem is norm-constrained if
in addition we impose a bound for ‖MS‖. The normalized version of this problem
is: given R∗z -invariant subspace M ⊂ H 2

Y(F
+
d ) and given � ∈ L(H 2

U (F
+
d ),M)

subject to relations (1.6), find all contractive multipliers S ∈ Snc,d(U,Y) such that
PMMS = �. A clear necessary condition ‖�‖ ≤ 1 for the existence of such S
turns out to be also sufficient, by the Commutant Lifting theorem for Fock spaces
[28]. Motivation for this noncommutative Commutant Lifting theorem arose from
noncommutative interpolations problems in the Sarason operator formulation from
[35] (see [2]); the notion of evaluation at a noncommutative point and associated
Nevanlinna-Pick interpolation problems came later (see [1, 8, 13]).

In the single-variable case, the Commutant Lifting interpolation problem
appeared as a natural and brilliant generalization and uniformization of then already
existing classical interpolation problems of Nevanlinna-Pick type, and we have
seen that a similar motivation was behind Popescu’s noncommutative Commutant
Lifting theorem for the Fock-space setting. Already in the single-variable setting it
was known that the Commutant Lifting theorem did not apply to all interpolation
problems, in particular boundary interpolation and moment problems: this was one
of the motivations for the development of the Abstract Interpolation Problem of
Katsnelson et al. [20].

In the present noncommutative setting, we take the Commutant Lifting problem
as our starting point. After some preliminaries concerning formal noncommutative
reproducing kernel Hilbert spaces and Schur multipliers in Sect. 2, in Sect. 3 we
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develop Kreı̆n-space analogues of the ideas introduced in Sect. 2, and introduce and
use the Potapov-Ginzburg transform (at various levels) as a tool for reducing the
indefinite setting to the definite setting (when possible), as well as material on linear-
fractional transformations (in chain-scattering and Redheffer form) which will be
used later. In Sect. 4 we formulate the Operator Argument interpolation Problem
OAP with the interpolation condition given in terms of certain noncommutative
tangential evaluation and show how Commutant Lifting and the Sarason Interpola-
tion Problem can be seen as particular cases of OAP. In Sect. 5 we use a suitable
adaptation of the Potapov method of Fundamental Matrix Inequalities to obtain
a characterization of when solutions exist in terms of positivity of an associated
Pick matrix; when this Pick matrix is strictly positive definite, we obtain a linear-
fractional-transformation parametrization for the set of all solutions. In Sect. 6 we
refine the formulation of the OAP by expressing the interpolation condition in more
implicit form leading to a still more general problem called the analytic Abstract
Interpolation Problem (aOAP) and show how a more careful analysis of the proofs
in the previous section leads to a solution of this problem. In Sect. 7 we introduce
our most general interpolation problem, called the Abstract Interpolation Problem
(AIP) in analogy with that studied for the single-variable case in [20, 22–24],
identify solutions as corresponding to unitary-colligation extensions of a partially
defined isometry determined by the problem data, and use results of Arov-Grossman
[4, 5] to obtain linear-fractional-transformation parametrizations for the set of
all solutions. Sections 4–7 have much in parallel with some of the exposition
in the paper [6] where the same hierarchy of interpolation problems and linear-
fractional-transformation parametrizations for their solution sets was discussed in
the commutative-variable setting of contractive multipliers on the Drury-Arveson
space.

2 Formal Noncommutative Reproducing Kernel Hilbert
Spaces and Schur Multipliers

In this section we collect miscellaneous preliminary results needed for the work in
the sequel. We start with formal positive kernels and associated reproducing kernel
Hilbert spaces. For more complete details we refer to [15]; see also Section 2.1 of the
forthcoming [9]. Such spaces are also closely related to the more general notion of
noncommutative reproducing kernel Hilbert space introduced in [12]; for the precise
connection between the two notions, we refer to Section 3.5 in [12].
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2.1 Formal Reproducing Kernel Hilbert Spaces

In general, for any coefficient linear space X, we denote by X〈〈z〉〉 the space of all
formal power series f (z) = ∑

α∈X fαz
α with coefficients fα in the space X. We

shall say for simplicity that an element f (z) =∑
α∈F+d fαz

α in X〈〈z〉〉 is a X-valued
formal power series even though more precisely f (z) is a formal power series with
coefficients in the space X. In particular, given a coefficient Hilbert space Y , we
define the space L(Y)〈〈z, ζ 〉〉 consisting of formal power series

K(z, ζ ) =
∑

α,β∈F+d
Kα,βz

αζ
β�
, Kα,β ∈ L(Y)〉, (2.1)

in the freely noncommuting indeterminates z = (z1, . . . , zd ) and ζ = (ζ 1, . . . , ζ d )

such that each zk commutes with each ζ j . Any such power series will be referred
to as a formal kernel. The kernel (2.1) is called positive if for any finitely supported
Y-valued function α 
→ yα on F

+
d ,

∑
α,β∈F+d

〈Kα,β yα, yβ〉Y ≥ 0.

For example, if X is another coefficient Hilbert space and H(z) is an element in
L(X ,Y)〈〈z〉〉, then the formula

K(z, ζ ) = H(z)H(ζ )∗ (2.2)

defines a positive formal kernel K(z, ζ ). Here we use the conventions

(ζ β)∗ = ζβ�, H(ζ )∗ =
(∑

Hβζ
β
)∗ =∑

H ∗β ζ
β�
.

Conversely, any L(Y)-valued formal positive kernel K admits a factorization (2.2)
(Kolmogorov decomposition of K) for some Hilbert space X and an L(X ,Y)-
valued formal power series H(z).

Suppose that H is a Hilbert space consisting of formal power series

f (z) =
∑
α∈F+d

fαz
α ∈ Y〈〈z〉〉
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with coefficients in the coefficient Hilbert space Y . We say that H is a noncommu-
tative formal reproducing kernel Hilbert space (NFRKHS) if, for each β ∈ F

+
d it is

the case that the linear operator�β : H→ Y defined by

�β : f (z) =
∑
α∈F+d

fαz
α 
→ fβ

is continuous. As any such power series is completely determined by the list of
its coefficients α 
→ fα for α ∈ F

+
d , we may view an element f (z) ∈ H as the

correspondingY-valued function α 
→ fα on F
+
d . By the standard Aronszajn theory

of reproducing kernel Hilbert spaces [3], there is a positive kernel K : F+d × F
+
d →

L(Y) so that H is the reproducing kernel Hilbert space associated with K .
For the present context it is preferable to rephrase all this as follows. Let us write

Kα,β rather than K(α, β) for the Aronszajn kernel derived as above. We view the
element�∗βy ∈ H as a formal power series rather than as a function on F

+
d , namely:

�∗βy =
∑
α∈F+d

Kα,βy z
α.

Then the reproducing property becomes

〈f,Kβ(·)y〉H = 〈f,�∗βy〉H = 〈�βf, y〉Y = 〈fβ, y〉Y . (2.3)

We can make the notation more suggestive of the classical case as follows. Let
ζ = (ζ 1, . . . , ζ d) be a second d-tuple of noncommuting indeterminates. Given a
coefficient Hilbert space C, we can use the C-inner product to define pairings

〈·, ·〉C×C〈〈ζ 〉〉 
→ C〈〈ζ 〉〉 and 〈·, ·〉C〈〈ζ 〉〉×C 
→ C〈〈ζ 〉〉

(where C〈〈ζ 〉〉 is the space of formal power series in the set of formal conjugate
indeterminates ζ = (ζ1, . . . , ζd ) with coefficients in C) by

〈
c,

∑
fαζ

α 〉
C×C〈〈ζ 〉〉 =

∑
〈c, fα〉C ζ α

�
,

〈∑
fαζ

α, c
〉
C〈〈ζ 〉〉×C =

∑
〈fα, c〉C ζ α.

These pairings can be seen as special cases of the more general pairing

〈 ∑
α∈F+d

fαζ
α,

∑
β∈F+d

gβζ
β
〉
C〈〈ζ 〉〉×C〈〈ζ 〉〉

=
∑
α∈F+d

[ ∑
β,γ : α=γ�β

〈fβ, gγ 〉C
]
ζ α,
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which can be written more suggestively as

〈f (ζ ), g(ζ )〉C〈〈ζ 〉〉×C〈〈ζ 〉〉 =
〈∑

fαζ
α,

∑
gβζ

β 〉
C〈〈ζ 〉〉×C〈〈ζ 〉〉

= g(ζ )∗f (ζ ),

if we set

g(ζ )∗ =
(∑

gβζ
β
)∗
=

∑
g∗βζ β

�
,

where we view g∗β ∈ L(C,C) as a linear functional on C so that

g∗βfα = 〈fα, gβ 〉C for any fα ∈ C.

Then, if S(ζ ) ∈ L(U,Y)〈〈ζ 〉〉, f (ζ ) ∈ U〈〈ζ 〉〉 and g(ζ ) ∈ Y〈〈ζ 〉〉, we see that

〈S(ζ )f (ζ ), g(ζ )〉Y〈〈ζ 〉〉×Y〈〈ζ 〉〉 = g(ζ )∗ (S(ζ )f (ζ ))
= (

g(ζ )∗S(ζ )
)
f (ζ )

= 〈f (ζ ), S(ζ )∗g(ζ )〉U 〈〈ζ 〉〉×U 〈〈ζ 〉〉. (2.4)

The reproducing kernel property (2.3) can be written more suggestively as

〈f,K(·, ζ )y〉H×H〈〈ζ 〉〉 = 〈f (ζ ), y〉Y〈〈ζ 〉〉×Y , (2.5)

where we set

K(z, ζ ) =
∑

α,β∈F+d
Kα,βz

αζ
β� ∈ L(Y)〈〈z, ζ 〉〉. (2.6)

We note that, for each y ∈ Y , the formal power series

K(z, ζ )y =
∑

α,β∈F+d
Kα,βy z

αζ
β� =

∑
β∈F+d

[ ∑
α∈F+d

Kα,β�y z
α

]
ζ
β

is an element of H〈〈ζ 〉〉. Furthermore, K so constructed has a factorization
K(z, ζ ) = H(z)H(ζ )∗ where H(ζ )∗ ∈ L(Y,H)〈〈ζ 〉〉 is given by

H(ζ )∗ =
∑
β

�∗βζ
β�
,
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thereby verifying that K is a positive formal kernel in the sense given above. When
K and H are related in this way, we say that K is the reproducing kernel for the
FNRKHS H and we write H = H(K).

Conversely, any positive formal kernel arises as the reproducing kernel for a
FNRKHS. To construct the FNRKHS associated with a given kernel K , one can
use the noncommutative Aronszajn construction [15], or instead directly in terms of
the power series H(z) appearing in the Kolmogorov decomposition (2.2):

H(K) = {H(z)h0 : h0 ∈ X }

with norm taken to be the “lifted norm”

‖H(·)h0‖H(K) = ‖Qh0‖H0

where Q is the orthogonal projection of H0 onto the orthogonal complement of the
kernel of the map MH : X → Y〈〈z〉〉 given by MH : h0 
→ H(z) · h0.

Remark 2.1 The Fock space H 2
Y(F

+
d ) introduced in (1.2) is the NFRKHS with

reproducing kernel kSz ⊗ IY where kSz is the noncommutative Szegő kernel

kSz(z, ζ ) =
∑
α∈F+d

zαζ
α�
.

Indeed, for f (z) =∑
α∈F+d fαz

α ∈ H 2
Y(F

+
d ) and y ∈ Y , we have

〈f, kSz(·, ζ )y〉H 2
Y (F

+
d )×H 2

Y (F
+
d )〈〈ζ 〉〉 =

∑
α∈F+d
〈f (z), y zα〉H 2

Y (F
+
d )
ζ α

=
∑
α∈F+d
〈fα, y〉Yζ α = 〈f (ζ ), y〉Y〈〈ζ 〉〉×Y .

Given two positive kernelsK andK ′ with values in L(Y) and L(U) respectively,
and the associated NFRKHSs H(K) and H(K ′), a formal power series F ∈
L(U,Y)〈〈z〉〉 is called a multiplier from H(K ′) to H(K) if the multiplication
operator MF defined as in (1.5) is bounded from H(K ′) to H(K). The action
of the adjoint operator M∗F : H(K) → H(K ′) extended to the kernel elements
K(·, ζ )y ∈ H(K)〈〈ζ 〉〉 is given by the formula

M∗F : K(·, ζ )y 
→ K ′(·, ζ )F (ζ )∗y ∈ H(K ′)〈〈ζ 〉〉 for all y ∈ Y, (2.7)

which is verified by the formal version of a standard inner-product computation
making use of the identity (2.4). The multiplier F is called contractive, inner or
strictly inner if the operator MF : H(K ′) → H(K) is a contraction, a partial



Interpolation by Contractive Multipliers 87

isometry or an isometry, respectively.1 For details of the proof of the next result,
we refer to Proposition 3.2 in [9].

Proposition 2.2 Let K ∈ L(Y)〈〈z, ζ 〉〉 and K ′ ∈ L(U)〈〈z, ζ 〉〉 be two positive
formal kernels. A formal power series F ∈ L(U,Y)〈〈z〉〉 is a contractive multiplier
from H(K ′) to H(K) if and only if

KF (z, ζ ) = K(z, ζ )− F(z)K ′(z, ζ )F (ζ )∗ ∈ L(Y)〈〈z, ζ 〉〉

is a positive formal kernel.

2.2 Noncommutative Schur Class

The noncommutative functional calculus (1.1) extends to a d-tuple of operators A =
(A1, . . . , Ad) by letting

Aα := AiNAiN−1 · · ·Ai1 if α = iN iN−1 · · · i1 ∈ F
+
d ,

where the multiplication is now operator composition. Letting

Z(z) = [
z1 · · · zd

]⊗ IX , A =
⎡
⎢⎣
A1
...

Ad

⎤
⎥⎦ , B =

⎡
⎢⎣
B1
...

Bd

⎤
⎥⎦ , (2.8)

we next observe that

(Z(z)A)j =
( d∑
i=1

ziAi

)j
=

∑
α∈F+d : |α|=j

Aαzα for all j ≥ 0

and therefore,

(I − Z(z)A)−1 =
∞∑
j=0

(Z(z)A)j =
∞∑
j=0

∑
α∈F+d : |α|=j

Aαzα =
∑
α∈F+d

Aαzα.

1We note that the term McCullough-Trent (McCT) inner rather than inner is used in [9] for
additional emphasis of the distinction between these different notions of inner, but here for
simplicity we contract McCT-inner to inner (see [26] where this notion of inner appears in the
commutative context of multipliers on the Drury-Arveson space).
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The tuple A = (A1, . . . , Ad) ∈ L(X )d is called strongly stable if

lim
N→∞

∑
α∈F+d : |α|=N

‖Aαx‖2 = 0 for all x ∈ X . (2.9)

Given a d-tuple A ∈ L(X )d as above and given an output operator C ∈ L(X ,Y),
the output pair (C,A) is said to be output-stable if the associated observability
operator

OC,A : x 
→
∑
α∈F+d

(CAαx)zα = C(IX − Z(z)A)−1x (2.10)

maps X into H 2
Y (F

+
d ) and is bounded. In this case, it makes sense to introduce the

observability gramian

GC,A := O∗C,AOC,A =
∑
α∈F+d

A∗α�C∗CAα. (2.11)

The strong convergence of the power series in (2.11) follows from the power-series
expansion (2.10) for the observability operator together with the characteriza-
tion (1.2) of the H 2

Y(F
+
d )-norm. An important property of GC,A is that it satisfies

the Stein equation

H −
d∑
j=1

A∗jHAj = C∗C (2.12)

as can be seen by plugging in the series expansion (2.11). The following result
appears as Theorem 3.1 in [11].

Theorem 2.3 Let S(z) ∈ L(U,Y)〈〈z〉〉. The following are equivalent:

1. S ∈ Snc,d (U,Y), i.e., MS : H 2
U (F

+
d )→ H 2

Y(F
+
d ) is a contraction.

2. There exist an auxiliary Hilbert space X and a power series H ∈ L(X ,Y)〈〈z〉〉
such that

KS(z, ζ ) := kSz(z, ζ )⊗ IY − S(z)(kSz(z, ζ )⊗ IU )S(ζ )∗ (2.13)

= H(z)H(ζ )∗,

i.e., KS associated with S via formula (2.13) is a positive formal kernel.
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3. There exist a Hilbert space X and a unitary connection operator U of the form

U =
[
A B

C D

]
=

⎡
⎢⎢⎢⎣

A1 B1
...

...

Ad Bd

C D

⎤
⎥⎥⎥⎦ :

[
X
U

]
→

⎡
⎢⎢⎢⎣

X
...

X
Y

⎤
⎥⎥⎥⎦ (2.14)

so that S(z) can be realized as a formal power series in the form

S(z) = D +
d∑
j=1

∑
α∈F+d

CAαBj z
α · zj

= D + C(I − Z(z)A)−1Z(z)B, (2.15)

where Z(z), A and B are defined as in (2.8). When the formal power series S(z)
arises from the connection matrix (also called colligation) U as in (2.15), we also
say that S(z) is the characteristic formal power series of the colligation U and we
write S = TU.

4. There exist a Hilbert space X and a contractive block operator matrix U as
in (2.14) such that S(z) is given as in (2.15).

Note that for S of the form (2.15) with unitary connection matrix U, the
Kolmogorov decomposition in (2.13) holds with

H(z) = C (IX − Z(z)A)−1 . (2.16)

Note also that formulas (2.15) and (2.16) can be written directly in terms of the
unitary operator U as follows:

S(z) = PYU
(
IX⊕U − P∗XZ(z)PX dU

)−1 |U , (2.17)

H(z) = PYU
(
IX⊕U − P∗XZ(z)PX dU

)−1 |X ,

where PY and PX d are the orthogonal projections of the space X d ⊕ Y onto Y and
X d , respectively, and P∗X is the inclusion map of X into X ⊕ U .

We now recall a useful procedure for constructing an element in Snc,d(U,Y)
with the prescribed output pair (C,A) in its contractive realization, and furthermore
identifying when this S is inner (i.e., MS : H 2

U (F
+
d ) → H 2

Y(F
+
d ) is a partial

isometry) or even strictly inner (i.e., MS is an isometry). This result appears as
Theorem 3.8 in [9].

Theorem 2.4 Given a tuple A = (A1, . . . , Ad) ∈ L(X )d and C ∈ L(X ,Y), let
H ∈ L(X ) be a strictly positive definite solution to the Stein equation (2.12). Let
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A and Z(z) be defined as in (2.8) and let
[
B
D

] : U → [
X d

Y

]
be a solution of the

Cholesky factorization problem

[
B

D

] [
B∗ D∗

] =
[
H−1 ⊗ Id 0

0 IY

]
−

[
A

C

]
H−1 [A∗ C∗] . (2.18)

1. Then the pair (C,A) is output-stable and the power series

S(z) = D + C(I − Z(z)A)−1Z(z)B

belongs to Snc,d(U,Y). Moreover,

kSz(z, ζ )⊗ IY − S(z)(kSz(z, ζ )⊗ IU )S(ζ )∗

= C(I − Z(z)A)−1H−1(I − A∗Z(ζ )∗)−1C∗.

2. If A is strongly stable, then S is inner. Conversely, any inner multiplier arises in
this way.

3. If A is strongly stable and the solution
[
B
D

]
of (2.18) is normalized to be injective,

then S is strictly inner. Conversely, any strictly inner multiplier arises in this way.

The next factorization result is the noncommutative version the Leech theorem
(see [25]); the necessity is an immediate consequence of Theorem 2.3, for the proof
of sufficiency, see [9].

Theorem 2.5 Given formal power series G ∈ L(Y,X )〈〈z〉〉, F ∈ L(U,X )〈〈z〉〉,
the formal kernel

KG,F (z, ζ ) := G(z)(kSz(z, ζ )⊗ IY )G(ζ )∗ − F(z)(kSz(z, ζ )⊗ IU )F (ζ )∗

is positive if and only if there exists an S ∈ Snc,d(U,Y) such that F(z) =
G(z)S(z).

2.3 de Branges-Rovnyak Spaces

Associated with any S ∈ Snc,d (U,Y) is the de Branges-Rovnyak space H(KS), the
NFRKHS with reproducing kernel KS (which is positive by Theorem 2.3). Just as
in the classical case, the de Branges-Rovnyak space H(KS) has several equivalent
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characterizations. The original characterization of H(KS), as the space of all formal
power series f (z) ∈ Y〈〈z〉〉 with finite H-norm

‖f ‖2H = sup
g∈H 2

U (F
+
d )

{
‖f + Sg‖2

H 2
Y (F

+
d )
− ‖g‖2

H 2
U (F

+
d )

}
(2.19)

is due to de Branges and Rovnyak [16] (for the case d = 1); see [11] for the general
case. In particular, it follows from (2.19) that ‖f ‖H(KS) ≥ ‖f ‖H 2

Y (F
+
d )

for every

f ∈ H(KS), i.e., that H(KS) is contained in HY (F
+
d ) contractively. On the other

hand, the general complementation theory applied to the contractive operator MS

provides the characterization of H(KS) as the operator range

H(KS) = Ran(I −MSM
∗
S)

1
2 (2.20)

with the lifted norm

‖(I −MSM
∗
S )

1
2 f ‖H(KS) = ‖(I −Q)f ‖HY (F

+
d )

(2.21)

for all f ∈ H 2
Y(F

+
d ), where Q is the orthogonal projection onto Ker(I −MSM

∗
S)

1
2 .

Upon setting f = (I −MSM
∗
S)

1
2 h in (2.21) we get

‖(I −MSM
∗
S )h‖2H(KS)

= 〈(I −MSM
∗
S )h, h〉H 2

Y (F
+
d )
.

Finally, if S is realized as in (2.15) with a unitary colligation matrix U, then
the kernel KS admits a Kolmogorov decomposition (2.13) with H(z) defined
as in (2.16) and hence, H(KS) can be characterized as the range space of the
observability operator OC,A with lifted norm

H(KS) =
{
OC,Ax : x ∈ X

}
and ‖OC,Ax‖H(KS) = ‖Qx‖X , (2.22)

whereQ is the orthogonal projection ofX onto (KerOC,A)
⊥. More complete details

concerning the spaces H(KS) and related matters of realization and the model
theory for commutative row contractions can be found in [11].

If � ∈ Snc,d(U,Y) is inner, then the associated de Branges-Rovnyak space
H(K�) is isometrically included in H 2

Y(F
+
d ) and

H(K�) = H 2
Y(F

+
d )� �H 2

U (F
+
d ). (2.23)

Moreover, the orthogonal projection PH(K�) of H 2
Y(F

+
d ) onto H(K�) is given by

PH(K�) = IH 2
Y (F

+
d )
−M�M

∗
�.
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Since the space �H 2
F (F

+
d ) is shift invariant (i.e., Rzj -invariant for j = 1, . . . , d),

it follows from (2.23) that the space H(K�) is backward shift invariant (i.e., R∗zj -

invariant for j = 1, . . . , d). The Beurling-Lax theorem for H 2
Y(F

+
d ) (see [10, 17,

27]) asserts that any shift invariant closed subspace M of H 2
Y(F

+
d ) necessarily

has the form �H 2
U (F

+
d ) for some strictly inner multiplier � ∈ Snc,d(F ,Y); in this

situation we say that� is a Beurling-Lax representer for the shift-invariant subspace
M. Therefore any backward-shift-invariant subspace M of H 2

Y(F
+
d ) has the form

M = H(K�). Let us finally note that there is a simple procedure for cutting down
an inner � such that M = �H 2

U to a Beurling-Lax representer for M, i.e., to a
strictly inner �0 so that M = �0H

2
U0

: see Remark 3.11 in [9].

3 Indefinite Noncommutative Schur Class
and Linear-Fractional Transformations

If X is a Hilbert space and G is a selfadjoint operator on X , we use the notation
(X ,G) to denote the space XG with the indefinite inner product induced by G:

〈x, y〉XG
:= 〈Gx, y〉X .

As a further abuse of notation we shall on occasion write ‖x‖2XG
for 〈x, x〉G even

though the result ‖ · ‖XG
so defined is not a norm if G is indefinite. Usually it is

assumed that G is invertible, so (X ,G) is a Hilbert space if G is positive definite
and a Kreı̆n space in general. In what follows, the indefinite metric will be primarily
determined by signature operators

JY,U =
[
IY 0
0 −IU

]
and JF ,U =

[
IF 0
0 −IU

]
. (3.1)

A bounded operator

W =
[
W11 W12

W21 W22

]
:
[
F
U

]
→

[
Y
U

]
(3.2)

is called a (JF ,U , JY,U )-bicontraction if

W∗JY,UW � JF ,U and WJF ,UW
∗ � JY,U . (3.3)

If the first (second) relation in (3.3) holds with equality, the operator W is called
(JF ,U , JY,U )-isometry (coisometry). Two equalities in (3.3) define a (JF ,U , JY,U )-
unitary operator.
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Relations (3.3) imply that the operator W22 ∈ L(U) is an invertible bijection;
see [18, Theorem 1.3.4]. Note that the first relation in (3.6) alone guarantees only
that W22 is injective and has closed range. Furthermore, if the first relation in (3.6)
holds (i.e., W is a (JF ,U , JY,U )-contraction) then the second one holds (i.e., W is a
(JF ,U , JY,U )-bicontraction) if and only if the operatorW22 ∈ L(U) is invertible; see
again [18].

3.1 Potapov-Ginzburg Transform

A convenient tool to study Krein space bi-contractions is the Potapov-Ginzburg
transform introduced in [19] and defined for anyW of the form (3.2) with boundedly
invertible block W22 = PUW |U as follows:

TPG(W) :=
[
W11 W12

0 I

] [
I 0
W21 W22

]−1

(3.4)

=
[
W11 −W12W

−1
22 W21 W12W

−1
22

−W−1
22 W21 W−1

22

]

=
[
I −W12

0 −W22

]−1 [
W11 0
W21 −I

]
,

where the second and the third equalities are easily verified. One can see from (3.4)
that TPG(W) is an involution. Straightforward computations show that

IF⊕U − TPG(W)
∗TPG(W) =

[
I W∗21
0 W∗22

]−1
(JF ,U −W∗JY,UW)

[
I 0
W21 W22

]−1
,

IY⊕U − TPG(W)TPG(W)
∗ =

[
I −W12
0 −W22

]−1
(JY,U −WJF ,UW

∗)
[

I 0
−W∗12 −W∗22

]−1

and therefore TPG establishes a bijection between (JF ,U , JY,U )-contractions and
contractions S ∈ L(F ⊕ U,Y ⊕ U) with boundedly invertible compression
S22 = PUS|U . Furthermore, W is (JF ,U , JY,U )-contractive (isometric, coisometric,
unitary) if and only if S = TPG(W) is contractive (respectively, isometric, coisomet-
ric, unitary). The Potapov-Ginzburg transform amounts to a partial inversion (with
respect to the (2, 2)-block entry) of W in the following sense: assuming that W22
is invertible, then the collection of signals (vectors) u, y, z,w satisfies the system of
equations

[
W11 W12

W21 W22

] [
u

w

]
=

[
z

y

]
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if and only if the same u, y, z,w also satisfy the system of equations

[
�11 �12

�21 �22

] [
u

y

]
=

[
z

w

]

where � =
[
�11 �12
�21 �22

]
is equal to the Potapov-Ginzburg transform TPG(W) of W .

In circuit-theoretic terms, this formalism amounts to the transformation from the
chain formalism to the scattering formalism; see [18, Section 1.3] and the references
cited there in the Notes section at the end of the chapter.

In [33] and [18], the transform (3.4) is formulated for operator-valued functions.
We now discuss its extension to formal power series. In what follows, we shall often
have use for the operator JY,U ⊗ IH 2

Y⊕U (F
+
d )

acting on H 2
Y⊕U (F

+
d ); we shall abuse

notation and still write this operator as JY,U .

Definition 3.1 Given coefficient Hilbert spaces U , Y , F , the noncommutative
indefinite Schur class Snc,d (JY,U , JF ,U ) consists of formal power series

A(z) =
[
A11(z) A12(z)

A21(z) A22(z)

]
∈ L

([
F
U

]
,

[
Y
U

])
〈〈z〉〉 (3.5)

such that the multiplication operator

MA : (H 2
F⊕U (F

+
d ), JF ,U )→ (H 2

Y⊕U (F
+
d ), JY,U )

is a (JF ,U , JY,U )-bicontraction:

M∗AJY,UMA � JF ,U and MAJF ,UM
∗
A � JY,U . (3.6)

By [18], the first relation in (3.6) alone guarantees that MA22 is injective and has
closed range, and if this is the case, then the second relation holds if and only if
MA22 ∈ L(H 2

U (F
+
d )) is an invertible bijection.

The first relation in (3.6) means that for any element g = [ g1
g2

] ∈ H 2
F⊕U (F

+
d ),

‖Ag‖2
(H 2

Y⊕U (F
+
d ),JY,U )

≤ ‖g‖2
(H 2

F⊕U (F
+
d ),JF ,U )

which, on account of (3.1) and (3.5), can be written in more detail as

‖A11g1 +A12g2‖2H 2
Y (F

+
d )
− ‖A21g1 +A22g2‖2H 2

U (F
+
d )
≤ ‖g1‖2H 2

F (F
+
d )
− ‖g2‖2H 2

U (F
+
d )
.

Write the latter inequality equivalently as

‖A11g1 +A12g2‖2H 2
Y (F

+
d )
+ ‖g2‖2H 2

U (F
+
d )
≤ ‖A21g1 +A22g2‖2H 2

U (F
+
d )
+ ‖g1‖2H 2

F (F
+
d )
,
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or as

∥∥∥∥
[
A11 A12

0 I

] [
g1

g2

]∥∥∥∥
H 2
Y⊕U (F

+
d )

≤
∥∥∥∥
[
I 0
A21 A22

] [
g1

g2

]∥∥∥∥
H 2
F⊕U (F

+
d )

. (3.7)

Since the range of
[

I 0
MA21 MA22

]
is the whole H 2

F⊕U (F
+
d ), it follows from (3.7) that

�(z) = TPG(A)(z) :=
[
A11(z) A12(z)

0 I

] [
I 0

A21(z) A22(z)

]−1

(3.8)

=
[
I −A12(z)

0 −A22(z)

]−1 [
A11(z) 0
A21(z) −I

]
, (3.9)

the Potapov-Ginzburg transform of A, belongs to the noncommutative Schur class
Snc,d(F ⊕ U,Y ⊕ U). Similarly to the case of constant operators (3.4), the
transform (3.8) is an involution that establishes a bijection between the elements of
the noncommutative indefinite Schur class Snc,d(JY,U , JF ,U ) and Schur-class power
series � with the block �22 boundedly invertible in Mnc,d(U).

3.2 Indefinite de Branges-Rovnyak Spaces and
Potapov-Ginzburg Transform of Kernels and Realizations

The second relation in (3.6) can be reformulated in terms of positive kernels as
follows. By (2.7), the action of the operator M∗A : H 2

Y⊕U (F
+
d ) → H 2

F⊕U (F
+
d ) on

the kernel elements kSz(·, ζ )
[
y
u

]
(y ∈ Y , u ∈ U) is given by the formula

M∗AkSz(·, ζ )
[
y
u

] = kSz(·, ζ )A(ζ )∗
[
y
u

]
.

Therefore,

JY,U −MAJF ,UM
∗
A : kSz(·, ζ )

[
y
u

] 
→kSz(·, ζ )JY,U
[
y
u

]
− A(·)kSz(·, ζ )JF ,UA(ζ )

∗ [ y
u

]
.

By linearity, the latter formula extends to linear combinations of kernel elements,
and it is not hard to show that the second condition in (3.6) (i.e., JY,U −
MAJF ,UM

∗
A � 0) is equivalent to the formal kernel

K
JF ,U ,JY,U
A (z, ζ ) := kSz(z, ζ )JY,U − A(z)(kSz(z, ζ )JF ,U )A(ζ )

∗ (3.10)
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be positive. Therefore, it makes sense to associate the de Branges-Rovnyak space

H(K
JF ,U ,JY,U
A ) with an indefinite Schur-class power series A.

Furthermore the formal kernel K
JF ,U ,JY,U
A (z, ζ ) for the indefinite de Branges-

Rovnyak space associated with the indefinite Schur-class power series A can be
recovered from the formal kernel K�(z, ζ ) for the associated definite de Branges-
Rovnyak space associated with the Schur-class power series � = TPG(A)
according to the following formula.

Proposition 3.2 If the power series � is the Potapov-Ginzburg transform of A ∈
Snc,d(JY,U , JF ,U ), then the associated kernelK� can be recovered as a kernel-level

Potapov-Ginzberg transform of the kernel K
JF ,U ,JY,U
A according to the following

formula:

K
JF ,U ,JY,U
A (z, ζ ) = TA

PG(K�)(z, ζ )

:=
[
I −A12(z)

0 −A22(z)

]
K�(z, ζ )

[
I 0

−A12(ζ )
∗ −A22(ζ )

∗
]
. (3.11)

Proof The equality (3.11) can be seen to follow from the definitions (2.13), (3.10)
of the respective kernels and the formula (3.9). ��

We now indicate how to extend the Potapov-Ginzburg transform to realization
matrices U so that we can recover the Potapov-Ginzburg transform A := TPG(�) =
TPG(TU) of the characteristic formal power series of TU in realization form as

TPG(TU) = TTPG(U) (3.12)

where Ũ = TPG(U) is the appropriate version of the Potapov-Ginzburg transform
of the colligation matrix U.

Theorem 3.3 Suppose that

U = U =
⎡
⎣A | B1 B2

C1 | D11 D12

C2 | D21 D22

⎤
⎦ =

⎡
⎢⎢⎣
A1 | B11 B21

...
∣∣ ...

...
Ad | Bd1 Bd2
C1 | D11 D12
C2 | D21 D22

⎤
⎥⎥⎦ :

⎡
⎣XF
U

⎤
⎦→

⎡
⎣X

d

Y
U

⎤
⎦ (3.13)

is a colligation matrix with characteristic formal power series

TU(z) = �(z) =
[
�11(z) �12(z)

�21(z) �22(z)

]

=
[
D11 D12

D21 D22

]
+

[
C1

C2

]
(I − Z(z)A)−1Z(z)

[
B1 B2

]
.
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Assume that D22 is invertible, so �22 is invertible in the algebra of formal power
series L(U)〈〈z〉〉. Let A = TPG(�) ∈ L(F ⊕ U,Y ⊕ U)〈〈z〉〉 be equal to the
Potapov-Ginzburg transform of � as in (3.4). Let us set

Ũ′ = TPG(U′)

where U′ is the same as U but organized differently as a block 2× 2 matrix:

U′ =
⎡
⎣A B1 | B2

C1 D11 | D12

C2 D21 | D22

⎤
⎦ .

Application of the Potapov-Ginzburg transform to U′ gives us a block 3× 3 matrix
Ũ′ organized as a block 2× 2 matrix of the form

Ũ′ =
⎡
⎣ Ã B̃1 | B̃2

C̃1 D̃11 | D̃12

C̃2 D̃21 | D̃22

⎤
⎦ . (3.14)

Define a new colligation matrix Ũ by reorganizing Ũ′ as a block-2 × 2 matrix
according to

Ũ =
⎡
⎣ Ã | B̃1 B̃2

C̃1 | D̃11 D̃12

C̃2 | D̃21 D̃22

⎤
⎦ . (3.15)

Then we recover A(z) in realization form as the characteristic formal power series
TŨ of Ũ:

A(z) = TŨ(z) (3.16)

=
[
D̃11 D̃12

D̃21 D̃22

]
+

[
C̃1

C̃2

]
(I − Z(z)Ã)−1 [

B̃1 B̃2
]
. (3.17)

Thus, if we are not fussy about specifying how to view a block 3 × 3 matrix as a
block 2× 2 matrix, the formula (3.12) holds.

Proof As we are assuming that the operator D22 ∈ L(U) is boundedly invertible,
we may form the Potapov-Ginzburg transform Ũ′ := TPG(U′) via the rule (3.4):

Ũ′ =
[
Ã B̃1 B̃2
C̃1 D̃11 D̃12
C̃2 D̃21 D̃22

]
= TPG(U

′) =
[
A B1 B2
C1 D11 D12
0 0 IU

] [
IX 0 0
0 IF 0
C2 D21 D22

]−1

,
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or in more detail,

Ã = A− B2D
−1
22 C2, (3.18)

B̃ = [
B̃1 B̃2

] = [
B1 B2

] [ IF 0
D21 D22

]−1

, (3.19)

C̃ =
[
C̃1

C̃2

]
=

[
IY −D12

0 −D22

]−1 [
C1

C2

]
, (3.20)

D̃ =
[
D̃11 D̃12

D̃21 D̃22

]
=

[
D11 D12

0 IU

] [
IF 0
D21 D22

]−1

. (3.21)

As a Potapov-Ginzburg transform, Ũ′ is a block 2 × 2 matrix of the form (3.14).
To reinterpret it as a colligation matrix, we view it instead as the same matrix but
organized as in (3.15). We then let Ã(z) be the characteristic formal power series
of Ũ as given by the right-hand side of (3.17). It remains to show that Ã equals the
original power series A = TPG(�). To this end, we read off from (3.26)

[
�11 �12

0 I

]
=

[
D11 D12

0 I

]
+

[
C1

0

]
(I − Z(z)A)−1Z(z)

[
B1 B2

]
, (3.22)

[
I 0
�21 �22

]
=

[
I 0
D21 D22

]
+

[
0
C2

]
(I − Z(z)A)−1Z(z)

[
B1 B2

]
,

and then, upon making use of (3.18)–(3.21), we compute

Ã(z)

[
I 0

�21(z) �22(z)

]

=
(
D̃ + C̃(I − Z(z)Ã)−1Z(z)B̃

)

·
([

I 0
D21 D22

]
+

[
0
C2

]
(I − Z(z)A)−1Z(z)

[
B1 B2

])

=
[
D11 D12

0 I

]
+ D̃

[
0
C2

]
(I − Z(z)A)−1Z(z)

[
B1 B2

]

+ C̃(I − Z(z)Ã)−1Z(z)
[
B1 B2

]

+ C̃(I − Z(z)Ã)−1Z(z)B̃2C2(I − Z(z)A)−1Z(z)
[
B1 B2

]
. (3.23)

Since B̃2C2 = B2D
−1
22 C2 = A − Ã (by (3.18) and (3.19)), the sum of the two last

terms on the right side of (3.23) equals

C̃(I − Z(z)A)−1Z(z)
[
B1 B2

]
.



Interpolation by Contractive Multipliers 99

Besides, it follows from (3.20) and (3.21) that

C̃ + D̃
[

0
C2

]
=

[
I −D12D

−1
22

0 −D−1
22

] [
C1

C2

]
+

[
D12

I

]
D−1

22 C2 =
[
C1

0

]
.

Taking the latter into account, we simplify the right side of (3.23) to

[
D11 D12

0 I

]
+

[
C1

0

]
(I − Z(z)A)−1Z(z)

[
B1 B2

]
.

In other words and in view of (3.22), we just verified the identity

Ã(z)

[
I 0

�21(z) �22(z)

]
=

[
�11(z) �12(z)

0 I

]
.

Therefore, Ã = TPG(�) = A and hence, the original power series A admits the
realization (3.17). ��

We are now ready to present the indefinite analogue of Theorem 2.3 as an
application of Theorem 3.3.

Theorem 3.4 Let A ∈ L(F ⊕ U,F ⊕ Y)〈〈z〉〉 be decomposed as in (3.5). The
following are equivalent:

1. A ∈ Snc,d (JY,U , JF ,U ).
2. MA22 ∈ L(H 2

U (F
+
d )) is a bijection and the formal noncommutative kernel

K
JF ,U ,JY,U
A (z, ζ ) defined in (3.10) is positive.

3. There exists a Hilbert space X and a (JX⊕F ,U , JXd⊕Y,U )-unitary connection

operator Ũ of the form

Ũ =
[
Ã B̃

C̃ D̃

]
:
[

X
F ⊕ U

]
→

[
X d

Y ⊕ U

]
(3.24)

so that A(z) can be realized as a formal power series in the form

A(z) = D̃ + C̃(I − Z(z)Ã)−1Z(z)B̃ (3.25)

where Z(z), Ã and B̃ are defined as in (2.8).
4. There exists a Hilbert space X and a (JX⊕F ,U , JXd⊕Y,U )-bicontractive operator

Ũ as in (3.24) such that A(z) is given as in (3.17).
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Proof The equivalence (1)⇔(2) has been discussed in the previous section.
To verify the implication (1)⇒(3), we write a realization

[
�11 �12

�21 �22

]
=

[
D11 D12

D21 D22

]
+

[
C1

C2

]
(I − Z(z)A)−1Z(z)

[
B1 B2

]
(3.26)

with the unitary connection matrix

U =
⎡
⎣A | B1 B2

C1 | D11 D12

C2 | D21 D22

⎤
⎦ =

⎡
⎢⎢⎣
A1 | B11 B21

...
∣∣ ...

...
Ad | Bd1 Bd2
C1 | D11 D12
C2 | D21 D22

⎤
⎥⎥⎦ :

⎡
⎣XF
U

⎤
⎦→

⎡
⎣X

d

Y
U

⎤
⎦ (3.27)

for the Schur-class multiplier � = TPG(A). By general principles of the Potapov-
Ginzburg transform, we can recover A from � as the Potapov-Ginzburg transform
of �:

A = TPG(�).

By Theorem 3.3 we know that A = TŨ where Ũ′ = TPG(U′) (where we use the
notation in the proof of Theorem 3.3). As U is unitary, so also is U′. By general
properties of the Potapov-Ginzburg transform, it then follows that Ũ′ (and also Ũ) is
(JX⊕F ,U , UX d⊕U ,U )-unitary, i.e., we have a connection matrix Ũ so that condition
(3) in Theorem 3.4 holds. This completes the proof of (1)⇒(3).

The implication (3)⇒(4) is trivial. To verify (4)⇒(1), let us assume that A admits
a realization (3.17) with the (JX⊕F ,U , JXd⊕Y,U )-bicontractive connecting matrix Ũ.

Then the matrix U = TPG(Ũ) of the form (3.13) is a contraction and therefore the
power series �(z) defined as in (3.26) is in the Schur class, by Theorem 2.3. Since
� = TPG(A) and hence A = TPG(�) (again by Theorem 3.3), it follows that
A ∈ Snc,d(JY,U , JF ,U ). ��

We next discuss the construction of A ∈ Snc,d (JY,U , JF ,U ) with the prescribed
output pair (C̃, Ã). It is tempting to use the Potapov-Ginzburg transform to derive
such a construction from Theorem 2.4. However, the formulas (3.18)–(3.21) show
that this approach requires D̃ and B̃2 which are not known explicitly. We thus need
a parallel construction; the ideas follow the proof of the corresponding result in the
context of the Drury-Arveson space rather than the Fock space as is done in [6].

It is convenient to change notation. Recall the definition of output-stable pair as
in the discussion surrounding the introduction of the observability operator (2.10).
Let us consider an output-stable pair (C,T) where

C =
[
E

N

]
: X →

[
Y
U

]
and T = (T1, . . . , Td) ∈ L(X )d . (3.28)
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We define the JY,U -gramian G
JY,U
C,T of the pair (C,T) by

G
JY,U
C,T := O∗[

E
N

]
,T
JY,UO[

E
N

]
,T

= O∗E,TOE,T −O∗N,TON,T

= GE,T − GN,T. (3.29)

An important property of G
JY,U
C,T is that it solves the Stein equation

P −
d∑
j=1

T ∗j PTj = C∗JY,UC, (3.30)

as follows easily from the fact that GE,T and GN,T satisfy Stein equations of the
type (2.12), or by plugging in the infinite series representations

G
JY,U
C,T = GE,T − GN,T

=
∑
α∈F+d

T∗α�
(
E∗E −N∗N)

Tα

=
∑
α∈F+d

T∗α�C∗JY,UCTα.

Proposition 3.5 Let us assume that the pair (C,T) as in (3.28) is output-stable

and that the gramian P = G
JY,U
C,T given by (3.29) is strictly positive definite. Then

the operator OC,T : (X , P ) → (H 2
Y⊕U (F

+
d ), J ) is a contraction. This operator is

isometric if and only if T is strongly stable.

Proof By the definition of H 2(F+d )-inner product, we have

〈
JOC,Tx, OC,Tx

〉
H 2
Y⊕U (F

+
d )
=

∑
α∈F+d

〈
T∗α�C∗JCTαx, x

〉
X

= lim
N→∞

∑
α∈F+d : |α|≤N

〈
T∗α�(P −

d∑
j=1

T ∗j PTj )Tαx, x
〉
X

= lim
N→∞

(〈Px, x〉X −
∑

α∈F+d : |α|=N+1

〈T∗α�PTαx, x〉X
) ≤ 〈Px, x〉

with equality in the last step for all x ∈ X if and only if T is strongly stable. ��
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The proof of the next proposition can be found in [6, p. 312]. Note that in its
formulation, P is any strictly positive solution to the Stein equation (3.30).

Proposition 3.6 Let us assume that (3.30) holds for C, T1, . . . , Td as in (3.28) and
a strictly positive definite P ∈ L(X ). Then there exist an auxiliary Hilbert space

F and an injective
[
B
D

] : F ⊕ U →
[
X d

Y

]
solving the J -Cholesky factorization

problem

[
B

D

]
JF ,U

[
B∗ D∗

] =
[
P−1 ⊗ Id 0

0 JY,U

]
−

[
T

C

]
P−1 [T ∗ C∗] , (3.31)

where we have set T =
[
T1

...
Td

]
.

We are now ready to present the promised result on the construction of A ∈
Snc,d(JY,U , JF ,U ) with the prescribed output pair (C̃, Ã).

Theorem 3.7 Let us assume that (3.30) holds for C, T1, . . . , Td as in (3.28) and a

strictly positive definite P ∈ L(X ). Let
[
B
D

] : F ⊕ U →
[
X d

Y

]
be a solution to the

Cholesky factorization problem (3.31). Then

1. The space M := RanOC,T endowed with the lifted norm

∥∥OC,Tx
∥∥2 = 〈Px, x〉X ,

is isometrically equal to the NFRKHS with reproducing kernel

KP
C,T(z, ζ ) = C(I − Z(z)T )−1P−1(I − T ∗Z(ζ )∗)−1C∗. (3.32)

2. The operator

U =
[
T B

C D

]
:
[

X
F ⊕ U

]
→

[
X d

Y ⊕ U

]
(3.33)

satisfies

U
[
P−1 0

0 JF ,U

]
U∗ =

[
P−1 ⊗ Id 0

0 JY,U

]
, (3.34)

and the kernel KP
C,T(z, ζ ) appearing in (3.32) can be expressed as

KP
C,T(z, ζ ) = K

JF ,U ,JY,U
A (z, ζ )

:= kSz(z, ζ )⊗ JY,U − A(z)(kSz(z, ζ )⊗ JF ,U )A(ζ )
∗ (3.35)
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where A(z) is the characteristic formal power series of the colligation (3.33):

A(z) = D + C(I − Z(z)T )−1Z(z)B. (3.36)

3. If the operator
[
B
D

]
is injective, then U in (3.33) in addition satisfies

U∗
[
P ⊗ Id 0

0 JY,U

]
U =

[
P 0
0 JF ,U

]
,

and A(z) belongs to Snc,d(JY,U , JF ,U ).

Proof Statement (1) follows by standard reproducing kernel Hilbert space consid-
erations; for this we refer the reader to [10].

Let us now assume that
[
B
D

]
satisfies (3.31) which in a more compact form can

be written as (3.34). Then for A(z) defined as in (3.36), we compute

A(z)JF ,UA(ζ )
∗

= [
C(I − Z(z)T )−1Z(z) I

] [B
D

]
JF ,U

[
B∗ D∗

] [Z(ζ )∗(I − T ∗Z(ζ )∗)−1C∗
I

]

= [
C(I − Z(z)T )−1Z(z) I

] [P−1 ⊗ Id 0
0 JY,U

] [
Z(ζ )∗(I − T ∗Z(ζ )∗)−1C∗

I

]

− [
C(I − Z(z)T )−1Z(z) I

] [T
C

]
P−1 [T ∗ C∗]

[
Z(ζ )∗(I − T ∗Z(ζ )∗)−1C∗

I

]

= JY,U + C(I − Z(z)T )−1Z(z)(P−1 ⊗ Id)Z(ζ )∗(I − T ∗Z(ζ )∗)−1C∗

− (C(I − Z(z)T )−1Z(z)T + I)P−1(T ∗Z(ζ )∗(I − T ∗Z(ζ )∗)−1 + I)C∗

= JY,U + C(I − Z(z)T )−1Z(z)(P−1 ⊗ Id)Z(ζ )∗(I − T ∗Z(ζ )∗)−1C∗

− C(I − Z(z)T )−1P−1(I − T ∗Z(ζ )∗)−1C∗,

which can be equivalently written as

JY,U − A(z)JF ,UA(ζ )
∗

= C(I − Z(z)T )−1((1−
d∑
j=1

zj ζ j )P
−1)(I − T ∗Z(ζ )∗)−1C∗.
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Multiplying the latter equality by zα on the right and by ζ
α�

on the left, and then
summing up these equalities over all α ∈ F

+
d leads to

kSz(z, ζ )⊗ JY,U − A(z)(kSz(z, ζ )⊗ JF ,U )A(ζ )
∗

= C(I − Z(z)T )−1P−1(I − T ∗Z(ζ )∗)−1C∗,

which proves (3.35). If the operator
[
B
D

]
is injective, then the operator

Ũ =
[
P

1
2 ⊗ Id 0

0 I

]
U

[
P− 1

2 ⊗ Id 0
0 I

]

is (JX⊕F ,U , JXd⊕Y,U )-unitary, and its characteristic formal power series is the same
A as in (3.36). But then A belongs to Snc,d (JY,U , JF ,U ), by Theorem 3.4. ��

3.3 Linear Fractional Transformations

Another consequence of the second relation in (3.6) (obtained upon compressing the
latter relation to U) is

MA21M
∗
A21
+MA22M

∗
A22
� IH 2

U (F
+
d )
.

Since MA22 is invertible and M−1
A22
= MA−1

22
, we can rewrite this last inequality as

MA−1
22 A21

M∗
A−1

22 A21
� IH 2

U (F
+
d )
−MA−1

22
M∗

A−1
22
≺ IH 2

U (F
+
d )
.

Therefore, ‖MA−1
22 A21

‖ < 1 and hence,

‖MA−1
22 A21E‖ < 1 for any E ∈ Snc,d(U,F).

Therefore, the operator IH 2
U (F

+
d )
−MA−1

22 A21E is invertible on H 2
U (F

+
d ) with inverse

(IH 2
U (F

+
d )
−MA−1

22 A21E )
−1 = M

(IU−A−1
22 A21E)−1 .

Thus, the formal series IU − A−1
22 A21E is invertible in Mnc,d(U) for any E ∈

Snc,d(U,F) as well as the series

A21(z)E(z)+ A22(z) = A22(z)(A22(z)
−1A21(z)E(z)+ IU ).
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We conclude: if A ∈ Snc,d (JY,U , JF ,U ) and E ∈ Snc,d (U,F), then the linear
fractional transform of E

TA[E](z) = (A11(z)E(z)+ A12(z))(A21(z)E(z)+ A22(z))
−1 (3.37)

is a well-defined element of L(U,Y)〈〈z〉〉. In other words, for any A ∈
Snc,d(JY,U , JF ,U ), the linear fractional map TA given by (3.37) is well-defined
on Snc,d (U,F). The next theorem gives a useful characterization of its range.

Theorem 3.8 Let A ∈ Snc,d(JY,U , JF ,U ). Then an S ∈ L(U,Y)〈〈z〉〉 has the form

S = TA[E]

for some E ∈ Snc,d (U,F) if and only if S ∈ Snc,d (U,Y) and the operator

[
I −MS

] :
[
y(z)

u(z)

]

→ y(z)− S(z)u(z)

maps H(K
JF ,U ,JY,U
A ) contractively into the de Branges-Rovnyak space H(KS).

Proof Suppose that S ∈ Snc,d(U,Y) and that
[
I −MS

]
maps H(K

JF ,U ,JY,U
A )

contractively into H(KS). By Proposition 2.2 (applied to F = [
I −S], K = KS

and K ′ = KJF ,U ,JY,U
A ), we conclude that the kernel given by

KS(z, ζ )−
[
I −S(z)]KJF ,U ,JY,U

A (z, ζ )

[
I

−S(ζ )∗
]
� 0 (3.38)

is positive, where KS is given by (2.13). Combining (2.13) with the definition (3.1)
of JY,U gives us

KS(z, ζ ) =
[
I −S(z)] kSz(z, ζ )⊗ JY,U

[
I

−S(ζ )∗
]
. (3.39)

Substituting the latter formula in (3.38), we then factor out
[
I −S(z)] on the left

and its adjoint on the right to get

[
I −S(z)]

(
kSz(z, ζ )⊗ JY,U −K

JF ,U ,JY,U
A (z, ζ )

)[
I

−S(ζ )∗
]
� 0, (3.40)

which on account of the definition (3.10), can be written as

[
I −S(z)]A(z)(kSz(z, ζ )⊗ JF ,U )A(ζ )

∗
[

I

−S(ζ )∗
]
� 0. (3.41)
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If we set

[
u(z) −v(z)] := [

I −S(z)]A(z) ∈ L(F ⊕ U,Y)〈〈z〉〉, (3.42)

then we get, on account of (3.1),

u(z)(kSz(z, ζ )⊗ IF )u(ζ )∗ − v(z)(kSz(z, ζ )⊗ IU )v(ζ )∗ � 0, (3.43)

where, from (3.42), we have

u(z) = A11(z)− S(z)A21(z), −v(z) = A12(z)− S(z)A22(z).

By Theorem 2.5, there is a E ∈ Snc,d(U,F) so that v(z) = u(z)E(z), i.e.,

−(A12(z)− S(z)A22(z)) = (A11(z)− S(z)A21(z))E(z)

which can be rearranged as

S(z)(A21(z)E(z)+ A22(z)) = A11(z)E(z)+ A12(z).

It now follows that we recover S as S = TA[E].
Conversely, suppose that E ∈ Snc,d (U,F) and S = TA[E]. By reversing the

steps in the argument above and using that condition (3.43) is necessary as well as
sufficient in Theorem 2.5, we arrive at (3.41) which, due to the definition (3.10)
can be rewritten in the form (3.40). From the identity (3.39) we are then led

to (3.38). As K
JF ,U ,JY,U
A is a positive kernel by assumption, we conclude that KS

is a positive kernel, i.e., that S ∈ Snc,d (U,Y). Then the inequality (3.38) means, by

Proposition 2.2, that
[
I −MS

]
maps H(K

JF ,U ,JY,U
A ) contractively into H(KS). ��

3.4 Redheffer Transformation

In addition to the linear-fractional transformations of chain-matrix form (3.37)
as discussed above we shall also have use of linear-fractional transformations of
Redheffer form. To define these, we suppose that we are given the formal power
series

�(z) =
[
�11(z) �12(z)

�21(z) �22(z)

]
∈ L(U ⊕ �̃∗,Y ⊕ �̃)〈〈z〉〉 (3.44)

for some Hilbert spaces U , �̃∗, Y , �̃. We assume that �22 ∈ Snc,d(�̃∗, �̃) and that
moreover, ‖M�22‖ < 1. Then, as was explained above, for any Schur-class power
series W ∈ Snc,d(�̃, �̃∗), the formal inverse of (I −W�22) exists in Mnc,d (�∗),
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and we define the associated Redheffer linear-fractional map R� acting from
Snc,d(�̃, �̃∗) to L(X ,X ′)〈〈z〉〉 by

R�[W] := �11(z)+�12(z)(I −W(z)�22(z))
−1W(z)�21(z). (3.45)

The following criterion for a given power series S to be in the range of R� ,
while less explicit than the criterion in Theorem 3.8, nevertheless is useful in some
applications (see Theorem 7.3 below). For this purpose we say that a pair of formal
power series

a ∈ L(�̃∗,Y)〈〈z〉〉, c ∈ L(�̃,Y)〈〈z〉〉

is a Schur-pair if the associated L(X )-valued formal kernel below is positive:

a(z)(kSz(z, ζ )⊗ I�̃∗)a(ζ )∗ − c(z)(kSz(z, ζ )⊗ I�̃)c(ζ )∗ � 0. (3.46)

Theorem 3.9 Given �(z) as in (3.44) with ‖M�22‖ < 1, a formal power series
S ∈ L(U,Y)〈〈z〉〉 is of the from S = R�[W] for some W ∈ Snc,d(�̃, �̃∗) if and
only if there exists a Schur-pair (a(z), c(z)) so that

[
IY c(z)

]
�(z) = [

S(z) a(z)
]
. (3.47)

Proof Suppose that (a(z), c(z)) is a Schur-pair satisfying (3.47). Due to condi-
tion (3.46) and Theorem 2.5, there is a W ∈ Snc,d(�̃, �̃∗) so that

c(z) = a(z)W(z). (3.48)

Then (3.47) can be written as

�11(z)+ a(z)W(z)�21(z) = S(z),
�12(z)+ a(z)W(z)�22(z) = a(z). (3.49)

From the second of equations (3.49) we can solve for a(z):

a(z) = �12(z)(I −W(z)�22(z))
−1. (3.50)

If we plug this expression into the first of equations (3.49), we get

S(z) = �11(z)+�12(z)(I −W(z)�22(z))
−1W(z)�21(z) = R�[W](z)

as wanted. For the converse direction, given that S = R�[W], if we define (a, c)
by (3.48) and (3.50), then (a, c) is a Schur-pair meeting the criterion (3.47). ��
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Remark 3.10 Under the assumption ‖M�22‖ < 1, a straightforward computation
shows that for S = R�[W], the kernels KS , KW and K� defined via the
formula (2.13) are related as follows:

KS(z, ζ ) = �(z)KW(z, ζ )�(ζ )∗ + [
I �(z)

]
K�(z, ζ )

[
I

�(ζ )∗
]

where we have set

�(z) = �12(z)(I −W(z)�22(z))
−1.

In particular, if � and W are in respective noncommutative Schur classes, then the
kernel KS is positive and then S ∈ Snc,d (U,Y), by Theorem 2.3.

4 Operator-Argument Interpolation Problem: Problem
Statement and Connections with Other Problems

For an output-stable pair (E,T)withE ∈ L(X ,Y) and T = (T1, . . . , Td) ∈ L(X )d ,
we define a left-tangential functional calculus f → (E∗f )∧L(T∗) on H 2

Y(F
+
d ) by

(E∗f )∧L(T∗) =
∑
α∈F+d

T∗α�E∗fα if f =
∑
α∈F+d

fαz
α ∈ H 2

Y(F
+
d ). (4.1)

The computation

〈 ∑
α∈F+d

T∗α�E∗fα, x
〉
X =

∑
α∈F+d

〈
fα, ETαx

〉
Y = 〈f, OE,Tx〉H 2

Y (F
+
d )

shows that the output-stability of the pair (E,T) (recall (2.10)) is exactly what is
needed to verify that the infinite series in the definition (4.1) of (E∗f )∧L(T∗)
converges in the weak operator topology on X . In fact the left-tangential evaluation
with operator argument f → (E∗f )∧L(T∗) amounts to the adjoint of the
observability operator:

(E∗f )∧L(T∗) = O∗E,Tf for f ∈ H 2
Y(F

+
d ). (4.2)

The evaluation map (4.2) extends to multipliers S ∈Mnc,d(U,Y) by

(E∗S)∧L(T∗) = O∗E,TMS : U → X
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and suggests the interpolation problem with operator argument OAP(T, E,N)
whose data set consists of a d-tuple T = (T1, . . . , Td) ∈ L(X )d and operators
E ∈ L(X ,Y) and N ∈ L(X ,U) such that the pair (E,T) is output stable.

Operator Argument Interpolation Problem (OAP(T, E,N)) Given the data set
{T, E,N} as above, find all S ∈ Snc,d(U,Y) such that

(E∗S)∧L(T∗) := O∗E,TMS |U = N∗. (4.3)

Such problems have been considered in [7, 8, 29, 30] for the commutative and
noncommutative setting. First we observe simple necessary conditions for a problem
OAP(T, E,N) to have a solution.

Proposition 4.1 Let (E,T) be an output-stable pair with E ∈ L(X ,Y), let S ∈
Mnc,d(U,Y) and let N be defined as in (4.3). Then:

1. The pair (N,T) is output stable and

O∗E,TMS = O∗N,T : H 2
U (F

+
d )→ X . (4.4)

2. If S ∈ Snc,d(U,Y), then O∗N,TON,T � O∗E,TOE,T.

Hence, if the problem OAP(T, E,N) has a solution S ∈ Snc,d (U,Y), then
(N,T) is also output-stable and

P := O∗E,TOE,T −O∗N,TON,T � 0. (4.5)

Proof If the pair (E,T) is output-stable, it follows by a simple inner-product
computation (see e.g., [10, Theorem 2.8]) that

R∗zjOE,T x = OE,T Tjx for all x ∈ X and j = 1, . . . , d,

where R∗zj is a backward shift (1.4) on H 2
Y(F

+
d ). Iterating the latter relations we

conclude that for any α ∈ F
+
d and any x ∈ X ,

R∗αz OE,T x = OE,T Tαx

which can be written in the operator form as R∗αz OE,T = OE,T Tα . Taking adjoints
in the latter equality gives

O∗E,T Rα�
z = T∗α�O∗E,T : H 2

Y(F
+
d )→ X . (4.6)

We next apply the equality (4.6) to the vectorMShα ∈ H 2
Y(F

+
d ) where S is the given

contractive multiplier from H 2
U (F

+
d ) to H 2

Y(F
+
d ) and hα is an arbitrary fixed vector

in U :

T∗α�O∗E,T MShα = O∗E,T Rα�
z MShα.
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By the definition (1.3) of the right shift tuple Rz and due to (4.3), the latter equality
can be written as

O∗E,T MS : hαzα 
→ T∗α�O∗E,T MShα = T∗α�N∗hα.

The latter formula extends by linearity to

O∗E,T MS :
∑
α∈F+d

hαz
α 
→

∑
α∈F+d

T∗α�N∗hα, (4.7)

first to U-valued polynomials, and then by continuity (since O∗E,T MS : H 2
U (F

+
d )→

X is bounded) to all
∑

α∈F+d hαz
α ∈ H 2

U (F
+
d ). The adjoint of this operator is a

bounded operator from X → H 2
U (F

+
d ). Furthermore, for each x ∈ X and each

h(z) ∈ H 2
U (F

+
d ), we have by (4.7),

〈(O∗E,T MS)
∗x, h〉H 2

U (F
+
d )
= 〈

x, O∗E,T MSh
〉
H 2
U (F

+
d )

= 〈
x,

∑
α∈F+d

T∗α�N∗hα
〉
X

=
∑
α∈F+d
〈NTαx, hα〉U . (4.8)

For a fixed integer n > 0, we introduce the U-valued polynomial

hx,n(z) =
∑

α∈F+d :|α≤n
(NTαx)zα

and observe that

‖hx,n‖2H 2
U (F

+
d )
=

∑
α∈F+d :|α≤n

‖NTαx‖2U . (4.9)

We next apply the equality (4.8) to the polynomial h = hx,n:

〈(O∗E,T MS)
∗x, hx,n〉H 2

U (F
+
d )
=

∑
α∈F+d :|α≤n

〈NTαx, NTαx〉U = ‖hx,n‖2H 2
U (F

+
d )

and then conclude by the Cauchy inequality that

‖hx,n‖2H 2
U (F

+
d )
≤ ‖(O∗E,T MS)

∗x‖H 2
U (F

+
d )
· ‖hx,n‖H 2

U (F
+
d )
,
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or equivalently,

‖hx,n‖H 2
U (F

+
d )
≤ ‖(O∗E,T MS)

∗x‖H 2
U (F

+
d )
. (4.10)

Letting n→∞ in (4.10) and making use of (4.9) we conclude that

∑
α∈F+d
‖NTαx‖2U = lim

n→∞
∑

α∈F+d :|α≤n
‖NTαx‖2U ≤ ‖(O∗E,T MS)

∗x‖2
H 2
U (F

+
d )
<∞,

so that the pair (N,T) is output stable. Now we get back to (4.8) and continue the
calculation for an arbitrary h ∈ H 2

U (F
+
d ) as follows:

〈(O∗E,T MS)
∗x, h〉H 2

U (F
+
d )
=

∑
α∈F+d
〈NTαx, hα〉U = 〈ON,Tx, h〉H 2

U (F
+
d )

verifying that (O∗E,T MS)
∗ = ON,T which in turn is equivalent to (4.4).

If S ∈ Snc,d(U,Y), then I −MSM
∗
S � 0 and by (4.4) we have for all x ∈ X ,

0 ≤ 〈
(I −MSM

∗
S )OE,Tx, OE,Tx

〉
H 2
Y (F

+
d )

= ‖OE,Tx‖2H 2
Y (F

+
d )
− ‖M∗SOE,Tx‖2H 2

U (F
+
d )

= ‖OE,Tx‖2H 2
Y (F

+
d )
− ‖ON,Tx‖2H 2

U (F
+
d )

which proves the second statement and completes the proof of the proposition. ��

Corollary 4.2 Conditions (4.3) and (4.4) are equivalent.

Proof Indeed, Proposition 4.1 shows that (4.3) implies (4.4). The converse
implication follows upon restricting equality (4.4) to constant power series from
H 2
U (F

+
d ):

(E∗S)∧L(T∗)u = O∗E,TMSu = O∗N,Tu

and taking into account that O∗
N,T|U = N∗. ��

We have seen in Proposition 4.1 that a necessary condition for a problem
OAP(T, E,N) to have a solution is that P � 0 where P : X → X is given by (4.5).
In the next section we shall see that this condition is also sufficient.

Now we will show that the problem OAP contains the commutant lifting problem
as a particular case. Let us suppose that� ∈Mnc,d (U,Y) (withM� not necessarily
contractive) satisfies the interpolation condition (4.3), i.e., O∗E,TM� |U = N∗. Then
any other multiplier S subject to (4.3) is necessarily of the form S = � + � for
some multiplier � with range space contained in KerO∗E,T.
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Let us now assume that the d-tuple T = (T1, . . . , Td) is strongly stable (see (2.9)).
Then KerO∗E,T is a shift-invariant closed subspace of H 2

Y(F
+
d ) and hence, by the

Beurling-Lax theorem for the Fock space (see [11, Theorem 5.2]), there is a strictly
inner multiplier � ∈ Snc,d (F ,Y) (for some auxiliary Hilbert space F ) so that
KerO∗E,T = �H 2

F (F
+
d ). The subspace �H 2

F (F
+
d ) can be considered as a NFRKHS

in its own right with reproducing kernel�(z)(kSz(z, ζ )⊗IF )�(ζ )∗. If the bounded
multiplier � maps H 2

U (F
+
d ) into �H 2

Y(F
+
d ) and as a normalization we suppose

contractively, then a consequence of Proposition 2.2 is that the kernel

�(z)(kSz(z, ζ )⊗ IF )�(ζ )∗ −�(z)(kSz(z, ζ )⊗ IU )�(ζ )∗

is a positive kernel. When we combine this observation with the Leech theorem
(see Theorem 2.5), we conclude that any such multiplier � has the form �F

for some contractive multiplier F ∈ Mnc,d (F ,U) (or more generally, with
multiplier norm of F bounded by the multiplier norm of �). We thus conclude
that any S ∈ Mnc,d (U,Y) subject to condition (4.3) is necessarily of the form
S = � + �F where � ∈ Mnc,d(U,Y) is some particular solution, � is the
strictly inner multiplier equal to the Beurling-Lax representer of the shift invariant
subspace KerO∗E,T of H 2

Y(F
+
d ), and F ∈ Mnc,d is a free parameter. The problem

OAP(T, E,N) adds the constraint the multiplier norm of S be at most 1. We
have thus shown that the problem OAP(T, E,N) with strongly stable T can be
reformulated as a Sarason interpolation problem with the data set {�,�}:
Sarason Interpolation Problem (SIP) Given � ∈ Mnc,d(U,Y) and a strictly
inner � ∈ Snc,d(F ,Y), find all S ∈ Snc,d (U,Y) such that

S(z) = �(z)+�(z)F (z) for some F ∈Mnc,d(U,F).

As was first done for the single-variable case in the classical paper [35] of
Sarason and then in [27, 30] for both the noncommutative and commutative ball
setting, the SIP can be put in more operator-theoretic form as follows. Given the
data set {�,�} for a Sarason interpolation problem, introduce the subspace M by

M = H 2
Y(F

+
d )��H 2

F (F
+
d )

and define the operator � : H 2
U (F

+
d ) → M by � = PMM� . Note that M is

backward-shift-invariant and that � satisfies the intertwining property:

PMRzj� = �Rzj (j = 1, . . . , d). (4.11)

Furthermore, a multiplier S ∈Mnc,d(U,Y) solves the SIP(�,�) if and only if MS

satisfies the conditions

PMMS = � and ‖MS‖ ≤ 1.
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From these conditions we read off that if SIP(�,�) has a solution, then necessarily

‖�‖ ≤ 1. (4.12)

As mentioned previously, multipliers MS are characterized as those operators
between H 2

U (F
+
d ) and H 2

Y(F
+
d ) which intertwine the respective shift operators on

these spaces. It now follows that the SIP can be reformulated as the following
Commutant Lifting Problem:

Commutant Lifting Problem (CLP) Given an R∗z -invariant subspace M of
H 2
Y(F

+
d ) and an operator � : H 2

U (F
+
d ) → M subject to (4.11), find an operator

G : H 2
U (F

+
d )→ H 2

Y(F
+
d ) such that

‖G‖ ≤ 1, PMG = � and RzjG = GRzj (j = 1, . . . , d), (4.13)

or equivalently, find an S ∈ Snc,d(U,Y) such that

PMMS = �. (4.14)

If G is a solution of CLP, then it follows from (4.13) that

‖�‖ = ‖PMG‖ ≤ ‖G‖ ≤ 1,

and also

�Rzj = PMGRzj = PMRzjG = PMRzjPMG = PMRzj�,

where the third equality holds due to the backward shift invariance of M. Hence the
conditions (4.11) and (4.12) are certainly necessary for the existence of a solution
to CLP. That the converse holds is the assertion of the commutant lifting theorem
in [14].

Given a Sarason interpolation problem SIP(�,�), we have seen how to pass
to a CLP(M,�). Conversely, it is possible to pass from a CLP(M,�) to a
SIP(�,�) as follows. Take any Beurling-Lax representer � ∈ Snc,d(F ,Y) for
M ⊂ H 2

Y(F
+
d ) and choose any � ∈Mnc,d(U,Y) (not necessarily contractive) so

that � = PMM� . The fact that such a multiplier � always exists is of course a
consequence of Popescu’s Commutant Lifting theorem [28].

To conclude this section we will show that the problem CLP is equivalent to a
problem OAP(T, E,N) with strongly stable tuple T.

Theorem 4.3 Let M be a backward-shift-invariant subspace of H 2
Y (F

+
d ), let � ∈

H 2
U (F

+
d ) → M satisfy conditions (4.11) and let T = (T1, . . . , Td) ∈ L(M)d ,

E ∈ L(M,Y) and N ∈ L(M,U) be defined by

Tj = R∗zj |M (j = 1, . . . , d), E : f 
→ f∅ and N : h 
→ (�∗h)∅.
(4.15)
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Then the tuple T is strongly stable, and a contractive multiplier S solves
CLP(M,�) if and only if S solves OAP(T, E,N).

Conversely, suppose that T = (T1, . . . , Td), E and N are such that T is strongly
stable and the pairs (E,T) and (N,T) are output stable. Set M = RanOE,T and
define � : H 2

U (F
+
d )→M via its adjoint �∗:

�∗ : OE,Tx 
→ ON,Tx. (4.16)

Then M is a backward-shift-invariant subspace of H 2
Y(F

+
d ), � satisfies rela-

tions (4.11), and a contractive multiplier S ∈ Snc,d (U,Y) solves OAP(T, E,N)
if and only if S solves CLP(M,�).

Proof Let T, E,N be defined as in (4.15). From the fact that the backward-shift
d-tuple (1.4) is strongly stable on H 2

Y(F
+
d ) (see e.g., [10, Proposition 2.9]), its

restriction to an invariant subspace is strongly stable as well. Iterating the formula
for R∗zj in (1.4) gives

Tβ = R∗βz |M :
∑
α∈F+d

hαz
α 
→

∑
α∈F+d

hαβz
α

for all β ∈ F
+
d and therefore,

ETβh = hβ for all β ∈ F
+
d and h(z) =

∑
α∈F+d

hαz
α ∈M. (4.17)

Hence,

OE,Th =
∑
β∈F+d

(ETβh)zβ =
∑
β∈F+d

hβz
β = h,

that is, the observability operator OE,T acting on an element h ∈ M simply
reproducesh and hence can be viewed as the operator of inclusion of M inH 2

Y(F
+
d );

in particular, (E,T) is also output-stable. Therefore we have

O∗E,TOE,T = IM, O∗E,T|M = IM
and furthermore,

O∗E,T|M⊥ = 0 and PM = O∗E,T. (4.18)

Next we show that, for operators Tj and N given by (4.15), we have

ON,T = �∗. (4.19)
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To this end, pick up an h ∈M as in (4.17) and note that by (4.11),

�∗Tjh = �∗R∗zj h = R∗zj �∗h for j = 1, . . . , d.

Iterating the latter equalities gives �∗Tαh = (R∗z)α�∗h for every α ∈ F
+
d , and

hence,

NTαh = (�∗Tαh)∅ = E(R∗z)α�∗h = (�∗h)α
for each α ∈ F

+
d and any h ∈M. We now have

ON,Th =
∑
α∈F+d

(NTαh)zα =
∑
α∈F+d

(�∗h)αzα = �∗h,

and since h is arbitrary, (4.19) follows. In turn, (4.19) implies that the pair (N,T) is
output-stable. By Corollary 4.2, condition (4.3) is equivalent to

O∗E,TMS = O∗N,T = �

which coincides with (4.14) due to (4.18).
Conversely, if T = (T1, . . . , Td) is strongly stable and the pairs (E,T) and

(N,T) are output stable, then M = RanOE,T is a closed backward-shift-invariant
subspace of H 2

Y(F
+
d ) and OE,T is an isomorphism of X onto M (see [10]). We

define � : H 2
U (F

+
d ) → M via its adjoint �∗ given by (4.16). Then, for S ∈

Snc,d(U,Y), from Proposition 4.1 we see that S solves OAP(T, E,N) is equivalent
to condition (4.4), or, after taking adjoints, to

M∗SOE,T = ON,T. (4.20)

By definition, this in turn is equivalent toM∗S |M = �∗, i.e., to S solving the problem
CLP(M,�). ��

5 Operator Argument Interpolation Problem: Solution

In this section we present a solution of the Operator Argument Interpolation
Problem, including the parametrization of the set of all solutions for the case where
the operator P (4.5) is invertible. The setting here is more general than the case
handled by the Commutant Lifting Theorem discussed in the previous section in
that we no longer insist that T be strongly stable. As a first step we present several
useful reformulations of the problem. The main tool for this analysis is the following
well-known Hilbert space result. In case the block A is invertible, the result can be
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seen as a consequence of a standard Schur-complement computation; the general
result then follows by replacing A with A+ εI and then letting ε > 0 tend to zero.

Proposition 5.1 A Hilbert space operator

[
P B∗
B A

]
:

[
X
H

]
→

[
X
H

]

is positive semidefinite if and only if A is positive semidefinite and for every x ∈ X ,
there exists a vector hx ∈ H �KerA such that

A
1
2 hx = Bx and ‖hx‖H ≤ ‖P 1

2 x‖X .

Theorem 5.2 Given the data set {T, E,N} such that the pairs (E,T) and (N,T)
are output stable, let P : X → X be defined as in (4.5). Given S ∈ L(U,Y)〈〈z〉〉,
let FS : X → H 2

Y(F
+
d ) be the linear map defined by

FS : x 
→ (
OE,T −MSON,T

)
x. (5.1)

The following are equivalent:

1. S is a solution of the OAP(T, E,N), i.e., S ∈ Snc,d (U,Y) and S satisfies
condition (4.3).

2. The operator

P :=
[
P (FS)∗
FS I −MSM

∗
S

]
:

[
X

H 2
Y(F

+
d )

]
→

[
X

H 2
Y(F

+
d )

]
(5.2)

is positive semidefinite.
3. The following kernel is positive:

K(z, ζ ) =
[

P G(ζ )∗ (E∗ − N∗S(ζ )∗)
(E − S(z)N)G(z) KS(z, ζ )

]
� 0, (5.3)

where KS(z, ζ ) is given by (2.13) and

G(z) = (I − Z(z)T )−1 .

4. S ∈ Snc,d(U,Y), and the formal power series FSx ∈ H 2
Y(F

+
d ) belongs to the de

Branges-Rovnyak space H(KS) and satisfies

‖FSx‖H(KS) ≤ ‖P
1
2 x‖X for every x ∈ X . (5.4)
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5. S ∈ Snc,d(U,Y), and the power series FSx belongs to H(KS) and satisfies

‖FSx‖H(KS) = ‖P
1
2 x‖X for every x ∈ X . (5.5)

Proof By taking the adjoint of the formulation (4.4) of the interpolation condi-
tion (4.3), we see that S ∈ Snc,d(U,Y) solves the problem OAP(T, E,N) if and
only if

M∗SOE,T = ON,T : X → H 2
U (F

+
d ). (5.6)

To prove Theorem 5.2, we shall show that (2)⇔ (3) and that (1)⇒ (5)⇒ (4)⇒
(2)⇒ (1).

(2)⇔ (3): This equivalence follows from the identity

〈
P
[

x

kSz(· , ζ )y
]
,

[
x ′

kSz(· , z)y ′
]〉

X⊕H 2
Y (F

+
d )

=
〈
K(z, ζ )

[
x

y

]
,

[
x ′
y ′

]〉
X⊕Y

(x, x ′ ∈ X , y, y ′ ∈ Y).

(1)⇒ (5): Assume that S ∈ Snc,d(U,Y) solves OAP(T, E,N). Then from (5.6) we
see that

FS = OE,T −MSON,T = OE,T −MSM
∗
SOE,T = (I −MSM

∗
S )OE,T .

Hence,

‖FSx‖2H(KS)
= 〈(I −MSM

∗
S)OE,Tx,OE,Tx〉H 2

Y (F
+
d )

= 〈(O∗E,TOE,T −O∗N,TON,T)x, x〉X
= 〈Px, x〉X = ‖P 1

2 x‖2X
for all x ∈ X and (5) follows.

(5)⇒ (4): This is trivial.
(4)⇒ (2): Since S is in Snc,d (U,Y), the operator A := I −MSM

∗
S is positive

semidefinite on H 2
Y(F

+
d ). Furthermore, FSx belongs to H(KS) for every x ∈ X

which means, due to (2.20), that FSx = (I −MSM
∗
S )

1
2 hx for some element hx ∈

H 2
Y(F

+
d ) which can be chosen to be orthogonal to the Ker (I −MSM

∗
S ). Then the

norm constraint (5.4) implies

∥∥(I −MSM
∗
S )

1
2 hx

∥∥
H(KS)

= ‖hx‖H 2
Y (F

+
d )
≤ ‖P 1

2 x‖X

and positivity of the operator (5.2) follows by Proposition 5.1.
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(2) ⇒ (1): Let the operator (5.2) be positive semidefinite. Then the operator
I−MSM

∗
S is positive semidefinite (equivalently,MS is a contraction) which implies

S ∈ Snc,d (U,Y). By definitions (4.5) and (5.1) we have

P =
[
O∗E,TOE,T −O∗N,TON,T O∗E,T −O∗N,TM∗S

OE,T −MSON,T I −MSM
∗
S

]
� 0.

By the Schur complement argument, the latter inequality is equivalent to

P̂ :=
⎡
⎢⎣
IH 2

U (F
+
d )

ON,T M∗S
O∗N,T O∗E,TOE,T O∗E,T
MS OE,T IH 2

Y (F
+
d )

⎤
⎥⎦ ≥ 0,

since P is the Schur complement of the block IH 2
U (F

+
d )

in P̂. On the other hand, the
latter inequality holds if and only if the Schur complement of the block IH 2

Y (F
+
d )

in

P̂ is positive semidefinite:

[
IH 2

U (F
+
d )

ON,T

O∗
N,T O∗

E,TOE,T

]
−

[
M∗S
O∗E,T

] [
MS OE,T

] � 0. (5.7)

Now we write (5.7) as

[
IH 2

U (F
+
d )
−M∗SMS ON,T −M∗SOE,T

O∗
N,T −O∗

E,TMS 0

]
� 0

and arrive at O∗E,TMS = O∗N,T which means that S solves OAP(T, E,N). This
completes the proof of the theorem. ��

Reformulation of the problem OAP(T, E,N) in terms of the operator

FS = [
I −MS

]
O[

E
N

]
,T
: X → H(KS) (5.8)

mapping (X , P ) contractively into the de Branges-Rovnyak space H(KS) (condi-
tion (4) in Theorem 5.2), when combined with Theorems 3.7 and 3.8, leads to the
a linear-fractional description of the set of all solutions in case the Pick operator P
(see (4.5)) is strictly positive definite.
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Theorem 5.3 Given the data set {T, E,N} such that the pairs (E,T) and (N,T)
are output stable, let us assume that the operator P defined as in (4.5) is strictly
positive definite. Also let

A(z) =
[
A11(z) A12(z)

A21(z) A22(z)

]
= D +

[
E

N

]
(I − Z(z)T )−1Z(z)B

be the (JF ,U , JY,U )-inner power series constructed according to the recipe in
Theorem 3.7. Then an S ∈ L(U,Y)〈〈z〉〉 is a solution of the problem OAP(T, E,N)
if and only if S can be written in the form

S(z) = (A11(z)E(z)+ A12(z)) (A21(z)E(z)+ A22(z))
−1 (5.9)

for some E ∈ Snc,d(U, F). Moreover, the condition P � 0 is both necessary and
sufficient for the problem OAP(T, E,N) to have solutions.

Proof By condition (4) in Theorem 5.2 we know that S solves OAP(T, E,N) if
and only if S ∈ Snc,d(U,Y) and the operator (5.8) maps (X , P ) contractively into
the de Branges-Rovnyak space H(KS). On the other hand, by Theorem 3.7, we
know that O[

E
N

]
,T

is a unitary identification between (X , P ) and H(KP[
E
N

]
,T
) =

H(K
JF ,U ,JY,U
A ). Hence the condition for S to solve OAP(T, E,N) translates to:

S ∈ Snc,d (U,Y) and the operator
[
I −MS

]
maps H(K

JF ,U ,JY,U
A ) contractively

into H(KS). By Theorem 3.8, this last condition is equivalent to S = TA[E]
for some E ∈ Snc,d(U,F). In particular, if P $ 0, it follows that the problem
OAP(T, E,N) has solutions.

If we only have P � 0, then via a rescaling the result for the strictly positive
definite case implies that, for each δ > 0 there exist solutions Sδ ∈ Snc,d(U,Y) for
the interpolation conditions (4.3) with ‖MSδ‖ ≤ 1+ δ. The existence of a solution S
of (4.3) with ‖MS‖ ≤ 1 then follows by a standard weak-∗ compactness argument
which makes use of the fact that the operators OE,T and ON,T have ranges inside
the Fock spaces H 2

Y(F
+
d ) and H 2

U (F
+
d ) respectively. The necessity of the condition

P � 0 for the existence of solutions is the content of part (2) of Proposition 4.1. ��

6 The Analytic Abstract Interpolation Problem

Besides the left-tangential evaluation calculus (4.1), there is another way to evaluate
a formal power series f (z) = ∑

α∈F+d fαz
α ∈ Y〈〈z〉〉 on a d-tuple Z =

(Z1, . . . , Zd) ∈ L(X )d , namely,

f (Z) =
∑
α∈F+d

fα ⊗ Zα = lim
N→∞

∑
α∈F+d :|α|≤N

fα ⊗ Zα ∈ Y ⊗ L(X ), (6.1)
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provided the latter limit exists at least in the weak sense. The existence of the weak
limit clearly depends on f and Z. Let us denote by Bd the set of all Hilbert space
strict row contractions

Bd =
{
Z = (Z1, . . . , Zd) ∈ L(X )d :

d∑
j=1

ZjZ
∗
j ≺ IX

}
,

and let us introduce the space HY (Bd ) of formal power series f ∈ Y〈〈z〉〉 such
that the weak limit (6.1) exists for any d-tuple Z ∈ Bd . Observe that by Cauchy
inequality, H 2

Y(F
+
d ) ⊂ HY (Bd ). In particular, for an output-stable pair (C,T)

and any x ∈ X , the power series OC,Tx belongs to HY (Bd ). Various spaces of
such “free holomorphic functions” have been studied systematically in a series of
papers by Popescu [31, 32]; when one restricts the Hilbert space X to be finite-
dimensional X = C

n and then defines Bd to be the disjoint union of these unit
balls of row contraction matrices over n = 1, 2, 3, . . . , one comes into the setting
of “free noncommutative functions” which is an area of active current interest (see
[12, 13, 34]).

The very formulation of the problem OAP(T, E,N) appears to require that the
operators OE,T and ON,T be bounded operators from X into H 2

Y(F
+
d ) and H 2

U (F
+
d )

respectively. However, upon close inspection, one can see that conditions (2)–(5)
in Theorem 5.2 make sense and moreover, conditions (2), (3), (4) are mutually
equivalent if we only assume that

(a) T = (T1, . . . , Td) ∈ L(X )d , E : X → Y and N : X → U are such that

O[
E
N

]
,T
: x 
→

[
E

N

]
(I − Z(z)T )−1x maps X into HY⊕U (Bd ),

(b) P is a positive semidefinite solution of the Stein equation (3.30).

This suggests that we use any of these conditions as the definition of a more
general interpolation problem. This leads to the formulation of the analytic Abstract
Interpolation Problem:

aAIP(T, E,N,P ) Given the data {E,N,T, P } subject to assumptions (a), (b),
find all S ∈ Snc,d(U,Y) such that the formal power series FSx defined as
in (5.1) belongs to the de Branges-Rovnyak space H(KS) and satisfies the norm
constraint (5.4).

This problem always has a solution. Various characterizations of the solution set
given below extend Theorems 5.1 and 5.3 to the present context.

Theorem 6.1 Let P , T, E and N satisfy assumptions (a), (b). The following are
equivalent:

1. S is a solution of the aAIP(T, E,N,P ).
2. The operator P of the form (5.2) is positive semidefinite.
3. The kernel K(z, ζ ) of the form (5.3) is positive.
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Moreover, if P $ 0 and if A ∈ Snc,d (JY,U , JF ,U ) is constructed as in
Theorem 3.7, then S solves aAIP(T, E,N,P ) if and only if S can be realized in
the form (5.9) for a Schur-class power series E ∈ Snc,d(U,F).

Proof As we observed above, the equivalence (2)⇔(3) and the implication (4)⇒(2)
in Theorem 5.2 go through even with the weaker hypotheses (a) and (b) in place; in
particular this gives us the equivalence (2)⇔ (3) and the implication (1)⇒ (2) in
Theorem 6.1. To complete the proof of the mutual equivalence of conditions (1), (2),
(3) in Theorem 6.1, it remains to prove the implication (2)⇒(1).

To this end, we assume that the operator (5.2) is positive semidefinite. Then
by Proposition 5.1 the operator I − MSM

∗
S is positive semidefinite (i.e., MS is a

contraction which implies S ∈ Snc,d(U,Y)) and for every x ∈ X , there exists an
element hx ∈ H 2

Y (F
+
d ) which is orthogonal to the Ker (I −MSM

∗
S ) and such that

(I −MSM
∗
S)

1
2 hx = FSx and ‖hx‖H 2

Y (F
+
d )
≤ ‖P 1

2 x‖X . (6.2)

The first relation in (6.2) implies that FSx belongs to Ran(I − MSM
∗
S )

1
2 or

equivalently, to H(KS), due to characterization (2.20). Furthermore, since hx is
orthogonal to Ker (I −MSM

∗
S ), we conclude from (2.21) and (6.2) that

‖FSx‖H(KS) = ‖(I −MSM
∗
S )

1
2 hx‖H(KS)

= ‖(I −Q)hx‖H 2
Y (F

+
d )
= ‖hx‖H 2

Y (F
+
d )
≤ ‖P 1

2 x‖X ,

which proves (5.4), i.e., that S solves aAIP(T, E,N,P ) and hence condition (1) in
Theorem 6.1 holds.

The proof of the second part of the theorem goes through in the same way as in
Theorem 5.3. Note that the operator FS being a contraction from (X , P ) into the
de Branges-Rovnyak space H(KS) is now the interpolation condition while, on the
other hand, if P $ 0, the power series A(z) constructed as in Theorem 3.7 satisfies
the identity

K
JF ,U ,JY,U
A (z, ζ ) =

[
E

N

]
(I − Z(z)T )−1P−1(I − T ∗Z(ζ )∗)−1 [E∗ N∗]

due to the Stein equation (3.30) (rather than the specific formula (4.5)).
In case we have only P � 0, the same approximation argument as used in the

proof of Theorem 5.3 then shows that the problem aAIP(T, E,N,P ) always has a
solution. ��

Remark 6.2 Note that a special feature of the problem OAP(T, E,N) is expressed
by the equivalence (4) ⇔ (5) in Theorem 5.2: for every solution S of the problem,
inequality (5.4) implies equality (5.5) (in [21] such problems were called possessing
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the Parseval equality). As pointed out in [6] for the context of contractive multipliers
on the Drury-Arveson space, concrete examples of interpolation problems which
do not possess the Parseval property are boundary Nevanlinna-Pick interpolation
problems. While there now are results on interior Nevanlinna-Pick interpolation on
the noncommutative ball Bd (see [1, 13]), at this writing there does not appear to be
any work on boundary interpolation in the noncommutative setting. An interesting
area for future research is to work out some concrete noncommutative boundary
interpolation problems as examples of aOAP problems which do not possess the
Parseval equality.

7 The Abstract Interpolation Problem

We are now ready to formulate the Abstract Interpolation Problem AIP based on
a data set {D,T,T, E,N} described as follows. We are given a linear space X ,
a positive semidefinite Hermitian form D on X , Hilbert spaces U and Y , linear
operatorsT, T = (T1, . . . , Td ) on X , and linear operatorsN : X → U andE : X →
Y . In addition we assume that

D(Tx,Tx)+ ‖Nx‖2U =
d∑
j=1

D(Tj x, Tjx)+ ‖Ex‖2Y for every x ∈ X . (7.1)

Definition 7.1 Suppose that we are given the data set {D,T,T, E,N} for an AIP
as in (7.1). We say that the pair (F, S) is a solution of the AIP if S ∈ Snc,d(U,Y)
and F is a linear mapping from X into H(KS) such that

‖Fx‖2H(KS)
≤ D(x, x) for all x ∈ X , (7.2)

(FTx)(z)−
d∑
j=1

(FTjx)(z)zj = (E − S(z)N) x. (7.3)

Denote by X0 the Hilbert space equal to the completion of the space of
equivalence classes of elements of X (where the zero equivalence class consists of
elements x withD(x, x) = 0) in theD-inner product. Note that if (S, F ) solves AIP,
then condition (7.2) implies thatF has a factorizationF0◦π where π is the canonical
projection operator π : X → X0 and where F0 : X0 → H(KS) has ‖F0‖ ≤ 1. We
abuse notation and denote also by T and Tk the operators T and Tk followed by the
canonical projection into the equivalence class in X0; so T, Tk : X → X0. Let for
short

T =
⎡
⎢⎣
T1
...

Td

⎤
⎥⎦ : X → X d

0 , Z(z) = [
z1IX0 · · · zdIX0

]
.
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If we further identify F0 with the formal power series F0(z) ∈ L(X0,Y)〈〈z〉〉
defined by

F0(z)x0 = (F0x0)(z),

then we can rewrite (7.3) in the form

F0(z)T− F0(z)Z(z)T = E − S(z)N. (7.4)

Note that the import of the hypothesis (7.1) is that there is a well-defined isometry
V from

DV = Ran

[
T

N

]
⊂

[
X0

U

]
onto RV = Ran

[
T

E

]
⊂

[
X d

0
Y

]
(7.5)

such that

V :
[
T

N

]
x →

[
T

E

]
x for all x ∈ X . (7.6)

Note also that the definition (7.5) and (7.6) of V is completely determined by the
problem data {D,T,T, E,N}.

If X is already a Hilbert space and there exists a bounded positive semidefinite
operator P � 0 such that D(x, y) = 〈Px, y〉X for every x, y ∈ X , then
identity (7.1) can be written as

T∗PT −
d∑
k=1

T ∗j PTj = E∗E −N∗N.

Furthermore, equality (7.4) can be written as

F0(z)(T− Z(z)T )x = (E − S(z)N) x

and if the pencil (T − Z(z)T ) is in the space HX (Bd ), then the latter equation
defines F0 uniquely by

F0(z)x = (E − S(z)N) (T− Z(z)T )−1x.

If furthermore, T = IX , then it is readily seen that the AIP(D, IX ,T, E,N)
collapses to the aAIP(T, E,N,P ).

Our next goal is to establish a correspondence between solutions (F, S) of
the problem AIP(D,T,T, E,N) and unitary-colligation extensions of the partially
defined isometric colligation V in (7.6).
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Theorem 7.2 Let V be the isometry defined by (7.6) associated with the data of a
problem AIP and let

C =
{
X0 ⊕ X1,U,Y,U =

[
A B

C D

]
:

[
X0 ⊕ X1

U

]
→

[
X d

0 ⊕ X d
1

Y

]}
(7.7)

be a unitary-colligation extension of V. Then the pair (S, F0) defined by the
formulas

S(z) = D + C(I − Z(z)A)−1Z(z)B, (7.8)

F0(z) = C(I − Z(z)A)−1|X0, (7.9)

is a solution of AIP. Moreover, every solution of AIP arises in this way.

Proof Since the connecting matrix U in (7.7) is unitary, its characteristic formal
power series (7.8) belongs to Snc,d(U,Y) by Theorem 2.3. Furthermore, let H(KS)
be the de Branges-Rovnyak space associated with S. Making use of the power
series (2.16) from the Kolmogorov decomposition (2.13) of the kernel KS , we
write (7.9) as

(F0x0)(z) = H(z)
[ x0

0

] = C(I − Z(z)A)−1 [ x0
0

]
for x0 ∈ X0, (7.10)

and conclude by (2.22) that F0 is a contraction from X0 into H(KS).
It remains to check the identity (7.4). Due to (7.10), we see that (7.4) is the same

as

H(z)Tx = H(z)Z(z)T x + Ex − S(z)Nx (7.11)

(with H(z) as in (2.16)). Using the unitary realization (7.8) of S written as

S(z) = D +H(z)Z(z)B,

we rewrite (7.11) as

H(z)T = H(z)Z(z)T + E − (
D +H(z)Z(z)B)N. (7.12)

To verify (7.12), we use the identity

[
A B

C D

] [
T

N

]
=

[
T

E

]
,

or, in more detail,

AT+ BN = T , CT+DN = E,
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which is true by the hypothesis that U extends V, to see that the right-hand side
of (7.12) is equal to

H(z)Z(z)T + E −DN −H(z)Z(z)BN
= H(z)Z(z)T + CT −H(z)Z(z)(T − AT)
= CT +H(z)Z(z)AT
= CT + C(I − Z(z)A)−1Z(z)AT = H(z)T

as wanted. We postpone the last statement to the proof of Theorem 7.3 where a more
general result is proved. ��

We next introduce the defect spaces

� =
[
X0

U

]
�DV and �∗ =

[
X d

0
Y

]
�RV

and let �̃ be another copy of � and �̃∗ another copy of �∗ with unitary
identification maps

i : �→ �̃ and i∗ : �∗ → �̃∗.

Following the ideas of Arov-Grossman [4, 5], define a unitary operator U0 from
DV ⊕�⊕ �̃∗ onto RV ⊕�∗ ⊕ �̃ by the rule

U0x =
⎧⎨
⎩

Vx, if x ∈ DV,

i(x) if x ∈ �,
i−1∗ (x) if x ∈ �̃∗.

(7.13)

Identifying

[
DV

�

]
with

[
X0

U

]
and

[
RV

�∗

]
with

[
X d

0
Y

]
, we decompose U0 defined

by (7.13) according to

U0 =
⎡
⎣U11 U12 U13

U21 U22 U23

U31 U32 0

⎤
⎦ :

⎡
⎣X0

U
�̃∗

⎤
⎦→

⎡
⎣X

d
0
Y
�̃

⎤
⎦ . (7.14)

The (3, 3) block in this decomposition is zero, since (by definition (7.13)), for every

δ̃∗ ∈ �̃∗, the vector U0δ̃∗ belongs to�, which is a subspace of

[
X d

0
Y

]
and therefore,

is orthogonal to �̃; in other wordsP�̃U0|�̃∗ = 0 whereP�̃ stands for the orthogonal
projection of RV ⊕�∗ ⊕ �̃ onto �̃.
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The unitary operator U0 is the connecting operator of the unitary colligation

C0 =
{
X0,

[
U
�̃∗

]
,

[
Y
�̃

]
, U0

}
, (7.15)

which is called the universal unitary colligation associated with the AIP.
According to (2.17), the characteristic formal power series of the colligation C0

defined in (7.15) is given by

�(z) =
[
�11(z) �12(z)

�21(z) �22(z)

]

=
[
U22 U23

U32 0

]
+

[
U21

U31

]
(I − Z(z)U11)

−1 Z(z)
[
U12 U13

]

= PY⊕�̃U0(I − P∗X0
Z(z)PX d

0
U0)
−1|U⊕�̃∗ (7.16)

and belongs to the class Snc,d(U ⊕ �̃∗, Y ⊕ �̃) by Theorem 2.3. The associated
observability operator is given by

H�(z) =
[
U21

U31

]
(I − Z(z)U11)

−1

= PY⊕�̃U0(I − P∗X0
Z(z)PX d

0
U0)
−1|X0 . (7.17)

By another application of Theorem 2.3 we see that

K�(z, ζ ) := kSz(z, ζ )⊗ IY⊕�̃ −�(z)(kSz(z, ζ )⊗ IU⊕�̃∗)�(ζ )∗

= H�(z)H�(ζ )∗.
We shall also need an enlarged colligation

C0,e =
⎧⎨
⎩X0,

⎡
⎣X0

U
�̃∗

⎤
⎦ ,

[
Y
�̃

]
,U0,e =

⎡
⎣U11 U11 U12 U13

U21 U21 U22 U23

U31 U31 U32 0

⎤
⎦
⎫⎬
⎭ (7.18)

with associated characteristic formal power series

�e(z) = PY⊕�̃U0(I − P∗X0
Z(z)PX d

0
U0)
−1 (7.19)

=
[
U21 U22 U23

U31 U32 0

]
+

[
U21

U31

]
(I − Z(z)U11)

−1Z(z)
[
U11 U12 U13

]

=
[
U21(I − Z(z)U11)

−1 �11(z) �12(z)

U31(I − Z(z)U11)
−1 �21(z) �22(z)

]
= [

H�(z) �(z)
]
.
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These are the ingredients for the following parametrization for the set of all solutions
of AIP. In particular, solutions of AIP exist for any data set (D,T,T, E,N) subject
to condition (7.1).

Theorem 7.3 Given the data set (D,T,T, E,N} subject to condition (7.1), let
U0 be the universal unitary-colligation extension of V given by (7.13) with
characteristic formal power series (7.16) and let U0,e be the connecting operator
for the enlarged universal unitary colligation C0,e given by (7.18). Then the pair
(S(z), F0(z)) solves the problem AIP if and only if there is a Schur-class multiplier
W ∈ Snc,d(�̃, �̃∗) such that

[
F0(z) S(z)

] = R�e [W](z), (7.20)

i.e. (see the definition (3.45)), such that

S(z) = �11(z)+�12(z)(I −W(z)�22(z))
−1W(z)�21(z), (7.21)

F0(z) = U21(I − Z(z)U11)
−1

+�12(z)(I −W(z)�22(z))
−1W(z)U31(I − Z(z)U11)

−1. (7.22)

Proof For the “only if” part we assume that the pair (F0(z), S(z)) is a solution of
AIP and show that necessarily

[
F0(z) S(z)

]
is in the range of the linear-fractional

map R�e acting on the Schur class Snc,d (�̃, �̃∗). To verify that there is a W ∈
Snc,d(�̃, �̃∗) so that (7.20) holds, by Theorem 3.9 it suffices to produce a Schur
pair (a, c) so that

[
I c(z)

]
�e(z) =

[
F0(z) S(z) a(z)

]
. (7.23)

Using the last expression for �e(z) in (7.19), we may rewrite (7.23) as

[
I c(z)

]
PY⊕�̃U0(I − PX ∗0 Z(z)PX d

0
U0)
−1 = [

F0(z) S(z) a(z)
]

which in turn can be converted to the more linear form

[
I c(z)

]
PY⊕�̃U0 =

[
F0(z) S(z) a(z)

]
(I − P∗X0

Z(z)PX d
0

U0). (7.24)

Let us define formal power series a ∈ L(�̃∗,Y)〈〈z〉〉 and c ∈ L(�̃,Y)〈〈z〉〉 by the
formulas

a(z) = F0(z)
(
Z(z)PX d

0
U0

)∣∣∣
�̃∗
+ PYU0

∣∣
�̃∗ , (7.25)

c(z) = F0(z)PX0U∗0
∣∣
�̃
+ S(z) PUU∗0

∣∣
�̃
. (7.26)

Our goal is to show that (a, c) is a Schur-pair satisfying the condition (7.24). This
will then complete the proof of the “only if” part of the theorem.
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Note that the condition (7.24) must be verified on vectors from the space X0 ⊕
U ⊕ �̃∗. Since X0 ⊕ U has the alternative decomposition X0 ⊕ U = DV ⊕ �, it
suffices to verify the validity of (7.24) for three separate cases: (1) y ∈ DV, (2)
y ∈ �, and (3) y ∈ �̃∗.
Case 1 y ∈ DV. By construction, a dense subset of DV consists of vectors of
the form y = Tx ⊕ Nx ⊕ 0 where x ∈ X . By definition (7.13) we then have
U0y = T x ⊕ Ex ⊕ 0. Then condition (7.24) applied to the vector y for this case
becomes simply

Ex = F0(z)Tx + S(z)Ex − F0(z)Z(z)T x

which holds true due to the data-admissibility condition (7.4). Note that this case
holds automatically independently of the definition of (a, c).

Case 2 y = δ ∈ �. In this case, U0δ = i(δ) ∈ �̃ ⊥ X d , and hence, the left and the
right sides of (7.24) applied to a vector y of this form give us

[
I c(z)

]
PY⊕�̃U0δ =

[
I c(z)

]
PY⊕�̃

⎡
⎣ 0

0
i(δ)

⎤
⎦ = c(z)i(δ),

[
F0(z) S(z) a(z)

]
(I − P∗X0

Z(z)PX d
0

U0)δ =
[
F0(z) S(z) a(z)

]
δ

= F0(z)PX0δ + S(z)PU δ.

Thus, equality (7.24) restricted to � amounts to

c(z)i(δ) = F0(z)PX0δ + S(z)PU δ,

which is equivalent, since U0 is unitary and hence δ = U∗0i(δ), to

c(z)i(δ) = F0(z)PX0U∗0i(δ)+ S(z)PU = U∗0i(δ),

which in turn, amounts to the definition of c(z) in (7.26).

Case 3 y = δ̃∗ ∈ �̃∗. In this case, U0y = i−1∗ (̃δ∗) ∈ X d ⊕ Y ⊥ �. Then the left
and the right sides of (7.24) applied to a vector y of this form give

[
I c(z)

] [PY i−1∗ (̃δ∗)
0

]
= PY i

−1∗ (̃δ∗) = PYU0δ∗,

[
F0(z) S(z) a(z)

]
⎡
⎢⎣
−Z(z)PX d

0
i−1∗ (̃δ∗)

0
δ̃∗

⎤
⎥⎦ = −F0(z)Z(z)PX d

0
i−1∗ (̃δ∗)+ a(z)̃δ∗

= −F0(z)Z(z)PX d
0

U0δ∗ + a(z)̃δ∗
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from which we see that equality (7.24) restricted to �̃∗ collapses to the defini-
tion (7.25) of a(z).

We thus verified the equality (7.24) which is equivalent to (7.23), which in turn,
due to the last decomposition of�e in (7.19), is equivalent to the following relations:

[
IY c(z)

]
H�(z)x0 = F0(z)x0 ∈ H(KS) (7.27)

for each x0 ∈ X0 and

[
IY c(z)

]
�(z) = [

S(z) a(z)
]
. (7.28)

To verify that (a, c) defined via (7.25) and (7.26) is a Schur-pair, we will use the
notation H�(z) for the observability operator (7.17) associated with the universal
colligation C0 and H(z) for any power series giving rise to a factorization of the
kernel KS(z, ζ ) as in (2.13).

Note that since the power series on the left side of (7.27) belongs to H(KS), it
follows that for every x ∈ X0, there is a unique gx ∈ X which is orthogonal to
KerMH and such that

[
IY c(z)

]
H�(z)x = H(z)gx.

Therefore we can define a linear operator � : X → H by the rule �x = gx . Thus,

[
IY c(z)

]
H�(z) = H(z)�. (7.29)

By the definition of the norm in H(KS),

‖Fx‖H(KS) = ‖gx‖X = ‖�x‖X .

On the other hand, the operator F : X0 → H(KS) is contractive by assumption;
hence ‖Fx‖H(KS) ≤ ‖x‖X0 and � is a contraction:

‖�x‖H = ‖Fx‖H(KS) ≤ ‖x‖X0 .

We next show that the power series a and c defined in (7.25) and (7.26) satisfy

a(z)(kSz(z, ζ )⊗ I�̃∗)a(ζ )∗ − c(z)(kSz(z, ζ )⊗ I�̃)c(ζ )∗ = H(z)(I − ��∗)H(ζ )∗.
(7.30)
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To this end, let us rearrange the left-hand side expression in (7.30) as

a(z)(kSz(z, ζ )⊗ I�̃∗)a(ζ )∗ − c(z)(kSz(z, ζ )⊗ I�̃)c(ζ )∗

= kSz(z, ζ )⊗ IY − S(z)(kSz(z, ζ )⊗ IU )S(ζ )∗

+ [
S(z) a(z)

] (
kSz(z, ζ )⊗ IU⊕�̃∗

) [S(ζ )∗
a(ζ )∗

]

− [
IY c(z)

] (
kSz(z, ζ )⊗ IY⊕�̃

) [ IY
c(ζ )∗

]
, (7.31)

and then observe that the two first terms on the right side represent the kernel KS ,
whereas the two last terms, due to (7.28), equal

[
IY c(z)

] (
�(z)

(
kSz(z, ζ )⊗ IU⊕�̃∗

)
�(ζ )∗ − kSz(z, ζ )⊗ IY⊕�̃

) [ IY
c(ζ )∗

]
.

Thus, the right side of (7.31) can be written as

KS(z, ζ )−
[
IY c(z)

]
K�(z, ζ )

[
IY

c(ζ )∗
]

= H(z)H(ζ )∗ − [
IY c(z)

]
H�(z)H�(ζ )

∗
[
IY

c(ζ )∗
]

= H(z) (I − ��∗)H(ζ )∗,
where we used the Kolmogorov decompositions forKS andK� for the first equality
and the relation (7.29) for the second. This completes the verification of (7.30).
Since the right side of (7.30) represents a positive kernel, the kernel on the left
side is also positive. Thus, (a, c) is a Schur-pair, which completes the proof of the
“only if” part of the theorem.

To prove the “if” part, let us assume that the pair (S, F0) is realized as
in (7.21), (7.22) for some W ∈ Snc,d(�̃, �̃∗). By Theorem 2.3, W(z) can be
realized as the characteristic formal power series of some unitary colligation, i.e.,
W(z) is of the form

W(z) = D′ + C′(I − Z(z)A′)−1Z(z)B ′ (7.32)

for some unitary connecting matrix

U′ =
[
A′ B ′
C′ D′

]
:
[
X ′
�̃

]
→

[
X ′d
�̃∗

]
. (7.33)
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It turns out that S and F0 defined in (7.21), (7.22) admit realizations

S(z) = D + C(I − Z(z)A)−1Z(z)B, F0(z) = C(I − Z(z)A)−1|X0 (7.34)

with the connecting matrix

U =
[
A B

C D

]
:
[
X0 ⊕X ′

U

]
→

[
X d

0 ⊕ X ′d
Y

]

which can be expressed in terms of connecting matrices U0 and U′ as follows:

A =
[
U11 + U13D

′U31 U13C
′

B ′U31 A′
]
, B =

[
U12 + U13D

′U32

B ′U32

]
,

C = [
U21 + U23D

′U31 U23C
′] , D = U22 + U23D

′U32.

(7.35)

In calculations below (which verify that the formulas in (7.34) define the same
power series as in (7.21), (7.22)) we will often drop the argument z in Z(z) and
W(z). Applying the well known formula for the inverse of a 2× 2 block matrix

I − ZA =
[
I − Z(U11 + U13D

′U31) −ZU13C
′

−ZB ′U31 I − ZA′
]

and taking into account that the Schur complement of the upper left block above
equals

I − Z(U11 + U13D
′U31)− ZU13C

′(I − ZA′)−1ZB ′ = I − ZU11 − ZU13WU31,

by (7.32), we get

(I − ZA)−1 =
[

I

(I − ZA′)−1ZB ′U31

]
(I − ZU11 − ZU13WU31)

−1

× [
I ZU13C

′(I − ZA′)−1
]+

[
0 0
0 (I − ZA′)−1

]
. (7.36)

Restricting (7.36) to X0 and multiplying the restricted equality on the left by the
operator C defined in (7.35), we get, on account of (7.32),

C(I − ZA)−1|X0
= (U21 + U23W)(I − ZU11 − ZU13WU31)

−1.
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We next observe from (7.16) that

(I − ZU11 − ZU13WU31)
−1 (7.37)

= (I − ZU11)
−1 + (I − ZU11)

−1ZU13(I −W�22(z))
−1WU31(I − ZU11)

−1.

Combining the two last relations and making use of the formula

(U21 + U23WU31)(I − ZU11)
−1ZU13 = �12(z)− U23(I −W�22(z)) (7.38)

which follows from the realization formulas (7.16) for �12 and �22, we get

C(I − ZA)−1|X0
= (U21 + U23WU31)(I − ZU11)

−1

+ (
�12(z)(I −W�22(z))

−1 − U23
)
WU31(I − ZU11)

−1

= U21(I − ZU11)
−1

+�12(z)(I −W�22(z))
−1WU31(I − ZU11)

−1.

Thus the second formula in (7.34) define the same power series as in (7.22).
We now turn to the first formula in (7.34). Multiplying (7.36) by C on the left

and ZB on the right (where C and B are given in (7.35)), we get, again on account
of (7.32),

S(z) = C(I − ZA)−1ZB +D
= (U21 + U23D

′U31 + U23C
′(I − ZA′)−1ZB ′U31)

× (I − ZU11 − ZU13W(z)U31)
−1

× Z(U12 + U13D
′U32 + U13C

′(I − ZA′)−1ZB ′U32)

+ U23C
′(I − ZA′)−1ZB ′U32 + U22 + U23D

′U32

= (U21 + U23WU31)(I − ZU11 − ZU13WU31)
−1Z(U12 + U13WU32)

+ U22 + U23WU32. (7.39)

To simplify the right side of (7.39), we first substitute (7.37) and then use the
formula (7.38) and a similar formula

U31(I − ZU11)
−1Z(U12 + U13WU32) = �21(z)− (I −�22(z)W)U32,
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which follows from the realization formulas (7.16) for �21 and �22. We have

S(z) = (U21 + U23WU31)(I − ZU11)
−1Z(U12 + U13WU32)

+ (�12(z)− U23(I −W�22(z)))(I −W�22(z))
−1W

× (�21(z)− (I −�22(z)W)U32)

+ U22 + U23WU32. (7.40)

By (7.16), the first term on the right side of (7.40) can be written as

1© = [
I U23W

] [U21

U31

]
(I − ZU11)

−1Z
[
U12 U13

] [ I

WU32

]

= [
I U23W

] [�11(z)− U22 �12(z)− U23

�21(z)− U32 �22(z)

] [
I

WU32

]
,

whereas the second term expands to

2© = �12(z)(I −W�22(z))
−1W�21(z)− U23W�21(z)

−�12(z)WU32 + U23W(I −�22(z)W)U32.

Now it follows from (7.40) that

S(z) = 1©+ 2©+ U22 + U23WU32

= �11(z)+�12(z)(I −W�22(z))
−1W�21(z),

which is the same as (7.21).
We next verify that the connecting matrix U (7.35) is unitary. To this end, we

pick up an arbitrary vector g = x0 ⊕ x ′ ⊕ u ∈ X0 ⊕X ′ ⊕ U and compute

Ug = U

⎡
⎣x0

x ′
u

⎤
⎦ =

⎡
⎣(U11 + U13D

′U31)x0 + U13C
′x ′ + (U12 + U13D

′U32)u

B ′U31x0 + A′x ′ + B ′U32u

(U21 + U23D
′U31)x0 + U23C

′x1 + U22 + U23D
′U32)u

⎤
⎦ .

Note that by (7.14) and (7.33), the vectors

δ̃ := U31x0 + U32u, (7.41)

δ̃∗ := C′x ′ +D ′̃δ = C′x ′ +D′(U31x0 + U32u) (7.42)
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belong to the spaces �̃ and �̃∗, respectively. Making use of these vectors, one can
write the formula for Ug more compactly as

Ug = U

⎡
⎣x0

x ′
u

⎤
⎦ =

⎡
⎣U11x0 + U12u+ U13δ̃∗

A′x ′ + B ′̃δ
U21x0 + U22u+ U23δ̃∗

⎤
⎦ . (7.43)

We next observe from (7.14), (7.33) and (7.41), (7.42) that

U0

⎡
⎣x0

u

δ̃∗

⎤
⎦ =

⎡
⎣U11x0 + U12u+ U13δ̃∗
U21x0 + U22u+ U23δ̃∗

δ̃

⎤
⎦ , U′

[
x ′
δ̃

]
=

[
A′x ′ + B ′̃δ

δ̃∗

]
.

(7.44)

We see from (7.43), (7.44) that

‖Ug‖2 =
∥∥∥U0

[ x0
u
δ̃∗

]∥∥∥2 +
∥∥∥U′

[
x ′
δ̃

]∥∥∥2 − ‖̃δ‖2 − ‖̃δ∗‖2.

Since U0 and U′ are unitary (and in particular, isometric), it follows from that latter
equality that

‖Ug‖2 = ‖x0‖2 + ‖u‖2 + ‖̃δ∗‖2 + ‖x ′‖2 + ‖̃δ‖2 − ‖̃δ‖2 − ‖̃δ∗‖2 = ‖g‖2,

and since g is arbitrary, we conclude that U is isometric. Applying similar arguments
to U∗ and an arbitrary vector g̃ ∈ X d

0 ⊕ X ′d ⊕ Y , one can show that ‖U∗g̃‖ = ‖g̃‖
so that U∗ is also isometric and hence U is unitary.

Our next step is to show that U is a colligation extension of the isometry V defined
in (7.6). Note that by the definitions (7.13), (7.6) and the decomposition (7.14),

⎡
⎣U11 U12

U21 U22

U31 U32

⎤
⎦
[
Tx

Nx

]
=

⎡
⎣T xEx

0

⎤
⎦ . (7.45)

Now we pick up an arbitrary vector x ∈ X and apply (7.43) to x0 = Tx, x ′ = 0 and
u = Nx. Due to (7.45), for the present choice of x0 and u, the formulas (7.41), (7.42)
give δ̃ = 0 and δ̃∗ = 0. Then we get from (7.43)

U

⎡
⎣Tx

0
Nx

⎤
⎦ =

⎡
⎣U11 U12

0 0
U21 U22

⎤
⎦
[
Tx

Nx

]
=

⎡
⎣T x0
Ex

⎤
⎦ ,

where the last equality follows from (7.45) and tells us that U is a unitary colligation
extension of the isometry V defined in (7.6). By Theorem 7.2, the pair (F0, S)
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defined in (7.34) (or, which is the same, defined in (7.21), (7.22)) is a solution of the
AIP, which completes the proof of the “if” part of the theorem. ��

Remark 7.4 We are now in position to complete the proof of Theorem 7.2. Indeed, if
(F0(z), S(z)) is a solution of the AIP, then Theorem 7.3 tells us that there is a Schur-
class multiplier W ∈ Snc,d (�̃, �̃∗) so that S and F0 are of the form (7.21), (7.22).
Then, as we have seen in the proof of the “if” part of Theorem 7.3 S and F0 can be
realized as in (7.34), that is, S is the characteristic formal power series of a unitary
colligation U that extends the isometry V, whereas F0(z) is the restriction of the
associated observability operator

x 
→ PYU(I − P ∗X0⊕X ′Z(z)P(X0⊕X ′)dU)−1|X0⊕X1

to X0. Thus every solution of the AIP arises from the procedure given in the
statement of Theorem 7.2.

Remark 7.5 The colligation U explicitly constructed from colligations U0 and U′
via formulas (7.35) is the result of feedback connection of U′ with U0. Less
explicitly (but, perhaps, more suggestively) the feedback connection (or coupling)
U of two colligations U′ and U0 is defined by its action on vectors in X0 ⊕ X ′ ⊕ U
as follows:

U :
⎡
⎣x0

x ′
u

⎤
⎦ 
→

⎡
⎣x̃0

x̃ ′
y

⎤
⎦

if and only if (compare with (7.43), (7.44)) there exist δ̃ ∈ �̃, δ̃∗ ∈ �̃∗ so that

U0 :
⎡
⎣x0

u

δ̃∗

⎤
⎦ 
→

⎡
⎣x̃0

y

δ̃

⎤
⎦ and U′ :

[
x ′
δ̃

]

→

[
x̃ ′
δ̃∗

]
.

Corollary 7.6 Suppose that {T, E,N} is an admissible data set for a problem
OAP(T, E,N) and we set

P = O∗E,TOE,T −O∗N,TON,T.

Then P is the minimal solution of the Stein equation (3.30), i.e., if P̃ is a solution
of (3.30) with P̃ � P , then P̃ = P .

Proof Let P̃ � 0 satisfy (3.30) and let us assume that

P̃ � P := O∗E,TOE,T −O∗N,TON,T.
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Then any solution S of the problem aAIP(T, E,N, P̃ ) is also a solution of the
problem aAIP(T, E,N,P ). In other words, for every x ∈ X , the power series FSx
belongs to H(KS) and

‖FSx‖2H(KS)
≤ 〈P̃ x, x〉X ≤ 〈Px, x〉X .

But by Theorem 5.2, ‖FSx‖2H(KS)
= 〈Px, x〉X , and hence, P = P̃ . ��

Corollary 7.7 For any aAIP-admissible data set {T, E,N,P }, the problem aAIP
has solutions.

Proof We have already observed that the aAIP is a special form of the AIP. Hence
the result of Theorem 2.5 that any admissible problem of the type AIP has solutions
implies the same for aAIP. ��
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1 Introduction

Let G and F be Hilbert spaces (all Hilbert spaces considered in this paper are
assumed to be complex and separable). By [G,F] we denote the Banach space of
bounded linear operators defined on G and taking values in F. If F = G, we use the
notation [G] := [G,G].

Let D := {ζ ∈ C : |ζ | < 1} and T := {z ∈ C : |z| = 1}. By L∞[G,F] we denote
the Banach space of measurable (indifferently in what sense, weak or strong, in view
of the separability of the spaces G and F) [G,F]-valued functions θ(z), z ∈ T, such
that

‖θ‖L∞[G,F] := ess sup
z
‖θ(z)‖[G,F] <∞.

Functions belonging to the closed unit ball

CM[G,F] := {θ(z) : ‖θ‖L∞[G,F] ≤ 1}

of the space L∞[G,F] are called contractive measurable [G,F]- valued functions.
If H∞+ [G,F] is the Hardy space of bounded holomorphic [G,F]-valued func-

tions θ(ζ ), ζ ∈ D, that is, such that

‖θ‖H∞+ [G,F] := sup
ζ

‖θ(ζ )‖[G,F] <∞,

then by L∞+ [G,F] we denote the subspace of L∞[G,F] consisting of strong
boundary value functions θ(z) for θ(ζ ) ∈ H∞+ [G,F]. Moreover, the equality

‖θ(z)‖L∞+ [G,F] = ‖θ(ζ )‖H∞+ [G,F]
makes it possible to identify the spaces H∞+ [G,F] and L∞+ [G,F] up to the obvious
isomorphism. Functions belonging to the closed unit ball

S[G,F] := {θ(ζ ) : ‖θ‖H∞+ [G,F] ≤ 1}

of the space H∞+ [G,F] are usually called Schur [G,F]-valued functions.
The main subjects of our considerations in this paper are the class CM[G,F] of

contractive measurable operator functions and the class S[G,F] of Schur operator
functions considered as its subclass.

The paper is devoted to the study of extensions of functions θ(z) ∈ CM[G,F].
Hereinafter by an extension of θ(z) we mean a contractive operator function which
can be represented in one of the following block forms:

�(z) :=
[
θ12(z)

θ(z)

]
∈ CM[G,F(1) ⊕ F], (1.1)
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�(z) := [θ21(z), θ(z)] ∈ CM[G(1) ⊕G,F], (1.2)

�(z) :=
[
θ11(z) θ12(z)

θ21(z) θ(z)

]
∈ CM[G(1) ⊕G,F(1) ⊕ F]. (1.3)

Functions of type (1.1) and (1.2) are called by us unidirectional upward and leftward
extensions of θ(ζ ), respectively, and functions of type (1.3) are called bidirectional
up-leftward extensions of it. Extensions in other possible directions do not differ
essentially from those defined above.

The proposed approach is based on the fundamental fact that any function θ(z) ∈
CM[G,F] is the scattering suboperator of some unitary coupling. If this coupling
is minimal, then it is determined by θ(z) uniquely up to unitary equivalence (see
[1, 11], and also Definitions 2.1, 2.7, and Theorem 2.9 in this paper). An important
role is played by the fact that the study of extensions of forms (1.1)–(1.3) for θ(z)
can be reduced to the study of special factorizations of θ(z), namely:

θ(z) = [0, IF]�(z), (1.4)

θ(z) = �(z)
[

0
IG

]
, (1.5)

θ(z) = [0, IF]�(z)
[

0
IG

]
, (1.6)

where 0 ∈ [F(1),F] in the block matrix [0, IF] and 0 ∈ [G,G(1)] in the block matrix[
0
IG

]
.

The concept of a unitary coupling was introduced in [1]. The notion of the prod-
uct of unitary couplings was defined in [8] (see also [11] and Definition 2.1 in this
paper). This enabled us to prove the statement that the scattering suboperator of the
product of unitary couplings is equal to the product of their scattering suboperators
(see [11] and also Theorem 2.18 in this paper). In turn, this multiplication theorem
made it possible to generalize the main facts of the theory of unitary colligations
(see [19]) to unitary couplings (see [11]) and to construct the geometrical theory of
factorizations of functions θ(z) ∈ CM[G,F] (see [11–13]). Important in this theory
are the notions of unilateral and bilateral channels of a unitary coupling introduced
in [12] (see also Sect. 2.2 of this paper). In particular, those channels that generate
factorizations of its scattering suboperator. The apparatus elaborated in these papers
is the basic one in the proposed approach to the study of extensions of functions
θ(z) ∈ CM[G,F].

In the theory of unitary couplings, as well as in the theory of unitary colligations
(see [19]), a special place is occupied by regular factorizations of contractive
operator functions (see [11], and also Sect. 2.3 of this paper). In this connection,
in the paper the main attention is paid to the description of extensions of form (1.1)–
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(1.3), for which factorizations of form (1.4)–(1.6) is regular. Such extensions �(z),
�(z) and �(z) of a function θ(z) ∈ CM[G,F] we also call regular. By similar
methods one can describe arbitrary extensions, but this is beyond the scope of this
work (see Remark 5.17).

The study of extensions of a contractive operator function was initiated by the
following two problems which were interconnected.

Problem 1 Scattering through internal channels of an open system (of a scattering
system).

Each function θ(ζ ) ∈ S[G,F] is the transfer function of some open system
(see, e.g., [5, 27], §1 and also [14], Section 6). The fundamental operator of such a
system is a contraction T ∈ [H] where H is the internal Hilbert space of the system.
The function θ(ζ ) is often termed as the characteristic operator function of the
contraction T (see, e.g., [19, 29]). If a contraction T is completely nonunitary (the
basic definitions related to contractions can be found, e.g., in Sect. 6 of this paper),
then its characteristic function θ(ζ ) determines T up to unitary equivalence.

Internal unilateral channels of an open system are closely related to unilateral
shifts and coshifts (backward shifts) contained in the corresponding completely
nonunitary contraction T . Internal channels can be partially brought out into the
external spaces (see [14], Section 6). In this case, the internal unilateral channel
generated by a coshift (shift) passes into the external input (output) space of the
open system. This leads to some new open system whose transfer function takes the
form

[
θ12(ζ )

θ(ζ )

]
∈ S[G,F(1) ⊕ F] ([θ12(ζ ), θ(ζ )] ∈ S[G(1) ⊕G,F]). (1.7)

Here F(1) (G(1)) is a Hilbert space related to the corresponding internal unilateral
input (output) channel and the function θ12(ζ ) ∈ S[G,F(1)] (θ21(ζ ) ∈ S[G(1),F])
describes the scattering generated by this channel.

If the internal unilateral channel generated by the largest coshift (shift) is brought
out into the external input (output) space of an open system with transfer function
θ(ζ ) ∈ S[G,F], then in (1.7) we obtain

θ12(ζ ) = ϕ(ζ ) (θ21(ζ ) = ψ(ζ )),

where ϕ(ζ ) (ψ(ζ )) is so called defect (�-defect) function of θ(ζ ). Here the essence
of the defectiveness of the function θ(ζ ) is that there is an internal unilateral input
(output) scattering channel which is not controlled by the transfer function θ(ζ ).
This means that θ(ζ ) admits an extension of form (1.7) to another transfer function
where θ(ζ ) is already its block controlling some part of the scattering of the new
open system. Note that ideas about considering internal channels play an important
role in [5–7, 9, 14–16, 23–25].

The holomorphy of a function θ(ζ ) ∈ S[G,F] corresponds to the orthogonality
of the external unilateral input and output scattering channels (see, e.g. [4], §1
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and also [11], Section 6). At the same time, an important point in the theory of
Schur functions (and contractions) is that the subspaces of the internal space of
the corresponding system, on which the largest internal shift and coshift act, are
not necessarily orthogonal. In this case, the simultaneous bringing out the largest
internal unilateral channels of the system into the external spaces leads to the
bidirectional extension of the form

[
χ(z) ϕ(z)

ψ(z) θ(z)

]
∈ CM[K∗ ⊕G,K⊕ F] (1.8)

for the boundary value function θ(z) of the function θ(ζ ). Here K∗ and K are
Hilbert spaces related to the largest internal unilateral output and input channels of
the system, respectively, and, generally speaking, χ(z) �∈ L∞+ [K∗,K]. Thus, in the
general case, the extension of form (1.8) is no longer the boundary value function
of the transfer function of some open system. This forces us to use a more general
interpretation. The function χ(z) ∈ CM[K∗,K] is now the scattering suboperator of
the minimal unitary coupling generated by the largest internal unilateral input and
output channels of the system. Therefore, it is called the suboperator of internal
scattering of the system. It plays an important role in the scattering theory with
losses (see, e.g., [5–7, 9, 14, 17, 18]).

Note that the methods of the present paper were elaborated mainly for the study
of the function χ(z). The corresponding results were published without proof in
[9, 10]. In the papers [17, 18] they were obtained by other methods. A number of
open questions are connected with the scattering suboperator χ(z) (for example, a
description of the corresponding class). We think that proposed methods will help
to answer them.

If one passes to the strong boundary value functions in (1.7) setting z := ζ ∈ T,
then extensions of form (1.1) and (1.2) for the boundary value function θ(z) of
the function θ(ζ ) ∈ S[G,F] are obtained. These extensions are regular, as well as
the extension of form (1.8) is. In this paper we generalize the proposed methods
to the non-holomorphic case when θ(z) ∈ CM[G,F]. The presence of the block
χ(z) �∈ L∞+ [K∗,K] in (1.8) makes these generalizations natural.

Problem 2 Completion of the Schur operator function to a two-sided inner function
(the Darlington synthesis problem).

This problem consists in clarifying conditions under which the given Schur
operator function θ(ζ ) ∈ S[G,F] can be a block of some two-sided inner function
of the form

I (ζ ) :=
[
θ11(ζ ) θ12(ζ )

θ21(ζ ) θ(ζ )

]
∈ S[G(1) ⊕G,F(1) ⊕ F], (1.9)

and, in the case of the existence of I (ζ ), in describing the set of all such functions
I (ζ ). This problem arose as a synthesis problem in the theory of electrical circuits
(see, e.g., [20]). As shown in the papers [2, 3, 5, 21, 22, 26], this problem is closely
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related to the problem of the pseudocontinuation of the function θ(ζ ) across the unit
circle T.

If one passes to the strong boundary value functions in (1.9), setting z := ζ ∈ T,
then, as shown in [5], §1, there is a direct connection between extensions (1.8)
and (1.9). It is clear that the extension obtained in this way is a particular case of
extensions of type (1.3). From the above mentioned connection between extensions
(1.8) and (1.9) it follows that the existence of two-sided inner extensions of type
(1.9) is associated with the special geometrical conditions on certain subspaces
of the internal space of the corresponding open system. Namely, these are the
subspaces on which the largest internal unilateral shift and coshift act.

Thus, the solvability of Problem 2 is closely related to the special conditions on
the largest internal unilateral channels of the corresponding open system, what is
the subject of Problem 1. For more details on this interrelations, see [5, 16, 25].

In Sect. 2 we adduce the results from [11–13] which are necessary for what
follows.

In Sect. 3 the concepts of unidirectional and bidirectional regular extensions of
contractive operator functions are introduced. Here we also define, as their particular
case, completely regular extensions.

Descriptions of the sets of regular extensions for a contractive operator function
are obtained in Sect. 4 by a parametrization in terms of isometric and coisometric
operator functions. These results are proved in Theorem 4.2 (the unidirectional case)
and Theorem 4.5 (the bidirectional case).

In Sect. 5, introducing the comparison relation, we study the sets of regular
extensions for a contractive operator function as a partially preordered sets. The
subsets of maximal extensions are described in Theorems 5.5 and 5.13 for the
unidirectional and bidirectional cases, respectively. In Sect. 5.3 some extremal
properties of the norm of regular extensions are considered.

The definitions and the results of Sect. 6 are key to the subsequent exposition.
From now on we study unidirectional regular extensions of form (1.1) and (1.2) with
θ12(z) ∈ L∞+ [G,F(1)] (θ21(z) ∈ L∞+ [G(1),F]). For this, generalizing the similar
notion in the theory of unitary colligations, we introduce for a unitary coupling
the notion of the fundamental contraction T (Definition 6.4). In turn, this makes
it possible to define the notions of internal and external unilateral channels of the
coupling.

In Theorem 6.12 we give descriptions of the sets of regular extensions consid-
ered here in terms of unilateral shifts and coshifts contained in the fundamental
contraction T . This enables us to introduce the important concept of the defect
(�-defect) function ϕ(ζ ) ∈ S[G,K] (ψ(ζ ) ∈ S[K∗,F]) in the Schur class for a
function θ(z) ∈ CM[G,F] as the function generating the extension of form (1.1)
and (1.2) that corresponds to the largest internal coshift (shift) (Definition 6.13).

In Sect. 7.1, using the concept of the defect functions, we obtain other descrip-
tions of the sets of regular extensions, considered in Theorem 6.12, by a parametriza-
tion in terms of inner and �-inner operator functions (Theorem 7.4). In Sect. 7.2 a
refined comparison relation is defined on the sets of regular extensions introduced
in Sect. 6 which turns them into complete lattices (Lemma 7.8). In Sect. 7.3 we
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prove that the defect and �-defect functions in the Schur class for a function
θ(z) ∈ CM[G,F] coincide with the largest minorant for its defect function
�(z) := (I − θ∗(z)θ(z))1/2 ∈ CM[G] and with the largest �-minorant for its
�-defect function �(z) := (I − θ(z)θ∗(z))1/2 ∈ CM[F] in the class of contractive
measurable operator functions, respectively.

Section 8 is devoted to the study of bidirectional regular extensions of form (1.3),
where θ12(z) ∈ L∞+ [G,F(1)] and θ21(z) ∈ L∞+ [G(1),F] are viewed as those that are
generated by pairs of internal unilateral shifts and coshifts of corresponding minimal
unitary coupling. In the case of the largest among such shifts and coshifts, it leads
us to the regular extension of form (1.8), where the function χ(z) ∈ CM[K∗,K],
mentioned above in the particular case of an open system, is now the suboperator
of internal scattering of the coupling. As a corollary of Theorem 7.4, we obtain a
description of the set of considered regular extensions by a parametrization in terms
of inner and �-inner operator functions (Theorem 8.4). In Sect. 8.2, introducing the
refined comparison relation, we turn the set of regular extensions considered here
in a complete lattice. The conditions on θ(z) under which χ(z) ∈ L∞+ [K∗,K]
are discussed in Sect. 8.3. Requiring one more additional condition θ11(z) ∈
L∞+ [G(1),F(1)] for bidirectional regular extensions �(z) of form (1.3), we give a
description of the subset of maximal extensions in the considered set (see Sect. 8.4).
It makes possible to obtain the description of the set of all bidirectional regular
extensions of form (1.3) for a function θ(z) ∈ CM[G,F], where θ12(z), θ21(z) and
θ11(z) are the boundary value functions of the operator functions of the Schur class
(Theorem 8.22). In the case of θ(ζ ) ∈ S[G,F], this result can be considered as a
description of all regular extensions of θ(ζ ) within the Schur classe.

2 Preliminaries

In this section we give information on unitary couplings and regular factorizations of
contractive operator-valued functions that is necessary for what follows. A detailed
exposition can be found in [11–13].

2.1 Unitary Couplings and Scattering Suboperators

Let U be a unitary operator acting on a Hilbert space H. A subspace N in H is called
wandering with respect to U if UnN ⊥ UmN for n �= m (n,m = 0,±1,±2, . . .).

Definition 2.1 A six-tuple

σ := (H,F,G;U,VF, VG) (2.1)



146 S. S. Boiko and V. K. Dubovoy

is called a unitary coupling or simply a coupling if

(a) H, F, G are Hilbert spaces;
(b) U : H→ H is a unitary operator;
(c) VF : F→ H, VG : G→ H are isometric operators, i.e.,

V ∗FVF = IF, V ∗GVG = IG ;

(d) the subspaces
◦
F:= RanVF and

◦
G:= RanVG are wandering with respect to U .

The subspaces F and G are said to be the input and output channelled subspaces
of the unitary coupling σ , respectively. The operator U is called connecting and
the isometries VF and VG are termed the embedding operators of the unitary
coupling σ .

Remark 2.2 In this paper
◦
N will always denote RanV for any isometry

V : N → H.

It should be noted that only in form Definition 2.1 differs from the definition of
a unitary coupling for simple semi-unitary operators given in [1] and [2].

Any subspace N wandering with respect to U generates subspaces

M(N) :=
∞⊕
−∞

UkN, RN := H�M(N),

M+(N) :=
∞⊕
0

UkN, M−(N) :=
−1⊕
−∞

UkN.

We use the symbol

∨
α∈A

Lα ,

where Lα ⊂ H, α ∈ A, for denoting the smallest (closed) subspace of H that
contains all Lα, α ∈ A.

Definition 2.3 Let σ be a unitary coupling of form (2.1). We mean by the principal
part of the coupling σ the coupling

σ (1) := (H(1),F,G;U(1), VF, VG),

where H(1) := M(F
◦
)∨M(G

◦
), U(1) := U |H(1) . The coupling σ is called minimal

if σ = σ (1) and abundant otherwise.
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In this definition and in what follows we retain the notation VF (VG) when H is

replaced by its subspace that contains F
◦
(G
◦
), or by any space that contains H.

In the sequel we will use the following simple assertion adduced without proof
(here and henceforth PL is an orthogonal projection of H onto a subspace L).

Lemma 2.4 ([11]) A unitary coupling σ of form (2.1) is minimal iff any of the two
following equivalent conditions

R
F
◦ = PR

F
◦ M(G

◦
) or R

G
◦ = PR

G
◦ M(F

◦
)

is valid.

Definition 2.5 Unitary couplings

σ = (H,F,G;U,VF, VG), σ ′ = (H′,F,G;U ′, V ′F, V ′G) (2.2)

are called unitarily equivalent if there exists a unitary operator Z : H → H′ such
that

U ′Z = ZU, V ′F = ZVF, V ′G = ZVG . (2.3)

We say about Z as an operator which establishes the unitary equivalence of σ and
σ ′.

Thereby, obviously, an equivalence relation in the set of unitary couplings
is introduced. By [σ ] we denote the equivalence class to which a coupling σ

belongs. Clearly, the minimality of a coupling σ persists when passing to a unitarily
equivalent coupling σ ′. We speak that a class [σ ] is minimal if it consists of minimal
(unitarily equivalent) couplings.

Note that the operatorZ which establishes the unitary equivalence of the minimal
couplings σ and σ ′ is determined by conditions (2.3) uniquely (see [11], Section 1).

We recall the definitions of some spaces of vector and operator valued functions
that will be used in what follows. A detailed treatment of this subject can be found,
e.g., in [28, 29].

Let N be a Hilbert space. By L2(N) we will denote the Hilbert space of
measurable (no matter in the weak or strong sense) functions h(z), z ∈ T, with
values in N such that

||h||2
L2(N)

:= 1

2π

∫ 2π

0
||h(eit )||2N dt < ∞ ,

while the inner product in L2(N) is defined by

〈h1, h2〉L2(N) :=
1

2π

∫ 2π

0
〈h1(e

it ), h2(e
it )〉N dt .
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It is known that a function h(z) belongs to L2(N) iff it admits the representation

h(eit ) =
∞∑
−∞

eikthk , hk ∈ N (k = 0,±1,±2, . . .)

where the series convergence is understood as the convergence in the space L2(N).
Moreover, the condition

∞∑
−∞
||hk||2N < ∞

is satisfied.
By L2+(N) we denote the important subspace of L2(N) that consists of functions

h(z) ∈ L2(N) admitting the representation

h(eit ) =
∞∑
0

eikthk, hk ∈ N (k = 0, 1, 2, . . .) .

Such functions can be considered as strong boundary value functions for ones of the
Hardy classH 2+(N) on the unit disk D. The spaceH 2+(N) is formed by holomorphic
in D functions

h(ζ ) =
∞∑
0

ζ khk, hk ∈ N (k = 0, 1, 2, . . .) ,

such that

||h||2
H 2+(N)

:= sup
r<1

{
1

2π

∫ 2π

0
||h

(
reit

)
||2N dt

}
< ∞ .

Furthermore, ||h(ζ )||H 2+(N) = ||h(z)||L2+(N). Denote also by L2−(N) the subspace

L2(N) � L2+(N) that consists of the functions h(z) ∈ L2(N) admitting the
representation

h(eit ) =
−1∑
−∞

eikthk, hk ∈ N (k = −1,−2, . . .) .

Let F and G be Hilbert spaces. Any function θ(z) from the space L∞[G,F]
introduced in Sect. 1 admits the following representation

θ
(
eit

)
=

∞∑
−∞

eiktθk, θk ∈ [G,F] (k = 0,±1,±2, . . .) ,
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where for any g ∈ G the series
∞∑
−∞

eikt θkg converges in the norm of the spaceL2(F)

and it is the Fourier expansion of the function θ
(
eit

)
g. Accordingly, any function

θ(z) from the space L∞+ [G,F] (see Sect. 1) admits the representation

θ
(
eit

)
=

∞∑
0

eikt θk, θk ∈ [G,F] (k = 0, 1, 2, . . .) .

Moreover, the corresponding function θ(z) ∈ H∞+ [G,F] (see Sect. 1) admits the
representation

θ(ζ ) =
∞∑
0

ζ kθk, ζ ∈ D,

where the convergence of this power series does not depend on the choice of the
weak, strong, or norm convergence in the space H∞+ [G,F].

Together with θ
(
eit

) ∈ L∞[G,F] we consider the operator function

θ∼
(
eit

)
:= θ∗

(
e−it

)
∈ L∞[F,G],

which is called associated with respect to θ
(
eit

)
. In the case θ(ζ ) ∈ H∞+ [G,F] the

associated function can be defined as θ∼(ζ ) := θ∗(ζ̄ ) ∈ H∞+ [F,G].
Let θ : L2(G) 
→ L2(F) be a “multiplication” operator by an operator function

θ
(
eit

) ∈ L∞[G,F]. Hereafter the function θ
(
eit

)
will be called the suboperator of

the operator θ .
We call an operator function θ

(
eit

) ∈ L∞[G,F] isometric (coisometric) if
the equality θ∗

(
eit

)
θ
(
eit

) = IG ( θ
(
eit

)
θ∗

(
eit

) = IF ) holds almost
everywhere. It is termed unitary if both of these equalities are valid almost
everywhere. The corresponding “multiplication” operator θ ∈ [L2(G), L2(F)] is
called the “multiplication” isometry, coisometry or unitary operator, respectively.
Moreover, if θ

(
eit

) ∈ L∞+ [G,F], then, in this case, it is the boundary value function
of an inner, ∗-inner or two-sided inner operator function, respectively.

By a “multiplication” orthoprojection of L2(N) we call any “multiplication”
operator P whose suboperator P

(
eit

) ∈ L∞[N](:= L∞[N,N]) is an orthogonal
projection of N onto some subspace of N at almost all t , i.e.,

P 2
(
eit

)
= P

(
eit

)
, P ∗

(
eit

)
= P

(
eit

)
a.e.

Let U×N be the “multiplication” operator by eit on the space L2(N). There
exists a bijective correspondence between reducing subspaces M of L2(N) for the
operator U×N and “multiplication” orthoprojections PM

(
eit

)
of L2(N) such that

M = PML2(N) (see [12], Theorem 7.14).
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Let M ⊂ L2(N) be a reducing subspace for U×N. The function ρ
M

(
eit

) :=
dimPM

(
eit

)
N defined almost everywhere and taking on values in N∪ {0,∞} will

be called the rank function of the subspace M. We also set

α
M
:= ess inf

t
ρ
M

(
eit

)
, β

M
:= ess sup

t
ρ
M

(
eit

)
.

For an arbitrary operator function μ
(
eit

) ∈ L∞[G,N] we denote by ρμ
(
eit

)
the rank function of the subspace M := μL2(G) reducing U×N and by Pμ we does
the “multiplication” orthoprojection of L2(N) onto M. We also set αμ := α

M
,

βμ := βM .

Definition 2.6 Let H and N be Hilbert spaces and let U : H → H be a unitary

operator. Let V : N → H be an isometric operator such that N
◦ := Ran V is

a wandering subspace of H with respect to U . The operator �N
U : H → L2(N)

defined by

[
�N
U h

] (
eit

)
:=

∞∑
−∞

eiktV ∗U−kh, h ∈ H ,

is called the Fourier representation that corresponds to the space N and the operators
U and V (the dependence on V is not reflected in �N

U to simplify notations).

Moreover, the equalities

�N
U M±(N

◦
) = L2±(N) .

are valid. In addition, �N
U U = U×N�

N
U .

Let σ be a unitary coupling of form (2.1). In the sequel the operator

Sσ := P
M(F
◦
)

∣∣∣
M(G

◦
)

(2.4)

will play an important part. Obviously, Sσ is a contractive operator acting from

M(G
◦
) into M(F

◦
). It satisfies the condition

USσ = SσU |M(G
◦
)
.

In fact, since M(F
◦
) and M(G

◦
) reduce U ,

SσU |M(G
◦
)
= P

M(F
◦
)
U |

M(G
◦
)
= UP

M(F
◦
)

∣∣∣
M(G

◦
)
= USσ .
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By means of the Fourier representations �F
U and �G

U we can assign to the
operator Sσ the operator

θσ := �
F
USσ

(
�G
U

)∗ = �
F
U

(
�G
U

)∗
, (2.5)

acting from L2(G) into L2(F), which is said to be the scattering operator of the
coupling σ . The operator θσ satisfies the condition

U×F θσ = θσU
×
G .

As is well known [29], in this case there exists a unique (we do not distinguish
operator functions from L∞[G,F] that coincide pointwise almost everywhere)
operator function θσ

(
eit

) ∈ L∞[G,F] such that

θσ

(
eit

)
g
(
eit

)
:= (θσg)

(
eit

)
, g

(
eit

)
∈ L2(G). (2.6)

Moreover,

‖θσ
(
eit

)
‖L∞[G,F] = ‖θσ‖[L2(G),L2(F)] ≤ 1 .

Thus, θσ (eit ∈ CM[G,F] (see Sect. 1). Following [1], we formulate

Definition 2.7 The operator function θσ
(
eit

) ∈ CM[G,F] defined by equality
(2.6) is called the scattering suboperator of a unitary coupling σ of form (2.1) .

It follows from (2.4)–(2.6) that θσ
(
eit

) = θσ (1)
(
eit

)
, where σ (1) is the principal

part of the coupling σ .

Theorem 2.8 ([11]) Let σ and σ ′ be unitarily equivalent couplings of form (2.2).
Then θσ

(
eit

) = θσ ′
(
eit

)
.

The following theorem contains a complete description of the class of scattering
suboperators and establishes a correspondence between contractive operator func-
tions and minimal unitary couplings.

Theorem 2.9 ([1]) An arbitrary function θ
(
eit

) ∈ CM[G,F] is the scattering
suboperator θσ

(
eit

)
of some minimal unitary coupling σ of form (2.1). The

coupling σ is determined by θ
(
eit

)
up to unitary equivalence. Thereby a bijective

correspondence between classes of minimal unitarily equivalent couplings and
contractive operator functions of the class L∞ is established.

Remark 2.10 The bijective correspondence defined in Theorem 2.9 enables us to
speak about a scattering suboperator θ[σ ]

(
eit

)
of a class [σ ] of unitarily equivalent

couplings.
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It is convenient to consider together with the coupling σ of form (2.1) the ones

σ ∗ := (H,G,F;U,VG, VF) , (2.7)

σ∼ := (H,G,F;U∗, VG, VF), (2.8)

which are called adjoint and associate in relation to the coupling σ , respectively.
Note (see [11], Section 1) that

θσ ∗
(
eit

)
= θ∗σ

(
eit

)
, θσ∼

(
eit

)
= θ∼σ

(
eit

)
. (2.9)

Using the ideas of [1], we construct (see [11], Section 2) for any function
θ
(
eit

) ∈ CM[G,F] two unitarily equivalent functional models of unitary coupling

σ̂ := (Ĥ,F,G; Û×, V̂F, V̂G), σ̃ := (H̃,F,G; Ũ×, ṼF, ṼG)

such that θσ̂
(
eit

) = θσ̃ (
eit

) = θ (eit).
So, let θ

(
eit

) ∈ CM[G,F] and σ be a minimal unitary coupling of form (2.1)
such that θσ

(
eit

) = θ (eit ). As follows from Lemma 2.4, in this case the equality

H = M(F
◦
)⊕ PR

F
◦M(G

◦
)

holds. Denote

�
(
eit

)
:=

(
IG − θ∗

(
eit

)
θ
(
eit

))1/2
(2.10)

(all roots of nonnegative operators are supposed to be nonnegative) and let � be the
“multiplication” operator by the function �

(
eit

)
on L2(G). Since � ∈ [L2(G)] is

the defect operator of the contraction θ ∈ [L2(G), L2(F)] (see, e.g., [29], Ch.I, §3),
we call the operator function �(eit ) ∈ CM[G] the defect function of θ(eit ) in the
class of contractive measurable operator functions. The subspace�L2(G) is called
the defect subspace of the operator θ .

Theorem 2.11 ([11]) Let θ
(
eit

)
belongs to CM[G,F] and �

(
eit

) ∈ CM[G] be
its defect function in the class of contractive measurable operator functions. If

(a) Ĥ := L2(F)⊕�L2(G),
(b) Û× is the multiplication operator by eit on Ĥ,
(c) V̂F : F→ Ĥ is an inclusion operator of F into Ĥ, i.e., V̂F := PF

∣∣
F ,

(d) V̂G : G→ Ĥ is an isometric operator defined by the formula

(V̂Gg)(e
it ) :=

(
θ
(
eit

)
g,�

(
eit

)
g
)
, g ∈ G ,



Regular Extensions and Defect Functions 153

then

σ̂ := (Ĥ,F,G; Û×, V̂F, V̂G) (2.11)

is a minimal unitary coupling and, moreover, θσ̂
(
eit

) = θ (eit).
Let us interchange the parts of the subspaces F and G in the above reasoning,

i.e., instead of the decomposition H =M(F
◦
)⊕R

F
◦, we consider the decomposition

H = R
G
◦ ⊕M(G

◦
). In this case, the part of the function θ

(
eit

)
is played by θ∗

(
eit

)
,

as it follows from (2.7) and the first equality (2.9) . Therefore, instead of the operator
�, the “multiplication” operator� by the operator function

�
(
eit

)
:=

(
IF − θ

(
eit

)
θ∗

(
eit

))1/2
, (2.12)

on L2(F) is used. Since � ∈ [L2(F)] is the defect operator of the contraction
θ∗ ∈ [L2(F), L2(G)], we call the operator function �(eit ) ∈ CM[F] the ∗-defect
function of θ(eit ) in the class of contractive measurable operator functions. The
subspace �L2(F) is called the ∗-defect subspace of the operator θ . If θ(eit ) =
θj (e

it ), then we will write �j and �j instead of � and �, respectively.
So, we come to the assertion which is dual to Theorem 2.11.

Theorem 2.12 ([11]) Let θ
(
eit

)
belongs to CM[G,F] and �

(
eit

) ∈ CM[F] be
its ∗-defect function in the class of contractive measurable operator functions. If

(a) H̃ := �L2(F)⊕ L2(G),
(b) Ũ× is a multiplication operator by eit on H̃,
(c) ṼF : F→ H̃ is an isometric operator defined by the formula

(ṼFf )(e
it ) :=

(
�

(
eit

)
f, θ∗

(
eit

)
f
)
, f ∈ F ,

(d) ṼG : G→ H̃ is an inclusion operator of G into H̃, i.e., ṼG := PG
∣∣
G ,

then

σ̃ := (H̃,F,G; Ũ×, ṼF, ṼG) (2.13)

is a minimal unitary coupling and, moreover, θσ̃
(
eit

) = θ (eit).
Consider the unitary “multiplication” operatorW by the operator function

W(eit ) :=
(
�(eit ) −θ(eit )
θ∗(eit ) �(eit )

)
(2.14)

on the space L2(F)⊕ L2(G).
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Theorem 2.13 ([11]) The restriction Z := W

∣∣∣Ĥ of the operator W on Ĥ

establishes the unitary equivalence of the minimal unitary couplings σ̂ and σ̃ .

2.2 Product of Unitary Couplings and Factorizations
of Contractive Operator Functions

Let σ be a unitary coupling of form (2.1). By a bilateral (unilateral output,
unilateral input) channel of the coupling σ we mean ([12]) a triple

(L,N;VN) ((L+,N;VN), (L−,N;VN)) ,

where VN ∈ [N,H] is a channeled isometry, that is, VN is an isometry such

that N
◦
(:= RanVN) is a wandering subspace of H with respect to U and the

equalityL =M(N
◦
)
(
L+ = M+(N

◦
), L− = M−(N

◦
)
)

holds. The bilaterel channels(
M(G

◦
),G;VG

)
and

(
M(F
◦
),F;VF

)
are called the principal bilateral channels of

the coupling σ .
Now we consider the concept of the product of unitary couplings which was

introduced in [8] and will be important in the sequel.

Definition 2.14 Unitary couplings

σ2 := (H2,F,K;U2, VF, VK) , σ1 := (H1,K,G;U1, VK, VG) (2.15)

are called concatenated if

(a) there exists a common subspace L of the spaces H2 and H1 that reduces the
operators U2 and U1;

(b) the operators U2 and U1 coincide on the subspace L, i.e.,

U2|L = U1|L; (2.16)

(c) the embedding isometry VK is common for the couplings σ2 and σ1 with
RanVK ⊂ L;

(d) the equality

L =
∞⊕

k=−∞
Uk

2K
◦
(=

∞⊕
k=−∞

Uk
1K
◦
)

is valid.



Regular Extensions and Defect Functions 155

In other words, the couplings σ2 and σ1 are concatenated if the principal

bilateral channel (M(K
◦
),K;VK) is common for them and the equality (2.16)

holds on the subspace L :=M(K
◦
).

Note that in [11] we called such couplings “coupled”. However, now the term
“concatenated couplings” seems to us more relevant to the essence of this concept.

Let σ2 and σ1 be concatenated unitary couplings of form (2.15). Consider the
space

H := R
(2)

K
◦ ⊕M(K

◦
)⊕R

(1)

K
◦ (2.17)

where R
(j)

K
◦ := Hj � M(K

◦
) (j = 1, 2). If subspaces of H2 and H1 are identified

with corresponding subspaces of H, then

H = H2 ⊕R(1)

K
◦ = R(2)

K
◦ ⊕H1 .

Define the unitary operator on H by the equality

U := U2P2 + U1Q1, (2.18)

where P2 and Q1 are the orthogonal projection of H onto H2 and R(1)

K
◦ , respectively.

Obviously, U can also be represented in the form

U = U2Q2 + U1P1,

whereQ2 and P1 are the orthogonal projections of H onto R
(2)

K
◦ and H1, respectively.

Definition 2.15 The unitary coupling σ := (H,F,G;U,VF, VG), where H and U
are defined by (2.17) and (2.18), is called the product of the concatenated unitary
couplings of form (2.15). In this case, we will write σ = σ2σ1.

It is easy to extend the notation of the product to any finite set of unitary couplings
σn, . . . ., σ2, σ1 such that for each j = 1, 2, . . . , n − 1 the couplings σj+1 and σj
are concatenated.

Let [σ2], [σ1] be two classes of unitarily equivalent couplings such that they have
a common channelled subspace which is the output one for each of σ2 ∈ [σ2] and
the input one for each of σ1 ∈ [σ1]. In such classes one can always choose unitary
couplings σ2 ∈ [σ2] and σ1 ∈ [σ1] which are concatenated. In fact, as it follows
from Theorems 2.11 and 2.12, for such classes [σ2] and [σ1] of minimal unitarily
equivalent couplings, one can chose the couplings σ̃2 ∈ [σ2] and σ̂1 ∈ [σ1] of types
(2.13) and (2.11), respectively, which are obviously concatenated. The passage to
classes of abundant couplings can be realized in an obvious way.

Definition 2.16 Let [σ2] and [σ1] be classes of unitarily equivalent couplings which
have a common channelled subspace of the output for [σ2] and of the input for [σ1].
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The class containing the product σ2σ1 of concatenated unitary couplings σ2 ∈ [σ2]
and σ1 ∈ [σ1] is called the product of the classes [σ2] and [σ1] and is denoted by
[σ2][σ1].

Note that this definition is correct irrespectively of a choice of concatenated
representatives σ2 ∈ [σ2] and σ1 ∈ [σ1] (see [11], Theorem 3.14).

Definition 2.17 By a factorization of a unitary coupling we mean any of its
representations as the product of concatenated unitary couplings.

There exists the direct connection between factorizations of unitary couplings
and factorizations of contractive operator functions of the class L∞ such that factors
are also contractive operator functions of the class L∞.

Theorem 2.18 ([11]) Let

σ2 := (H2,F,K;U2, VF, VK) , σ1 := (H1,K,G;U1, VK, VG) (2.19)

be concatenated unitary couplings. Then

θσ2σ1

(
eit

)
= θσ2

(
eit

)
θσ1

(
eit

)
. (2.20)

Conversely, if θ2
(
eit

) ∈ CM[K,F], θ1
(
eit

) ∈ CM[G,K], then there exist
concatenated unitary couplings σ2 and σ1 of form (2.19) such that

θ2

(
eit

)
= θσ2

(
eit

)
, θ1

(
eit

)
= θσ1

(
eit

)
, θ2

(
eit

)
θ1

(
eit

)
= θσ2σ1

(
eit

)
.

2.3 Regular Factorizations of Contractive Operator-Valued
Functions

Definition 2.19 By a factorization of a function θ
(
eit

) ∈ CM[G,F] we mean any
of its representations in the form

θ
(
eit

)
= θ2

(
eit

)
θ1

(
eit

)
, (2.21)

where θ2
(
eit

) ∈ CM[K,F], θ1
(
eit

) ∈ CM[G,K]. A factorization of form (2.21)
is called regular if the product [σ2][σ1] of minimal classes [σ2] and [σ1] such that
θ[σj ]

(
eit

) = θj (eit) (j = 1, 2) is a minimal class as well.

Thus, the regularity of factorization (2.21) is equivalent to the minimality of the
product σ2σ1 for arbitrary minimal concatenated unitary couplings σ2 and σ1 such
that θσj

(
eit

) = θj (eit) (j = 1, 2).
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Theorem 2.20 ([11]) Let σ be a minimal unitary coupling. For a given regular
factorization θσ

(
eit

) = θ2
(
eit

)
θ1

(
eit

)
there exists one and only one factorization

σ = σ2σ1 such that θσj
(
eit

) = θj (eit ) (j = 1, 2).

Actually, Theorem 2.20 establishes a bijective correspondence between factor-
izations of a minimal unitary coupling σ and regular factorizations of its scattering
suboperator θσ

(
eit

)
.

It is possible to introduce a comparison relation in the set of regular factorizations
for a function θ

(
eit

) ∈ CM[G,F].
Definition 2.21 Let

θ
(
eit

)
= θ2

(
eit

)
θ1

(
eit

)
, θ2

(
eit

)
∈ CM[K,F], θ1

(
eit

)
∈ CM[G,K], (2.22)

θ
(
eit

)
= θ ′2

(
eit

)
θ ′1

(
eit

)
, θ ′2

(
eit

)
∈ CM[K′,F], θ ′1

(
eit

)
∈ CM[G,K′] (2.23)

be two regular factorizations of a contractive operator function θ
(
eit

)
. We say

that factorization (2.22) precedes factorization (2.23) if there exists a contractive
operator function θ0

(
eit

) ∈ L∞[K,K′] such that

θ2

(
eit

)
= θ ′2

(
eit

)
θ0

(
eit

)
, θ0

(
eit

)
θ1

(
eit

)
= θ ′1

(
eit

)
. (2.24)

Theorem 2.22 ([11]) Let σ be a minimal unitary coupling and σ = σ2σ1 = σ ′2σ ′1.
The factorization

θσ

(
eit

)
= θσ2

(
eit

)
θσ1

(
eit

)

precedes the factorization

θσ

(
eit

)
= θσ ′2

(
eit

)
θσ ′1

(
eit

)

iff there exists a unitary coupling σ0 such that σ2 = σ ′2σ0, σ0σ1 = σ ′1.

It is easy to see that the introduced comparison relation for regular factorizations
is reflexive and transitive, but it is not antisymmetric. In fact, if, for instance, in
the definition of the comparison relation, we put θ0

(
eit

) = X �= I where X is
a constant unitary factor, then the distinct factorizations (2.22) and (2.23) precede
each other.

Thus, a partial preorder is established on the set of regular factorizations for any
contractive operator function θ

(
eit

) ∈ L∞[G,F].
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Theorem 2.23 ([11]) Let σ := (H,F,G;U,VF, VG) be a minimal unitary
coupling and let σ = σ2σ1 = σ ′2σ ′1, where

σ2 := (H2,F,K;U2, VF, VK), σ1 := (H1,K,G;U1, VK, VG) ,

σ ′2 := (H′2,F,K′;U ′2, VF, VK′), σ ′1 := (H′1,K′,G;U ′1, VK′ , VG) .

The factorizations

θσ

(
eit

)
= θσ2

(
eit

)
θσ1

(
eit

)
, θσ

(
eit

)
= θσ ′2

(
eit

)
θσ ′1

(
eit

)

precede each other iff M(K
◦
) = M(K

◦ ′).

Lemma 2.24 ([1]) Let σ := (H,F,G;U,VF, VG) be a unitary coupling. The

equality M(F
◦
) = M(G

◦
) is valid iff the scattering suboperator θσ

(
eit

)
assumes

unitary values at almost all t .

Guided by ideas of [4], we introduce the following concept.

Definition 2.25 A unitary coupling σ is called lossless if its scattering suboperator
takes on unitary values at almost all t . A minimal unitary coupling σ is called trivial
if its scattering suboperator is a constant unitary operator X ∈ [G,F]. A trivial
unitary coupling is called unity if F = G and its scattering suboperator is IG ∈ [G].

It follows from Lemma 2.24 that σ = (H,F,G;U,VF, VG) is a lossless

coupling iff M(F
◦
) = M(G

◦
). Note that a minimal coupling σ is trivial if F

◦ = G
◦

and is unity if F = G, VF = VG.
Introduce an equivalence relation on the set of regular factorizations for a

function θ
(
eit

) ∈ CM[G,F].
Definition 2.26 Two regular factorizations of forms (2.22) and (2.23) are called
equivalent if they precede each other.

The following assertions easily follow from Theorems 2.22, 2.23, and
Lemma 2.24.

Theorem 2.27 ([11])

(a) Factorizations of forms (2.22) and (2.23) are equivalent iff there exists a unitary
operator function θ0

(
eit

) ∈ CM[K,K′] such that equalities (2.24) hold.
(b) Let σ be a minimal unitary coupling and let σ = σ2σ1 = σ ′2σ ′1. The

factorizations

θσ

(
eit

)
= θσ2

(
eit

)
θσ1

(
eit

)
, θσ

(
eit

)
= θσ ′2

(
eit

)
θσ ′1

(
eit

)
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are equivalent iff there exists a lossless minimal coupling σ0 such that

σ2 = σ ′2σ0 , σ0σ1 = σ ′1 . (2.25)

In particular, the equalities

θσ2

(
eit

)
= θσ ′2

(
eit

)
X , Xθσ1

(
eit

)
= θσ ′1

(
eit

)
,

where X is a constant unitary factor, are valid iff the coupling σ0 in (2.25) is
trivial.

Thus, partitioning the set of regular factorizations of a contractive operator
function into equivalence classes, we can obviously extend the comparison relation
from the set of regular factorizations to the set of classes. It is easy to verify that the
relation defined in this way is a partial order on this set.

It is clear that the concept of regularity for a factorization of a contractive operator
function is extended to the case of any finite number of factors in an obvious way.

In [11] the following important criteria of regular factorizations were proved.

Theorem 2.28 Let θ2
(
eit

) ∈ CM[K,F] and θ1
(
eit

) ∈ CM[G,K]. The following
assertions are equivalent.

(1) The factorization θ
(
eit

) = θ2
(
eit

)
θ1

(
eit

)
is regular.

(2) The factorization θ∗
(
eit

) = θ∗1
(
eit

)
θ∗2

(
eit

)
is regular.

(3) �2L
2(K) ∩�1L

2(K) = {0}.
(4) �2

(
eit

)
K ∩�1

(
eit

)
K = {0} almost everywhere.

Corollary 2.29 If at almost all t at least one of the operators θ2
(
eit

)
or θ∗1

(
eit

)
is

isometric, then the factorization θ
(
eit

) = θ2
(
eit

)
θ1

(
eit

)
is regular.

Remark 2.30 ([11]) In the case of finite dimensional spaces F,K,G, we obtain
two more assertions that are equivalent to (1)–(4):

(5) rank�
(
eit

) = rank�2
(
eit

) + rank�1
(
eit

)
almost everywhere.

(6) rank�
(
eit

) = rank�2
(
eit

) + rank�1
(
eit

)
almost everywhere.

Definition 2.31 Let θ2(e
it ) ∈ CM[K,F], θ1(e

it ) ∈ CM[G,K] and

θ(eit ) := θ2(e
it )θ1(e

it ) a.e.

This factorization is called completely regular if the condition

P�2 (e
it )P�1(e

it ) = 0 a.e. (2.26)

holds (cf. with assertion (4) from Theorem 2.28).

For more information about these factorizations see [13], Subsection 8.5.
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Definition 2.32 The coupling σ of form (2.1) is called orthogonal if M−(F
◦
) ⊥

M+(G
◦
).

A characteristic property of orthogonal couplings σ is stated in the following
assertion.

Theorem 2.33 ([4]) A unitary coupling σ of form (2.1) is orthogonal iff its
scattering suboperator θσ

(
eit

)
belongs to the class L∞+ [G,F].

The theory of orthogonal couplings is equivalent to the theory of unitary
colligations (see [4] and [11], Section 6).

Definition 2.34 A unitary coupling σ of form (2.1) is called non-degenerate if

M(F
◦
)
⋂
M(G

◦
) = {0} holds and degenerate otherwise.

3 Regular Extensions of Contractive Measurable
Operator-Valued Functions

In this section, using some spacial cases of regular factorizations of contractive
operator functions, we introduce for such functions the concepts of unidirectional
and bidirectional regular extensions.

3.1 Unidirectional Regular Extensions

In the paper [13] (see Theorems 8.1 and 8.4) the connections between embeddings
of the principal channels of a minimal coupling into its other ones and regular
factorizations of its scattering suboperator was established. These results can be
formulated in the following form.

Theorem 3.1 Let σ be a minimal unitary coupling of form (2.1) and θ(eit ) :=
θσ (e

it ). There exists a bijective correspondence between bilateral channels

(M(
◦
F1),F1;VF1) ((M

◦
G1),G1;VG1)) of the coupling σ satisfying the condition

M(
◦
F1) ⊃ M(

◦
F) (M(

◦
G1) ⊃ M(

◦
G)) (3.1)

and regular factorizations of form

θ(eit ) = θ2(e
it )θ1(e

it ) (3.2)

where θ2(e
it ) ∈ CM[F1,F] (θ1(e

it ) ∈ CM[G,G1]) is a coisometric (isometric)
operator function.This correspondence is established by the equalities θj (eit ) =
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θσj (e
it ) (j = 1, 2), where

σ2 := (M(
◦
F1),F,F1;U2, VF, VF1), U2 := U |

M(
◦
F1)
; σ1 := (H,F1,G;U,VF1 , VG)

(3.3)

(σ2 := (H,F,G1;U, VF, VG1); σ1 := (M(
◦
G1),G1,G;U1, VG1 , VG), U1 := U |

M(
◦
G1)

).

(3.4)

In turn, of particular interest in studying the embeddings of the principal channel

(M(
◦
F),F;VF) into another one (M(

◦
F1),F1;VF1) is the case when F1 = F(1) ⊕ F

and VF1 |F = VF. This is tantamount to the existence of a bilateral channel

(M(
◦
F (1)),F(1);VF(1)) of the coupling σ such that

M(
◦
F1) = M(

◦
F (1))⊕M(

◦
F), VF1 = VF(1)PF(1) + VFPF,

where PF(1) and PF are the orthogonal projection of F1 onto F(1) and F, respectively.
Taking into account that up to the obvious unitary isomorphism the equality
L2(F1) = L2(F(1)) ⊕ L2(F) holds, we can write for the Fourier representation
�

F1
U the equality

�
F1
U |M(

◦
F1)
= �F(1)

U |M(
◦
F(1))
⊕�F

U |M(
◦
F)
.

This makes it possible to represent in the block form the operator functions θ2(e
it ) ∈

CM[F1,F] and θ1(e
it ) ∈ CM[G,F1] from factorization (3.2) corresponding to this

special case of the inclusion of form (3.1). Namely,

θ2(e
it ) = [0, IF], 0 ∈ [F(1),F]; θ1(e

it ) =
[
θ12(e

it )

θ(eit )

]
, (3.5)

where

θ2(e
it ) := θσ2(e

it ) ∈ CM[F(1) ⊕ F,F], θ1(e
it ) := θσ1(e

it ) ∈ CM[G,F(1) ⊕ F],

θ12(e
it ) := θσ12(e

it ) ∈ CM[G,F(1)],

σ1, σ2 are the couplings of form (3.3) under the conditions F1 = F(1)⊕ F, VF1 |F =
VF,

σ12 := (H,F(1),G;U,VF(1) , VG) (3.6)

(the coupling σ12 is not necessarily minimal).
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Theorem 3.2 Let σ be a minimal unitary coupling of form (2.1) and θ(eit ) :=
θσ (e

it ).

(a) There exists a bijective correspondence between bilateral channels (M(
◦
F

(1)),F(1);VF(1)) of the coupling σ satisfying the condition

M(
◦
F (1)) ⊥M(

◦
F) (3.7)

and regular factorizations

θ(eit ) = θ2(e
it )θ1(e

it ), (3.8)

where θ2(e
it ) ∈ CM[F(1) ⊕ F,F], θ1(e

it ) ∈ CM[G,F(1) ⊕ F] are functions
of form (3.5). This correspondence is established by the equality θ12(e

it ) =
θσ12(e

it ), where σ12 is a unitary coupling of form (3.6).
(b) A regular factorization of the considered type is completely regular iff the

corresponding channel (M(
◦
F (1)),F(1);VF(1)), in addition to condition (3.7),

also satisfies the condition

M(
◦
F (1)) ⊂ M(

◦
G). (3.9)

Proof

(a) This part is a particular case of Theorem 3.1.
(b) Since part (b) is a special case of part (a), we will confine ourselves only to the

discussion of additional condition (3.9).

A factorization (3.8) of the considered type is completely regular iff the inclusion

�2L2(
◦
F (1) ⊕ F) ⊂ Ker�1

holds (see Definition 2.31). Taking into account form (3.5) of θ2(e
it ), we obtain that

�2L
2(F(1) ⊕ F) = L2(F(1)) and, hence, L2(F(1)) ⊂ Ker�1. This inclusion is valid

iff the operator

θ12 := PL2(F(1))θ1 ∈ [L2(G), L2(F(1))]

is a coisometry. As is known (see [12], Theorem 7.6), the function θ12(e
it ) (:=

θσ12(e
it ) ∈ CM[G,F(1)]) is a coisometric operator function iff condition (3.9) is

satisfied. ��

Remark 3.3 It is seen from the proof of Theorem 3.2 that a factorization of form
(3.8), where θ2(e

it ) ∈ CM[F(1) ⊕ F,F], θ1(e
it ) ∈ CM[G,F(1) ⊕ F] are functions

of form (3.5), is completely regular iff the function θ12(e
it ) ∈ CM[G,F(1)] is a
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coisometric operator function. Obviously, in this case the inclusion Ranθ∗12 ⊂ Kerθ
holds.

In the dual case, that is, when G1 = G(1) ⊕ G, VG1 |G = VG, we similarly
obtain the block form of the operator functions θ2(e

it ) ∈ CM[G1,F], θ1(e
it ) ∈

CM[G,G1] from factorization (3.2). Namely,

θ2(e
it ) = [θ21(e

it ), θ(eit )]; θ1(e
it ) =

[
0
IG

]
, 0 ∈ [G,G(1)], (3.10)

where

θ2(e
it ) := θσ2(e

it ) ∈ CM[G(1)⊕G,F], θ1(e
it ) := θσ1(e

it ) ∈ CM[G,G(1)⊕G],

θ21(e
it ) := θσ21(e

it ) ∈ CM[G(1),F],

σ2, σ1 are the couplings of form (3.4) under the conditionsG = G(1)⊕G, VG1 |G =
VG,

σ21 := (H,F,G(1);U,VF, VG(1) ) (3.11)

and VG(1) := VG1 |G(1) (the coupling σ12 is not necessarily minimal).
The following assertion is the dual analog of Theorem 3.2.

Theorem 3.4 Let σ be a minimal unitary coupling of form (2.1) and θ(eit ) :=
θσ (e

it ).

(a) There exists a bijective correspondence between bilateral channels (M(
◦
G

(1)),G(1);VG(1)) of the coupling σ satisfying the condition

M(
◦
G
(1)) ⊥M(

◦
G) (3.12)

and regular factorizations

θ(eit ) = θ2(e
it )θ1(e

it ), (3.13)

where θ2(e
it ) ∈ CM[G(1) ⊕ G,F], θ1(e

it ) ∈ CM[G,G(1) ⊕ G] are functions
of form (3.10). This correspondence is established by the equality θ21(e

it ) =
θσ21(e

it ), where σ21 is a unitary coupling of form (3.11).
(b) A regular factorization of the considered type is completely regular iff the

corresponding channel (M(
◦
G (1)),G(1);VG(1)), in addition to condition (3.12),

also satisfies the condition

M(
◦
G
(1)) ⊂ M(

◦
F). (3.14)
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Remark 3.5 A factorization of form (3.13), where θ2(e
it ) ∈ CM[G(1) ⊕ G,F],

θ1(e
it ) ∈ CM[G,G(1) ⊕ G] are functions of form (3.10), is completely regular iff

the function θ21(e
it ) ∈ CM[G(1),F] is an isometric operator function. Obviously,

in this case the inclusion Ranθ21 ⊂ Kerθ∗ holds.

By analogy with the theory of open systems (see, e.g., [14], Section 6), the
transition from a unitary coupling σ of form (2.1) to the unitary coupling σ1 of
form (3.3) (σ2 of form (3.4)) with the input (output) channelled subspace F1 :=
F(1) ⊕ F(G1 := G(1) ⊕ G) and VF1 |F = VF(VG1 |G = VG) can be considered as

the opening of an additional input (output) bilateral channel (M(
◦
F (1)),F(1);VF(1))

((M(
◦
G (1)),G(1);VG(1))). Conversely, the transition from the coupling σ1 (σ2) to the

coupling σ corresponds to the partial closing of the input (output) bilateral channel.
The opening of an additional input (output) bilateral channel leads to the upward
(leftward) extension θ1(e

it ) (θ2(e
it )) of form (3.5) and (3.10) for the scattering

suboperator θσ (eit ) (= θ(eit )). The partial closing of the input (output) channel
of the coupling σ1 (σ2) leads to the narrowing of its scattering suboperator θσ1(e

it )

(θσ2(e
it )) to the function θ(eit ).

Theorems 3.2 and 3.4 enable us to formulate the following definition which is
a generalization of its analog for Schur operator functions (see [23], Section 2 and
[14], Definition 5.8).

Definition 3.6 A function

�(eit ) :=
[
θ12(e

it )

θ(eit )

]
∈ CM[G,F(1) ⊕ F]

(�(eit ) := [θ21(e
it ), θ(eit )] ∈ CM[G(1) ⊕G,F]) (3.15)

will be called a regular upward (leftward) extension of a function θ(eit ) ∈
CM[G,F] if the factorization

θ(eit ) = θ2(e
it )θ1(e

it ), (3.16)

where

θ2(e
it ) := [0, IF], 0 ∈ [F(1),F]; θ1(e

it ) := �(eit ) (3.17)

(θ2(e
it ) := �(eit )); θ1(e

it ) :=
[

0
IG

]
, 0 ∈ [G,G(1)]), (3.18)

is regular. It will be called a completely regular upward (leftward) extension if
factorization (3.16) is completely regular. If F(1) = {0}(G(1) = {0}), we will
call �(eit ) := θ(eit )(�(eit ) := θ(eit )) the trivial upward (leftward) extension
of the function θ(eit ). We will call the regular upward (leftward) extension
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�(eit )(�(eit )) of form (3.15) isometric (coisometric) if �(eit )(�(eit )) is an
isometric (coisometric) operator function.

Regular extensions of both types defined above, as well as downward and
rightward regular extensions of contractive operator functions defined in an obvious
way, will be called unidirectional regular extensions.

It is clear that a downward (rightward) regular extension of θ(eit ) is simply the
other form of a block matrix obtained from �(eit ) (�(eit )) by the permutation of
its blocks.

In the case of finite-dimensional spaces F, G, F(1) (G(1)) the functions θ(eit )
and �(eit ) (�(eit )) from Definition 3.6 may be considered as matrix-valued ones.
If dimF(1) = r (dimG(1) = s), this enables us to call the matrix function �(eit )
(�(eit )) a regular upward (leftward) extension of the matrix function θ(eit ) by r
rows (s columns). Obviously, in this case the identity

rank�2(e
it ) ≡ r (rank�1(e

it ) ≡ s)

holds for the function θ2(e
it ) (θ1(e

it )) of form (3.17) and (3.18). Taking into account
that for a self-adjoint matrix A the equality rankA2 = rankA is valid, we can
reformulate Remark 2.30 for the matrix case of regular extensions.

Remark 3.7 Let dimF(1) = r < ∞(dimG(1) = s < ∞). A matrix function
�(eit ) ∈ CM[G,F(1)⊕ F](�(eit ) ∈ CM[G(1)⊕G,F]) of form (3.15) is a regular
upward (leftward) extension of a matrix function θ(eit ) ∈ CM[G,F] by r rows (s
columns) iff the equality

rank(IG − θ∗(eit )θ(eit )) = r + rank(IG − θ∗12(e
it )θ12(e

it )− θ∗(eit )θ(eit ))

(rank(IF − θ(eit )θ∗(eit )) = s + rank(IF − θ21(e
it )θ∗21(e

it )− θ(eit )θ∗(eit )))

holds almost everywhere.

It should be pointed out that an operator function�(eit ) (�(eit )) of form (3.15),
being a regular upward (leftward) extension of a contractive operator function θ(eit ),
does not need to be a regular downward (rightward) extension of the contractive
operator function θ12(e

it ) (θ21(e
it )). Indeed, the factorization

θ12(e
it ) = τ2(e

it )τ1(e
it )(θ21(e

it ) = τ2(e
it )τ1(e

it )), (3.19)

where

τ2(e
it ) := [IF(1) , 0], 0 ∈ [F,F(1)]; τ1(e

it ) := �(eit )

(τ2(e
it ) := �(eit ); τ1(e

it ) :=
[
IG(1)

0

]
, 0 ∈ [G(1),G]),
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is not necessarily regular. For example, let θ(eit ) := θσ (eit ), where σ is a coupling

of form (2.1) such that M(
◦
F) �⊂ M(

◦
G), and let (M(

◦
F (1)),F(1);VF(1)) be a bilateral

channel of the coupling σ such that

M(
◦
F (1)) ⊥M(

◦
F), M(

◦
F (1)) ⊂ M(

◦
G).

Then, by Theorem 3.2 (part (b)) and Definition 3.6, the function �(eit ) of form
(3.15) is even completely regular extension of the function θ(eit ). At the same time
�(eit ) is not regular download extension of the function θ12(e

it ) since factorization
(3.19) is not regular. The latter is valid by Theorem 3.2, because for the principal
part

σ
(1)
12 := (H(1),F(1),G;U(1), VF(1) , VG),

H(1) := M(
◦
F (1)) ∨M(

◦
G) = M(

◦
G), U

(1) := U |H(1)

of the coupling σ12 (see Definition 2.3) the channel (M(
◦
F),F;VF) is not a channel

of the coupling σ (1)12 .

3.2 Bidirectional Regular Extensions

The connection between simultaneous embeddings of both principal channels of
a minimal coupling into its other ones and regular factorizations of its scattering
suboperator is obtained in [13] (see Theorem 8.5) and can be formulated in the
following form.

Theorem 3.8 Let σ be a minimal unitary coupling of form (2.1) and θ(eit ) :=
θσ (e

it ). There exists a bijective correspondence between pairs of bilateral channels

{(M(
◦
F1),F1;VF1), (M(

◦
G1),G1;VG1)} of the coupling σ satisfying the conditions

M(
◦
F1) ⊃ M(

◦
F), M(

◦
G1) ⊃ M(

◦
G) (3.20)

and regular factorizations

θ(eit ) = θ3(e
it )θ2(e

it )θ1(e
it ), (3.21)

where θ3(e
it ) ∈ CM[F1,F], θ1(e

it ) ∈ CM[G,G1] are coisometric and isometric
operator functions, respectively. This correspondence is established by the equali-
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ties θj (eit ) = θσj (eit ) (j = 1, 2, 3), where

σ3 := (M(
◦
F1),F,F1;U3, VF, VF1), U3 := U |

M(
◦
F1)
;

σ2 := (H,F1,G1;U,VF1, VG1);

σ1 := (M(
◦
G1),G1,G;U1, VG1 , VG), U1 := U |

M(
◦
G1)

. (3.22)

In the particular case, when

F1 = F(1) ⊕ F, VF1 |F = VF, G1 = G(1) ⊕G, VG1 |G = VG, (3.23)

we can represent in the block form the operator functions θj (eit ) (j = 1, 2, 3)
from factorization (3.21) corresponding to this special case of the inclusions of form
(3.20). Namely,

θ3(e
it ) = [0, IF], 0 ∈ [F(1),F]; θ2(e

it ) =
[
θ11(e

it ) θ12(e
it )

θ21(e
it ) θ(eit )

]
;

θ3(e
it ) =

[
0
IG

]
, 0 ∈ [G,G(1)], (3.24)

where

θ3(e
it ) := θσ3(e

it ) ∈ CM[F(1) ⊕ F,F], θ2(e
it ) := θσ2(e

it ) ∈ CM[G(1) ⊕G,F(1) ⊕ F],

θ1(e
it ) := θσ1(e

it ) ∈ CM[G,G(1) ⊕G],

σj (j = 1, 2, 3) are the couplings of form (3.22) under conditions (3.23),

θ12(e
it ) := θσ12(e

it ) ∈ CM[G,F(1)], θ21(e
it ) := θσ21(e

it ) ∈ CM[G(1),F],

θ11(e
it ) := θσ11(e

it ) ∈ CM[G(1),F(1)],

σ12, σ21 are the couplings of forms (3.6) and (3.11), respectively, VF(1) := VF1 |F(1) ,
VG(1) := VG1 |G(1) ,

σ11 := (H,F(1),G(1);U,VF(1) , VG(1) ) (3.25)

(the coupling σ11 is not necessarily minimal).

Theorem 3.9 Let σ be a minimal unitary coupling of form (2.1) and θ(eit ) :=
θσ (e

it ).
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(a) There exists a bijective correspondence between pairs

{(M(
◦
F (1)),F(1);VF(1)), (M(

◦
G
(1)),G(1);VG(1))}

of bilateral channels of coupling σ satisfying the conditions

M(
◦
F (1)) ⊥ M(

◦
F), M(

◦
G
(1)) ⊥M(

◦
G) (3.26)

and regular factorizations of the form

θ(eit ) = θ3(e
it )θ2(e

it )θ1(e
it ), (3.27)

where θ3(e
it ) ∈ CM[F(1)⊕F,F], θ2(e

it ) ∈ CM[G(1)⊕G,F(1)⊕F], θ1(e
it ) ∈

CM[G,G(1) ⊕ G] are functions of form (3.24). This correspondence is
established by the equalities

θ12(e
it ) = θσ12(e

it ), θ21(e
it ) = θσ21(e

it ), θ11(e
it ) = θσ11(e

it ),

where σ12, σ21, σ11 are unitary couplings of forms (3.6), (3.11), and (3.25),
respectively.

(b) A factorization of the considered type is completely regular iff the corre-

sponding pair of channels {(M(
◦
F (1)),F(1);VF(1)), (M(

◦
G (1)),G(1);VG(1))}, in

addition to conditions (3.26), also satisfies the conditions

M(
◦
F (1)) ⊂M(

◦
G), M(

◦
G
(1)) ⊂M(

◦
F). (3.28)

Proof

(a) The part (a) is a special case of Theorem 3.8.
(b) By definition (see [13], Definition 8.31) a factorization of form (3.27) is

completely regular iff both factorizations

�(eit ) := θ2(e
it )θ1(e

it ), θ(eit ) := θ3(e
it )�(eit )

are completely regular. Since θ2(e
it ) = [�21(e

it ),�(eit )] where

�21(e
it ) :=

[
θ11(e

it )

θ21(e
it )

]
∈ CM[G(1),F(1) ⊕ F],

�(eit ) =
[
θ12(e

it )

θ(eit )

]
∈ CM[G,F(1) ⊕ F],
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then, by Theorem 3.4 (part (b)), the first factorization is completely regular iff
the conditions

M(
◦
G
(1)) ⊥ M(

◦
G), M(

◦
G
(1)) ⊂ M(

◦
F (1)⊕ ◦F)(= M(

◦
F (1))⊕M(

◦
F))

(3.29)

are satisfied. By Theorem 3.2 (part (b)), the second factorizations is completely
regular iff the conditions

M(
◦
F (1)) ⊥ M(

◦
F), M(

◦
F (1)) ⊂ M(

◦
G) (3.30)

are satisfied. Since the conditions

M(
◦
G
(1)) ⊥ M(

◦
G), M(

◦
F (1)) ⊂M(

◦
G)

imply the condition

M(
◦
F (1)) ⊥ M(

◦
G
(1)), (3.31)

we obtain that the inclusions M(
◦
G (1)) ⊂ M(

◦
F) and M(

◦
G (1)) ⊂ M(

◦
F (1)⊕ ◦F)

are equivalent. Consequently, the conditions (3.29) and (3.30) are equivalent to
the conditions (3.26) and (3.28). ��

Remark 3.10 Taking into account Remarks 3.3 and 3.5, we conclude that a
factorizations of form (3.27), where

θ3(e
it ) ∈ CM[F(1) ⊕ F,F], θ2(e

it ) ∈ CM[G(1) ⊕G,F(1) ⊕ F],

θ1(e
it ) ∈ CM[G,G(1) ⊕G]

are functions of forms (3.24), is completely regular iff θ12(e
it ) ∈ CM[G,F(1)] is

a coisometric operator function, θ21(e
it ) ∈ CM[G(1),F] is an isometric operator

function, and θ11(e
it ) ≡ 0 ∈ [G(1),F(1)]. Moreover, in this case, the inclusions

Ranθ∗12 ⊂ Kerθ and Ranθ21 ⊂ Kerθ∗ hold.

Definition 3.11 A function

�(eit ) :=
[
θ11(e

it ) θ12(e
it )

θ21(e
it ) θ(eit )

]
∈ CM[G(1) ⊕G,F(1) ⊕ F] (3.32)

will be called a regular up-leftward extension of a function θ(eit ) ∈ CM[G,F] if
the factorization

θ(eit ) = θ3(e
it )θ2(e

it )θ1(e
it ), (3.33)
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where

θ3(e
it ) := [0, IF], 0 ∈ [F(1),F]; θ2(e

it ) := �(eit );

θ1(e
it ) :=

[
0
IG

]
, 0 ∈ [G,G(1)],

is regular. It will be called a completely regular up-leftward extension if fac-
torization (3.33) is completely regular. A regular upward (leftward) extension
�(eit )(�(eit )) of form (3.15) will be considered as a special case of a regular
up-leftward extension under the condition G(1) = {0}(F(1) = {0}). In the case
of F(1) = {0} and G(1) = {0} we will call �(eit ) := θ(eit ) the trivial regular
up-leftward extension.

A regular up-leftward extension �(eit ) of form (3.32) will be called isometric
(coisometric, unitary) if it is an isometric (coisometric, unitary) operator function.

Regular extensions of the just defined type, as well as the three more types
(up-rightward, down-leftward and down-rightward extensions) that differ from the
first only by permutatious of the matrix blocks, will be called bidirectional regular
extensions.

As in the unidirectional case, it can be similarly showed that an operator function
�(eit ) of form (3.32), being a regular up-leftward extension of a contractive
operator function θ(eit ), does not need to be a regular extension (in the corre-
sponding directions) for each of the other blocks θ12(e

it ), θ21(e
it ) and θ11(e

it ) in
representation (3.32).

Remark 3.12 As it follows from Definitions 3.6 and 3.11, Theorems 3.2, 3.4,
and 3.9, there is a bijective correspondence between pairs of unidirectional regular
extensions

�(eit ) ∈ CM[G,F(1) ⊕ F], �(eit ) ∈ CM[G(1) ⊕G,F]

of form (3.15) for a function θ(eit ) ∈ CM[G,F] and bidirectional regular
extensions �(eit ) ∈ CM[G(1) ⊕ G,F(1) ⊕ F] of form (3.32) for the same function
θ(eit ). This means that for a given function θ(eit ) ∈ CM[G,F] there exists
a bijective correspondence between pairs of functions θ12(e

it ) ∈ CM[G,F(1)],
θ21(e

it ) ∈ CM[G(1),F] from representations (3.15) and functions θ11(e
it ) ∈

CM[G(1),F(1)] from representation (3.32).

4 Descriptions of the Sets of Unidirectional and Bidirectional
Regular Extensions

Denote by Ur (θ) (Lr (θ)) or simply Ur (Lr ) the set of regular upward (leftward)
extensions �(eit ) ∈ L∞[G,F(1) ⊕ F] (�(eit ) ∈ L∞[G(1) ⊕ G,F]) of form (3.15)
for a function θ(eit ) ∈ CM[G,F]. Its subset of all completely regular upward
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(leftward) extensions will be denoted by Ucr (θ) (Lcr (θ)) or simply Ucr (Lcr ).
We also denote by Kr (θ) or simply Kr the set of regular up-leftward extensions
�(eit ) ∈ L∞[G(1) ⊕ G,F(1) ⊕ F] of form (3.32) for the function θ(eit ) and by
Kcr (θ) or simply Kcr its subset of all completely regular up-leftward extensions. In
this section we parameterize all these sets in both unidirectional and bidirectional
cases.

4.1 Unidirectional Case

Realizing the unity coupling ε := (L2(K),K,K;U×K , VK, VK) in the Hilbert space
L2(K), where VK is the inclusion operator of K into L2(K), we can speak for
simplicity about channels of the coupling ε as channels in L2(K). A description of
the set of all such channels was given in [12] (Theorem 7.10), and unitary couplings
generated by pairs of such channels were also studied there (Theorem 7.26).
Inclusions into each other of subspaces of L2(K) reducing the operator U×K and
subspaces L of L2(K), where a bilateral channel of the form (L,N;VN) can be
realized, were explored in [12] as well (Theorem 7.22 and Corollary 7.23). Some of
these results can be formulated in the following form.

Theorem 4.1

(a) There exists a bijective correspondence between bilateral channels (L,N;VN)
in L2(K) and isometric operator functions θ(eit ) ∈ CM[N,K]. This correspon-
dence is established by the formulas

L = Ranθ, VN = θ |N; θ = (�N
U×K
)∗.

(b) Let (L2,F;VF) and (L1,G;VG) be two channels in L2(K), θ2(e
it ) ∈

CM[F,K] and θ1(e
it ) ∈ CM[G,K] be the corresponding pair of isometric

operator functions, and let σ := (L2(K),F,G;U×K , VF, VG). Then

θσ (e
it ) = θ∗2 (eit )θ1(e

it ).

The function θσ (eit ) is an isometric (coisometric, unitary) operator function iff
L1 ⊂ L2(L1 ⊃ L2,L1 = L2).

(c) Let M be a subspace ofL2(K) reducing the operatorU×K . There exists a channel
(L,N;VN) in L2(K) such that

L ⊂M and dimN = γ

iff 0 ≤ γ ≤ αM. Moreover, the equality L =M is possible iff αM = βM = γ ,
that is, when ρM(eit ) = γ almost everywhere.
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Theorem 4.2 Let θ(eit ) ∈ CM[G,F].
(a) A nontrivial regular upward (leftward) extension of the function θ(eit ) exists iff

α� > 0(α� > 0).
Let �(eit ) ∈ CM[G,F(1)⊕F](�(eit ) ∈ CM[G(1)⊕G,F]) be an operator

function of form (3.15).
(b) �(eit ) ∈ Ur (θ)(�(eit ) ∈ Lr (θ)) iff there exists a coisometric (isometric)

operator function ω(eit ) ∈ CM[G,F(1)](λ(eit ) ∈ CM[G(1),F]) such that the
inclusion

Ranω∗ ⊂ �L2(G) (Ranλ ⊂ �L2(F)) (4.1)

holds and the function θ12(e
it ) ∈ CM[G,F(1)] (θ21(e

it ) ∈ CM[G(1),F])
admits the representation of the form

θ12(e
it ) = ω(eit )�(eit ) a.e. (θ21(e

it ) = �(eit )λ(eit ) a.e.). (4.2)

(c) �(eit ) ∈ Ucr (θ) (�(eit ) ∈ Lcr (θ)) iff the corresponding coisometric
(isometric) operator function ω(eit )(λ(eit )) satisfies the condition

Ranω∗ ⊂ Kerθ (Ranλ ⊂ Kerθ∗). (4.3)

In this case, equality (4.2) takes the form

θ12(e
it ) = ω(eit ) a.e. (θ21(e

it ) = λ(eit ) a.e.). (4.4)

(d) There exists an isometric (coisometric) extension �(eit ) ∈ Ur (θ)(�(eit ) ∈
Lr (θ)) iff ρ�(eit )(ρ�(eit )) is constant almost everywhere. All such extensions
are given in this case by formulas (3.15) and (4.2), where for coisometric
(isometric) functions ω(eit )(λ(eit )) inclusion (4.1) turns into the equality

Ranω∗ = �L2(G) (Ranλ = �L2(F)). (4.5)

These extensions are unitary iff the function θ(eit ) is coisometric (isometric). In
this case, they are completely regular, representation (4.2) is replaced by (4.4)
and condition (4.5) turns into

Ranω∗ = Kerθ (Ranλ = Kerθ∗).

Proof It suffices to prove the theorem for regular upward extensions.

(a) For the function θ(eit ) we consider the functional model σ̂ of a minimal
unitary coupling of form (2.11) described in Theorem 2.11. For convenience,
we use the other order of the components in the orthogonal decomposition of
Ĥ, namely, Ĥ := �L2(G) ⊕ L2(F). Notice that the principal bilateral channel
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(M̂(
◦
G),G; V̂G) satisfies the conditions

M̂(
◦
G) = RanX̂, V̂G = X̂|G,

where, by Theorem 4.1 (part (a)), X̂(eit ) ∈ CM[G,K], K := G ⊕ F, is an
isometric operator function given in the block form by the formula

X̂(eit ) :=
[
�(eit )

θ(eit )

]
. (4.6)

By virtue of Definition 3.6 and Theorem 3.2 (part (a)), a nontrivial regular
upward extension of the function θ(eit ) exists iff there exists a nontrivial

bilateral channel (M̂(
◦
F (1)),F(1); V̂F(1)) of the coupling σ̂ such that M̂(

◦
F (1)) ⊥

M̂(
◦
F), that is, M̂(

◦
F (1)) ⊂ �L2(G). By Theorem 4.1 (part (c)), applied to the

defect subspace M := �L2(G) of the operator θ , we infer that this is possible
iff α� > 0.

(b) By Theorem 4.1 (part (a)), there exists a bijective correspondence between

bilateral channels (M̂(
◦
F (1)),F(1); V̂F(1)) of the coupling σ̂ satisfying the con-

dition M̂(
◦
F (1)) ⊂ M and isometric operator functions Ŷ (eit ) ∈ CM[F(1),K]

satisfying the conditions RanŶ = M̂(
◦
F (1)), Ŷ |F(1) = V̂F(1) . It follows from

the latter inclusion that the function Ŷ (eit ) can be represented in the following
block form

Ŷ (eit ) =
[
ω∗(eit )

0

]
, 0 ∈ [F(1),F], (4.7)

where ω(eit ) ∈ CM[G,F(1)] is a coisometric operator function satisfying
condition (4.1). Thereby, in view of Theorem 3.2 (part (a)), a bijective
correspondence between �(eit ) ∈ Ur and coisometric operator function ω(eit )
satisfying condition (4.1) is obtained. On the other hand, by the same theorem,
there exists a bijective correspondence between �(eit ) ∈ Ur of form (3.15) and
θ12(e

it ) ∈ CM[G,F(1)] that is established by the equality θ12(e
it ) = θσ̂12(e

it ),
where the coupling σ̂12 is of type (3.6), namely,

σ̂12 := (Ĥ,F(1),G; Û×, V̂F(1) , V̂G).

By Theorem 4.1 (part (b)), from (4.6) and (4.7) we obtain

θ12(e
it ) = Ŷ ∗(eit )X̂(eit ) = ω(eit )�(eit ) a.e..
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(c) Taking into account Remark 3.3 and part (b) of the present theorem, we see that
the function θ12(e

it ) is coisometric under conditions (4.1)–(4.2) iff condition
(4.3) is satisfied. From this equality (4.4) follows.

(d) Recall that a function �(eit ) ∈ Ur of form (3.15) is the scattering suboperator
of the coupling of type (3.3), namely, σ̂1 := (Ĥ,F1,G; Û×, V̂F1 , V̂G), where Ĥ,
G, Û× and V̂G are the same as in σ̂ , F1 := F(1)⊕F, V̂F1 := V̂F(1)PF(1)+ V̂FPF,
PF(1) and PF are the orthoprojections of F1 onto F(1) and F, respectively. By

Theorem 4.1 (part (b)), �(eit ) is an isometric function iff M̂(
◦
F1) = Ĥ. In view

of the inclusion M̂(
◦
F (1)) ⊂ �L2(G), this equality is possible iff the equality

M̂(
◦
F (1)) = �L2(G) holds. By Theorem 4.1 (part (c)), the existence of such a

channel (M̂(
◦
F (1)),F(1); V̂F(1)) is equivalent to constancy of the rank function

ρ�(e
it ) almost everywhere. Taking into account that

Ranω∗ = RanY ∗ = M̂(
◦
F (1)),

we see that �(eit ) ∈ Ur is isometric iff inclusion (4.1) turns into equality (4.5).

The isometric extension �(eit ) ∈ Ur is unitary iff, besides M̂(
◦
F1) = Ĥ,

the equality M̂(
◦
G) = Ĥ is valid (see Theorem 4.1 (part (b)). But the latter

is also equivalent, by the same theorem, to the coisometricity of the function
θ(eit ) (= θσ̂ (eit )). In this case, �L2(G) = Kerθ and, by part (c) of the present
theorem, all such extensions are completely regular, (4.2) turns into (4.4), and
(4.5) takes the form Ranω∗ = Kerθ . ��

Corollary 4.3 Let θ(eit ) ∈ CM[G,F] and �(eit ) ∈ Ur (θ)(�(eit ) ∈ Lr (θ)) be a
regular extension of form (3.15). Then

θ12L2(G) = L2(F(1)) (θ∗21L
2(F) = L2(G(1))).

Proof This assertion is a direct corollary of representation (4.2), where ω(eit ) ∈
CM[G,F(1)] (λ(eit ) ∈ CM[G(1),F]) is a coisometric (isometric) function satisfy-
ing condition (4.1) ��

Remark 4.4 As is known (see [12], Subsection 7.7), in the case of θ(eit ) ∈
CM[G,F] that is strictly contractive almost everywhere (or, equivalently, in the
case of a non-degenerate coupling σ̂ ) both equalities

�L2(G) = L2(G), �L2(F) = L2(F)

hold. This means that in this case an isometric extension �(eit ) ∈ Ur , as well
as a coisometric one �(eit ) ∈ Lr , exist. Note also that in this case, in view of
the triviality of the conditions (4.1), the sets Ur (θ) and Lr (θ)are parameterized by
arbitrary coisometric functions ω(eit ) ∈ CM[G,F(1)] and isometric ones λ(eit ) ∈
CM[G(1),F] in equalities (4.2).
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4.2 Bidirectional Case

Parameterizations of the sets Kr (θ) and Kcr (θ) are described in

Theorem 4.5 Let θ(eit ) ∈ CM[G,F].
(a) A nontrivial regular up-leftward extension of the function θ(eit ) exists iff at least

one of the two conditions α� > 0 or α� > 0 is satisfied.
Let �(eit ) ∈ CM[G(1) ⊕G,F(1) ⊕ F] be a function of form (3.32).

(b) �(eit ) ∈ Kr (θ) iff there exist a coisometric operator function ω(eit ∈
CM[G,F(1)] and an isometric operator function λ(eit ) ∈ CM[G(1),F] such
that the inclusions

Ranω∗ ⊂ �L2(G), Ranλ ⊂ �L2(F) (4.8)

hold and the functions

θ12(e
it ) ∈ CM[G,F(1)], θ21(e

it ) ∈ CM[G(1),F], θ11(e
it ) ∈ CM[G(1),F(1)]

admit the representations of the forms

θ12(e
it ) = ω(eit )�(eit ), θ21(e

it ) = �(eit )λ(eit ), θ11(e
it ) = −ω(eit )θ∗(eit )λ(eit ).

(4.9)

(c) �(eit ) ∈ Kcr (θ) iff the corresponding pair {ω(eit ), λ(eit )} of coisometric and
isometric operator functions satisfies the conditions

Ranω∗ ⊂ Kerθ, Ranλ ⊂ Kerθ∗. (4.10)

In this case, equalities (4.9) take the forms

θ12(e
it ) = ω(eit ), θ21(e

it ) = λ(eit ), θ11(e
it ) ≡ 0 (0 ∈ [G(1),F(1)]).

(4.11)

(d) There exists an isometric (coisometric, unitary) extension �(eit ) ∈ Kr (θ) iff
of the two rank functions ρ�(eit ) and ρ�(eit ) the first (the second, both) is (is,
are) constant almost everywhere. All such extensions are given in this case by
formulas (3.32) and (4.9), where for the corresponding pair {ω(eit ), λ(eit )} of
the two following conditions

Ranω∗ = �L2(G), Ranλ = �L2(F)

the first (the second, both) is (is, are) satisfied.
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Proof

(a) This part follows from the definition of the trivial regular up-leftward extension
(see Definition 3.11) and Theorem 4.2 (part (a)).

(b) As noted in Remark 3.12, there exists a bijective correspondence between
�(eit ) ∈ Kr and pairs �(eit ) ∈ Ur , �(eit ) ∈ Lr . Consequently, by Theo-
rem 4.2 (part (b)), there exists a bijective correspondence between extensions
�(eit ) ∈ Kr and pairs {ω(eit ), λ(eit )} of coisometric and isometric functions,
respectively, satisfying conditions (4.8). Moreover, the first two equalities (4.9)
are valid.

It remains to prove the third equality (4.9). For this, along with the functional
model σ̂ of a minimal unitary coupling of form (2.11) used in the proof of
Theorem 4.2 (part (a)), we also considered the functional model σ̃ of form
(2.13) described in Theorem 2.12. By Theorem 2.13, the couplings σ̂ and σ̃
are unitarily equivalent. Taking into account that here the decompositions

Ĥ := �L2(G)⊕ L2(F), H̃ := �L2(F)⊕ L2(G)

are used (see the proof of Theorem 4.2 (part (a))), this equivalence is established
by the restrictionW |

Ĥ
∈ [Ĥ, H̃], where forW(eit ) formula (2.14) now takes the

form

W(eit ) :=
[−θ(eit ) �(eit )
�(eit ) θ∗(eit )

]
.

According to Definition 3.11 and Theorem 3.9 (part (a)), the block
θ11 ∈ L∞[G(1),F(1)] of an extension �(eit ) ∈ Kr of form (3.32) is
the scattering suboperator of the coupling σ̃11 of type (3.25), namely,
σ̃11 := (H̃,F(1),G(1); Ũ×, ṼF(1) , ṼG(1) ). This coupling is generated by the
pair

{(M̃(
◦
F (1)),F(1); ṼF(1)), (M̃(

◦
G
(1)),G(1); ṼG(1))} (4.12)

of bilateral channels of the coupling σ̃ satisfying the conditions of type (3.26),
namely,

M̃(
◦
F (1)) ⊥ M̃(

◦
F), M̃(

◦
G
(1)) ⊥ M̃(

◦
G), (4.13)

where {(M̃( ◦F),F; ṼF), (M̃(
◦
G),G; ṼG)} is the pair of the principal bilateral

channels of the coupling σ̃ . By Theorem 4.1 (part (a)), there exist the
unique isometric operator functions Ỹ (eit ) ∈ CM[F(1),F ⊕ G] and
Z̃(eit ) ∈ CM[G(1),F ⊕ G] corresponding to the bilateral channels of form
(4.12), respectively. We express them in terms θ(eit ), ω(eit ) and λ(eit ).
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Consider the bilateral channel (M̂(
◦
F (1)),F(1); V̂F(1)) of the coupling σ̂ that

corresponds to the first channel (4.12) of the coupling σ̃ in view of the unitary
equivalence of these couplings. As was shown in the proof of Theorem 4.2 (part
(b)), the isometric function Ŷ (eit ) ∈ CM[F(1),G⊕ F], generating this channel
by Theorem 4.1 (part (a)), is given by the block matrix of form (4.7). From this
it follows that

Ỹ (eit ) = W(eit )Ŷ (eit ) =
[−θ(eit ) �(eit )
�(eit ) θ∗(eit )

] [
ω∗(eit )

0

]
=

[−θ(eit )ω∗(eit )
�(eit )ω∗(eit )

]
.

(4.14)

The function Z̃(eit ) corresponding to the second channel (4.12) can be
obtained by the dual arguments in relation to those made in the proof of
Theorem 4.2 (part (b)) for the function Ŷ (eit ). Thus, Z̃(eit ) can be given in
the following block form

Z̃(eit ) :=
[
λ(eit )

0

]
, 0 ∈ [G(1),G], (4.15)

where λ(eit ) ∈ CM[G(1),F] is an isometric function corresponding to�(eit ) ∈
Lr .

By Theorem 4.1 (part (b)), from (4.14) and (4.15) we obtain

θ11(e
it ) = θσ̃11(e

it ) = Ỹ ∗(eit )Z̃(eit ) = −ω(eit )θ∗(eit )λ(eit ) a.e..

(c) Part (c) follows from part (c) of Theorem 4.2 and Remark 3.10.
(d) By Theorem 4.1 (part (b)), the isometricity (coisometricity) of an extension

�(eit ) ∈ Kr of form (3.32) is equivalent to the isometricity (coisometricity) of
the corresponding extension �(eit ) ∈ Ur (�(eit ) ∈ Lr ) of form (3.15). Really,
as was noted in the proof of part (d) of Theorem 4.2, the isometricity of �(eit )

is tantamount to the equality M̂(
◦
F (1) ⊕ F) = Ĥ, where Ĥ = �L2(G) ⊕ L2(F)

is the space from σ̂1 of type (3.3) with F1 := F(1) ⊕ F. At the same time the
isometricity of �(eit ) is tantamount to the same condition, where Ĥ is now the
space from the coupling σ̂2 of type (3.22), namely,

σ̂2 := (Ĥ,F1G1; Û×, V̂F1, V̂G1), F1 := F(1) ⊕ F, G1 := G(1) ⊕G.

Similar arguments are valid in the dual case. Hence, part (d) of the present
theorem follows from part (d) of Theorem 4.2. ��



178 S. S. Boiko and V. K. Dubovoy

Remark 4.6 Part (b) of Theorem 4.5 can be reformulated in the following way.
The general form of a regular up-leftward extension

�(eit ) ∈ CM[G(1) ⊕G,F(1) ⊕ F]

of a function θ(eit ) ∈ CM[G,F] is given by the formula

�(eit ) = A(eit )�0(e
it )B(eit ), (4.16)

where �0(e
it ) ∈ CM[F⊕G,G⊕ F] is the unitary operator function of the form

�0(e
it ) :=

[−θ∗(eit ) �(eit )
�(eit ) θ(eit )

]
, (4.17)

A(eit ) ∈ CM[G ⊕ F,F(1) ⊕ F], B(eit ) ∈ CM[G(1) ⊕ G,F ⊕ G] are operator
functions of the forms

A(eit ) :=
[
ω(eit ) 0

0 IF

]
, B(eit ) :=

[
λ(eit ) 0

0 IG

]
, (4.18)

ω(eit ) ∈ CM[G,F(1)] and λ(eit ) ∈ CM[G(1),F] are coisometric and isometric
operator functions, respectively, satisfying conditions (4.8).

Note that �0(e
it ) ∈ Kr (θ) iff the function θ(eit ) is strictly contractive

almost everywhere (see Remark 4.4 and Theorem 4.5 (part (d))). In this case, in
representations (4.18) functions ω(eit ) ∈ CM[G,F(1)], λ(eit ) ∈ CM[G(1),F] are
arbitrary coisometric and isometric operator functions, respectively.

Note also that in the case F(1) = {0}(G(1) = {0}) the functions ω(eit ) ≡
0 ∈ [G,F(1)](λ(eit ) ≡ 0 ∈ [G(1),F]) can be viewed as a coisometric (isometric)
function. Then representation (4.16) is transformed to the form

�(eit ) = �0(e
it )B(eit ) (�(eit ) = A(eit )�0(e

it )),

where �0(e
it ) ∈ CM[F ⊕ G,F](�0(e

it ) ∈ CM[G,G ⊕ F]) is the coicometric
(isometric) operator function of the form

�0(e
it ) := [�(eit ), θ(eit )] (�0(e

it ) :=
[
�(eit )

θ(eit )

]
),

and B(eit )(A(eit )) has form (4.18). This is consistent with Definition 3.11, where
unidirectional regular extensions of a contractive operator function are declared as
a particular case of bidirectional ones.
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5 Comparison Relations on the Sets of Unidirectional
and Bidirectional Regular Extensions

In this section we introduce a natural generalization of the comparison relation
that was considered in [14] (Definition 5.4) for unidirectional regular extensions
of matrix and operator-valued Schur functions.

5.1 Unidirectional Case

Definition 5.1 Let θ(eit ) ∈ CM[G,F] and σ be a minimal unitary coupling of
form (2.1) such that θσ (eit ) = θ(eit ). Let �j(eit ) ∈ Ur (θ)(�j (e

it ) ∈ Lr (θ)), j =
1, 2, be two regular extensions of the form

�j(e
it ) :=

[
θ
(j)

12 (e
it )

θ(eit )

]
∈ CM[G,F(j) ⊕ F]

(�j (e
it ) := [θ(j)21 (e

it ), θ(eit )] ∈ CM[G(j) ⊕G,F]) (5.1)

and (M(
◦
F (j)),F(j);VF(j) )((M(

◦
G (j)),G(j);VG(j) )), j = 1, 2, be the two bilateral

channels of the coupling σ that, according to Definition 3.6 and Theorem 3.2
(Theorem 3.4), correspond to the extensions �j(eit )(�j (e

it )). We will say that
the extension �1(e

it )(�1(e
it )) procedes the extension �2(e

it )(�2(e
it )) and write

�1(e
it ) ≺ �2(e

it )(�1(e
it ) ≺ �2(e

it )) if the inclusion

M(
◦
F (1)) ⊂ M(

◦
F (2)) (M(

◦
G
(1)) ⊂ M(

◦
G
(2)) (5.2)

holds. These extensions will be called equivalent if each of them precedes the other,
that is, if inclusion (5.2) turns into the equality. In this case, we will use the notation

�1(e
it ) ∼ �2(e

it ) (�1(e
it ) ∼ �2(e

it )).

Clearly, this definition does not depend on the choice of a minimal coupling σ
such that θσ (eit ) = θ(eit ).

It is obvious that the formulated comparison relation on the set Ur (θ) (Lr (θ) is a
partial preorder and the equivalence relation generates a partial order on the quotient
set Ur (θ)/∼ (Lr (θ)/∼) of equivalence classes. The equivalence class generated by
�(eit ) ∈ Ur (θ)(�(eit ) ∈ Lr (θ)) will be denoted by [�] ([�]).

For what follows we need the following assertion (see [12], Theorems 7.3, 7.6
and 7.8), which can also be obtained from Theorems 3.1 or 4.1 (part (b)).



180 S. S. Boiko and V. K. Dubovoy

Theorem 5.2 Let θ(eit ) ∈ CM[G,F] and σ be a unitary coupling of form (2.1)
such that θσ (eit ) = θ(eit ). The function θ(eit ) is coisometric (isometric, unitary)
operator function iff the condition

M(
◦
G) ⊃M(

◦
F) (M(

◦
G) ⊂ M(

◦
F), M(

◦
G) = M(

◦
F))

is satisfied.

Definition 5.3 A function θ1(e
it ) ∈ CM[G,K](θ2(e

it ) ∈ CM[K,F]) is called a
right (left) divisor of a function θ(eit ) ∈ CM[G,F] if there exists a factorization of
form (2.21) according to Definition 2.19. In this case, we will also say that θ(eit ) is
divided by θ1(e

it )(θ2(e
it )) on the right (on the left) or θ(eit ) is a left (right)multiple

of θ1(e
it )(θ2(e

it )). For this we use the commonly accepted notation

θ(eit )
... θ1(e

it ) (on the right) (θ(eit )
... θ2(e

it ) (on the left)).

In the case of regularity (complete regularity) of the factorization, the divisors and
their multiple are called regular (completely regular).

Leaning on Theorem 5.2, it is easy to see that in the case of the left (right) coiso-
metric (isometric) regular divisor of a coisometric (isometric) operator function the
corresponding unique right (left) divisor is also coisometric (isometric). Moreover,
by Corollary 2.29 and Definition 2.31, the divisors are even completely regular.

In the other case, the similar result is valid without the requirement of regularity
of the right (left) divisor.

Lemma 5.4

(a) Let ω(eit ) ∈ CM[G,F] and ω1(e
it ) ∈ CM[G,K] be coisometric operator

functions. If ω1(e
it ) is the right divisor of ω(eit ), then the corresponding unique

left divisor ω2(e
it ) is also coisometric and both of them are completely regular.

(b) Let λ(eit ) ∈ CM[G,F] and λ2(e
it ) ∈ CM[K,F] be isometric operator

functions. If λ2(e
it ) is the left divisor of λ(eit ), then the corresponding unique

right divisor λ1(e
it ) is also isometric and both of them are completely regular.

Proof It suffices to prove only part (a). Let ω(eit ) = ω2(e
it )ω1(e

it ) almost
everywhere, where ω2(e

it ) ∈ CM[K,F]. By Corollary 2.29 and Definition 2.31,
this factorization is completely regular.

Let σ be a minimal coupling of form (2.1) such that θσ (eit ) = ω(eit ) and σ =
σ2σ1 be the unique factorization corresponding, by Theorem 2.20, to the considered
factorization of the function ω(eit ). Here σ2, σ1 are the couplings of form (2.15)
such that θσj (e

it ) = ωj (e
it ), j = 1, 2. In view of the coisometricity of ω(eit ) and

ω1(e
it ), by Theorem 5.2, we obtain

M(
◦
F) ⊂ M(

◦
G), M(

◦
K) ⊂ M(

◦
G).
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Since H = M(
◦
G), from representation (2.17) we infer that R(2)

◦
K
⊥ R(1)

◦
K

, where

R(2)
◦
K
:= (M(

◦
F) ∨M(

◦
K))�M(

◦
K), R(1)

◦
K
:= H�M(

◦
K).

From this it follows that M(
◦
F) ⊂ M(

◦
K), that is, by Theorem 5.2, ω2(e

it ) is a
coisometric operator function.

The uniqueness of ω2(e
it ) follows from the uniqueness of σ2. ��

Thus, the latter lemma enables us to speak of right (left) divisibility within
the class of coisometric (isometric) functions without specifying its regularity or
complete regularity.

Theorem 5.5 Let θ(eit ) ∈ CM[G,F] and �j(eit ) ∈ Ur (θ) (�j (e
it ) ∈ Lr (θ)),

j = 1, 2, be its regular extensions of form (5.1). Let

θ
(j)
12 (e

it ) = ωj (eit )�(eit ) (θ
(j)
21 (e

it ) = �(eit )λj (eit )), j = 1, 2, (5.3)

where ωj (eit ) ∈ CM[G,F(j)](λj (eit ) ∈ CM[G(j),F]), j = 1, 2, are coisometric
(isometric) operator functions corresponding to �j(eit ) (�j (e

it )) by Theorem 4.2
(part (b)) and satisfying the conditions

Ranω∗j ⊂ �L2(G) (Ranλj ⊂ �L2(F)), j = 1, 2. (5.4)

The following statement are equivalent:

(a) �1(e
it ) ≺ �2(e

it ) (�1(e
it ) ≺ �2(e

it ));
(b) (θ(1)12 (e

it ))∗θ(1)12 (e
it ) ≤ (θ(2)12 (e

it ))∗θ(2)12 (e
it ) a.e.

(θ
(1)
21 (e

it )(θ
(1)
21 (e

it ))∗ ≤ θ(2)21 (e
it )(θ

(2)
21 (e

it ))∗a.e.);
(c) ω1(e

it )
... ω2(e

it )(on the right)(λ1(e
it )
... λ2(e

it )(on the left)).

Proof Again we consider only the case of regular upward extensions.
First of all, note that, in view of conditions (5.3)–(5.4), inequality (b) is equivalent

to condition

(b′) ω∗1(eit )ω1(e
it ) ≤ ω∗2(eit )ω2(e

it ) a.e.

In turn, this is obviously equivalent to the existence of a factorization of the
form ω1(e

it ) = ω12(e
it )ω2(e

it ), where ω12(e
it ) ∈ CM[F(2),F(1)] is a contractive

operator function. By Lemma 5.4 this is equivalent to the statement (c).
It remains to prove, for example, the equivalence of (a) and (b′). Consider again

the functional model σ̂ of a minimal coupling of form (2.11). As was shown in

the proof of Theorem 4.2 (part (b)), the bilateral channels (M̂(
◦
F (j)),F(j); V̂F(j) ),

j = 1, 2, of the coupling σ̂ that, by Definition 3.6 and Theorem 3.2 (part (a)),
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correspond to the extensions�j(eit ) ∈ Ur (θ), j = 1, 2, satisfy the conditions

Ranω∗j = M̂(
◦
F (j)), j = 1, 2.

The statement (b′) is equivalent to the validity of the inclusion Ranω∗1 ⊂ Ranω∗2,

that is, of the inclusion M̂(
◦
F (1)) ⊂ M̂(

◦
F (2)). Thus, by Definition 5.1, the statement

(b′) is equivalent to the statement (a). ��

Corollary 5.6 Let the requirements of Theorem 5.5 be valid. The following state-
ments are equivalent:

(a) �1(e
it ) ∼ �2(e

it )(�1(e
it ) ∼ �2(e

it )));
(b) (θ(1)12 (e

it ))∗θ(1)12 (e
it ) = (θ(2)12 (e

it ))∗θ(2)12 (e
it ) a.e.

(θ
(1)
21 (e

it )(θ
(1)
21 (e

it ))∗ = θ(2)21 (e
it )(θ

(2)
21 (e

it ))∗a.e.);
(c) ω1(e

it ) = ω12(e
it )ω2(e

it ) a.e. (λ1(e
it ) = λ2(e

it )λ21(e
it ) a.e.), where

ω12(e
it ) ∈ CM[F(2),F(1)](λ21(e

it ) ∈ CM[G(1),G(2)]) is a unitary operator
function.

For any function θ(eit ) ∈ CM[G,F] we will denote by J∗(θ) (J (θ)) or simply
J∗ (J ) the set of coisometric (isometric) operator functions ω(eit ) ∈ CM[G,F(1)]
(λ(eit ) ∈ CM[G(1),F]) satisfying condition (4.1). By Theorems 4.2 (part (b))
and 5.5, we have established an isomorphism between the set Ur (θ) (Lr (θ)), par-
tially preordered by the relation≺, and the set J∗(θ) (J (θ)), partially preordered by

the relation
... on the right (on the left). Consequently, their quotient sets with respect

to the corresponding equivalence relations are also isomorphic partially ordered sets.
It should be pointed out that the comparison relation for regular extensions

introduced by Definition 5.1 agrees with the inverse comparison relation for regular
factorizations introduced by Definition 2.21.

Really, taking into account Definition 3.6, for two extensions �j(eit ) ∈ Ur (θ),
j = 1, 2, of form (5.1) such that �1(e

it ) ≺ �2(e
it ) we consider the corresponding

factorizations of forms (2.22) and (2.23), where

θ2(e
it ) := [0, IF], 0 ∈ [F(2),F]; θ1(e

it ) := �2(e
it );

θ ′2(eit ) := [0, IF], 0 ∈ [F(1),F]; θ ′1(eit ) := �1(e
it ).

By Theorem 4.2 (part (b)), the functions θ(j)12 (e
it ), j = 1, 2, admit the representa-

tions of form (5.3), where, by Theorem 5.5, the coisometric functions ωj (eit ) ∈
CM[G,F(j)], j = 1, 2, satisfy the condition ω1(e

it )
... ω2(e

it ) (on the right). Thus,
there exists a unique coisometric function ω12(e

it ) ∈ CM[F(2),F(1)] such that
ω1(e

it ) = ω12(e
it )ω2(e

it ) almost everywhere. Setting

θ0(e
it ) :=

[
ω12(e

it ) 0
0 IF

]
∈ CM[F(2) ⊕ F,F(1) ⊕ F],
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we obtain the equalities of form (2.24). Hence, by Definition 2.21, factorization
(2.22) procedes factorization (2.23) in contrast to the corresponding extensions
�j(e

it ), j = 1, 2.

Definition 5.7 Let θ(eit ) belongs to CM[G,F].
(a) An element [�] ∈ Ur (θ)/∼ ([�] ∈ Lr (θ)/∼) is called maximal if for any

element [�1] ∈ Ur (θ)/∼ ([�1] ∈ Lr (θ/∼) from the condition [�] ≺ [�1] the
equality [�] = [�1] follows. We will also call maximal any extension�(eit ) ∈
Ur (θ)(�(eit ) ∈ Lr (θ)) such that [�]([�]) is a maximal element of the quotient
set Ur (θ)/∼ (Lr (θ)/∼). The subset of Ur (θ)(Lr (θ)) consisting of all maximal
extensions will be denoted by Ur,max(θ)(Lr,max(θ)) or simply Ur,max(Lr,max).

(b) An element [�0] ∈ Ur/∼ ([�0] ∈ Lr/∼) is called the largest if for any
[�] ∈ Ur/∼ ([�] ∈ Lr/∼) the condition [�] ≺ [�0]([�] ≺ [�0]) is satisfied.

It is clear that the largest element, if it exists, is unique.
The analogous concepts for the partially ordered set Ucr (θ)/∼ (Lcr(θ)/∼) and

the partially preordered set Ucr (θ) (Lcr (θ)) can be defined in a similar way. The
subset of Ucr (θ) (Lcr (θ)) consisting of all maximal extensions from Ucr (θ) (Lcr (θ))
will be denoted by Ucr,max(θ) (Lcr,max(θ)) or simply Ucr,max (Lcr,max).

To describe the set Ur,max (Lr,max) we need some result from [12] (Lemma 7.20).

Theorem 5.8 Let M be a nontrivial subspace of L2(K) reducing the operator U×K
and E := {t : ρM(eit ) > 0}. There exists a set of measurable K-valued functions
{kj (eit )}βMj=1 such that for all t ∈ E the set of vectors {kj (eit )}ρtj=1, ρt := ρM(eit ),

is an orthonormal basis for the space PM(eit )K.

Theorem 5.9 Let θ(eit ) belongs to CM[G,F].
(a) Let �(eit ) ∈ Ur (θ)(�(eit ) ∈ Lr (θ)) be a regular extension of form (3.15),

ω(eit ) ∈ CM[G,F(1)] (λ(eit ) ∈ CM[G(1),F]) be the corresponding coisomet-
ric (isometric) operator function from representation (4.2) satisfying condition
(4.1) and let

L⊥ := �L2(G)� Ranω∗ (L⊥∗ := �L2(F)� Ranλ). (5.5)

Then �(eit ) ∈ Ur,max(θ)(�(e
it ) ∈ Lr,max(θ)) iff the conditions

α� <∞, αL⊥ = 0 (α� <∞, αL⊥∗ = 0) (5.6)

or

α� = ∞,L⊥ = {0} (α� = ∞,L⊥∗ = {0}) (5.7)

are satisfied. The element [�] ∈ Ur (θ)/∼ ([�] ∈ Lr (θ)/∼) is the largest iff the
extension �(eit )(�(eit )) is coisometric (isometric).
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(b) Let �(eit ) ∈ Ucr (θ)(�(eit ) ∈ Lcr (θ)) be a completely regular extension
of form (3.15), ω(eit ) ∈ CM[G,F(1)](λ(eit ) ∈ CM[G(1),F]) be the corre-
sponding coisometric (isometric) operator function from representation (4.4)
satisfying condition (4.3) and

N := Kerθ (N∗ := Kerθ∗), L⊥ := N� Ranω∗ (L⊥∗ := N∗ � Ranλ).

Then �(eit ) ∈ Ucr,max(θ)(�(e
it ) ∈ Lcr,max(θ)) iff the conditions

αN <∞, αL⊥ = 0 (αN∗ <∞, αL⊥∗ = 0)

or

αN = ∞,L⊥ = {0} (αN∗ = ∞,L⊥∗ = {0})

are satisfied. The element [�] ∈ Ucr (θ)/∼ ([�] ∈ Lcr (θ)/∼) is the largest iff
the equality

Ranω∗ = N (Ranλ = N∗)

is valid.

Proof We again confine ourselves to the case of regular upward extensions.

(a) As before, consider the functional model σ̂ of a minimal unitary coupling of
form (2.11) described in Theorem 2.11.

By Definition 5.1, the extension �(eit ) is maximal iff the corresponding

bilateral channel (M̂(
◦
F(1)),F(1); V̂F(1)) of the coupling σ̂ is also maximal

regarding the inclusion relation. The latter means that there is no other bilateral

channel (M̂(
◦
F (2)),F(2); V̂F(2)) of the coupling σ̂ such that

M̂(
◦
F (2)) �= M̂(

◦
F (1)) ⊂ M̂(

◦
F (2)).

As was shown in the proof of Theorem 4.2 (part (b)), Ranω∗ = M̂(
◦
F (1)) and, by

Theorem 4.1 (part (c)), the equality ρω∗(eit ) = αω∗ holds almost everywhere.
If �(eit ) ∈ Ur,max, then αL⊥ = 0. Indeed, if the inequality αL⊥ > 0

were true, then by Theorem 4.1 (part (c)), there would be a nontrivial channel

(M̂(
◦
F (0)),F(0); V̂F(0)) of the coupling σ̂ such that

M̂(
◦
F (0)) ⊂ L⊥ ⊂ �L2(G).
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Let F(2) := F(0)⊕F(1). Denote by Pj the orthoprojection of F(2) onto F(j), j =
0, 1, and let V̂F(2) := V̂F(0)P0 + V̂F(1)P1. Then for the channel (M̂(

◦
F (2)),

F(2); V̂F(2)) of the coupling σ̂ the strict inclusion M̂(
◦
F (2)) ⊃ M̂(

◦
F (1)) is

valid, what contradicts the maximality of �(eit ). Moreover, if α� = ∞, then
β� = ∞, that is, ρ�(eit ) = ∞ almost everywhere. By Theorem 4.2 (part (d)),
in this case there exists an isometric extension �0(e

it ) ∈ Ur . It is obvious that
[�0] is the largest element in the quotient set Ur/∼. Therefore, the extension
�(eit ) can be maximal only if � ∈ [�0]. Hence, �(eit ) is also isometric,
whence the equality Ranω∗ = �L2(G) follows. Thus, L⊥ = {0}.

Conversely, if conditions (5.7) are satisfied, then condition (4.5) is valid.
Hence, by Theorem 4.2 (part (d)),�(eit ) is an isometric extension and, as noted
above, [�] is the largest element in Ur/∼.

If conditions (5.6) are satisfied, then the equality αω∗ = α� holds, that is,

ρω∗(eit ) = α� almost everywhere. Let (M̂(
◦
F (2)),F(2); V̂F(2)) be an arbitrary

channel of the coupling σ̂ such that M̂(
◦
F (2)) ⊃ M̂(

◦
F (1)) and ω2(e

it ) ∈
CM[G,F(2)] be a coisometric operator function corresponding, by Theorem 4.2

(part (b)), to this channel. Hence, Ranω∗2 = M̂(
◦
F (2)) ⊂ �L2(G) and the

inequalities

Pω∗(eit ) ≤ Pω∗2 (eit ) ≤ P�(eit ) (5.8)

hold almost everywhere. From this and the equality ρω∗(eit ) = α� a.e. we
obtain

ρω∗(eit ) = ρω∗2 (eit ) = α� a.e. (5.9)

Since α� <∞, (5.8) and (5.9) imply the equality Pω∗(eit ) = Pω∗2 (eit ) a.e., that

is, M̂(
◦
F (1)) = M̂(

◦
F (2)). Thus, �(eit ) ∈ Ur,max.

It remains to prove that in the case 0 < α� < ∞ [�] ∈ Ur/∼ is the largest
element only if �(eit ) ∈ Ur is an isometric extension. For this it suffices to
show that for every non-isometric maximal extension �(eit ) ∈ Ur,max there
exists an extension �1(e

it ) ∈ Ur that is incomparable with �(eit ).
In view of α� < ∞, for the coisometric operator function ω(eit ) ∈

CM[G,F(1)] corresponding to �(eit ) of form (3.15) the conditions

αω∗ = α� < β� ≤ ∞

are satisfied. By Theorem 5.8, for the subspace L := Ranω∗ there exists a set
{kj (eit )}α�j=1 of measurable G-valued functions such that for almost all t the

set {kj (eit )}α�j=1 of vectors is an orthonormal basis of the subspace Pω∗(eit )G.
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Similarly, for the subspace L⊥ of form (5.5) there exists a set {k⊥j (eit )}
βL⊥
j=1 of

measurable G-valued functions such that for all t ∈ E := {t : ρL⊥(eit ) > 0}
the set {k⊥j (eit )}ρtj=1, ρt := ρL⊥(e

it ), of vectors is an orthonormal basis of the

subspace PL⊥(e
it )G. Let Ec := {t : ρL⊥(eit ) = 0}. Note that Ec = {t :

ρ�(e
it ) = α�} and it is a set of positive Lebesgue measure, just as the set

E. Note also that k⊥1 (eit ) �= 0 for all t ∈ E, while kj (eit ) �= 0 a.e. (j =
1, 2, . . . , α�). Consider the measurable G-valued function

m(eit ) :=
{
k1(e

it ), t ∈ Ec,
k⊥1 (eit ), t ∈ E,

which is defined almost everywhere. Moreover, ‖m(eit )‖G = 1 a.e. Thus,
m(eit ) determines the subspace M ⊂ �L2(G) that reduces U×G and the
“multiplication” ortoprojection of which is defined by the formula

PM(eit )g(eit ) := 〈g(eit ),m(eit )〉G m(eit ), g(eit ) ∈ L2(G).

Since ρM(eit ) = 1 a.e., by Theorem 4.1 (part (c)), there exists a bilateral
channel (M,F(0); V̂F(0)) of the coupling σ̂ . As M �⊂ L, the extension�1(e

it ) ∈
Ur corresponding to this channel is incomparable with �(eit ).

(b) The proof of part (b) does not essentially differ from the proof of part (a). ��

5.2 Bidirectional Case

Taking into account Remark 3.12, we can spread to the set Kr (θ) the comparison
relation introduced by Definition 5.1.

Definition 5.10 Let θ(eit ) ∈ CM[G,F] and �j (eit ) ∈ Kr (θ), j = 1, 2, be two its
regular extensions of the form

�j(e
it ) :=

[
θ
(j)

11 (e
it ) θ

(j)

12 (e
it )

θ
(j)
21 (e

it ) θ(eit )

]
∈ CM[G(j) ⊕G,F(j) ⊕ F] (5.10)

and let �j(eit ) ∈ Ur (θ), �j(e
it ) ∈ Lr (θ), j = 1, 2, be two pairs of regular

extensions of the form

�j(e
it ) :=

[
θ
(j)

12 (e
it )

θ(eit )

]
∈ CM[G,F(j) ⊕ F], (5.11)

�j(e
it ) := [θ(j)21 (e

it ), θ(eit )] ∈ CM[G(j) ⊕G,F] (5.12)
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corresponding to �j (e
it ). We will say that the extensions �1(e

it ) precedes the
extension �2(e

it ) if the extension �1(e
it ) precedes the extension �2(e

it ) and
the extension �1(e

it ) precedes the extension �2(e
it ). In this case, we will write

�1(e
it ) ≺ �2(e

it ). These extensions will be called equivalent if each of them
precedes the other and this relation will be denoted by �1(e

it ) ∼ �2(e
it ).

Let σ be a minimal unitary coupling of form (2.1) such that θσ (eit ) = θ(eit ) and

{(M(
◦
F(j)),F(j);VF(j) ), (M(

◦
G
(j)),G(j);VG(j) )}, j = 1, 2,

be two pairs of bilateral channels of the coupling σ corresponding, by Defini-
tion 3.11 and Theorem 3.8, to the extensions �j(eit ) ∈ Kr (θ) of form (5.10). It
follows from Definitions 5.1 and 5.10 that �1(e

it ) ≺ �2(e
it ) iff the inclusions

M(
◦
F(1)) ⊂M(

◦
F(2)), M(

◦
G
(1)) ⊂M(

◦
G
(2))

hold. Clearly, this conclusion does not depend on the choice of such a minimal
coupling σ .

It is obvious that, by Definition 5.10, the set Kr (θ) becomes partially preordered
and the quotient set Kr/∼ does partially ordered. The equivalence class generated
by �(eit ) ∈ Kr (θ) will be denoted by [�].

The following theorem is a direct corollary of Theorem 5.5 and Definition 5.10.

Theorem 5.11 Let θ(eit ) ∈ CM[G,F] and �j (eit ) ∈ Kr (θ), j = 1, 2, be its
regular extensions of form (5.10). Let

θ
(j)

12 (e
it ) = ωj (eit )�(eit ), θ

(j)

21 (e
it ) = �(eit )λj (eit ),

θ
(j)
11 (e

it ) = −ωj (eit )θ∗(eit )λj (eit ), j = 1, 2,

where ωj (eit ) ∈ CM[G,F(j)] and λj (eit ) ∈ CM[G(j),F] are coisometric and
isometric operator functions, respectively, corresponding, by Theorem 4.5 (part (b)),
to �j (eit ) and satisfying the conditions of type (4.8), namely,

Ranω∗j ⊂ �L2(G), Ranλj ⊂ �L2(F), j = 1, 2.

The following statements are equivalent:

(a) �1(e
it ) ≺ �2(e

it );
(b) (θ(1)12 (e

it ))∗θ(1)12 (e
it ) ≤ (θ(2)12 (e

it ))∗θ(2)12 (e
it ) a.e. and

θ
(1)
21 (e

it )(θ
(1)
21 (e

it ))∗ ≤ θ(2)21 (e
it )(θ

(2)
21 (e

it ))∗ a.e.;

(c) ω1(e
it )
...ω2(e

it )(on the right) and λ1(e
it )
...λ2(e

it )(on the left).
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Corollary 5.12 Let the requirements of Theorem 5.11 be valid. The following
statements are equivalent:

(a) �1(e
it ) ∼ �2(e

it );
(b) (θ(1)12 (e

it ))∗θ(1)12 (e
it ) = (θ(2)12 (e

it ))∗θ(2)12 (e
it ) a.e. and

θ
(1)
21 (e

it )(θ
(1)
21 (e

it ))∗ = θ(2)21 (e
it )(θ

(2)
21 (e

it ))∗ a.e.;
(c) ω1(e

it ) = ω12(e
it )ω2(e

it ) a.e. and λ1(e
it ) = λ2(e

it )λ21(e
it ) a.e., where

ω12(e
it ) ∈ CM[F(2),F(1)] and λ21(e

it ) ∈ CM[G(1),G(2)] are unitary operator
functions.

Similarly, as it was done in Definition 5.7 for the set Ur (θ)/∼ and Lr (θ)/∼, we
can consider the concepts of a maximal element and the largest one for the partially
ordered set Kr (θ)/∼, as well as the concept of a maximal extension for the partially
preordered set Kr (θ). The subset of Kr (θ) consisting of all maximal extensions
will be denoted by Kr,max(θ) or simply Kr,max. The analogous concepts for the sets
Kcr (θ) and Kcr (θ)/∼ can be introduced in a similar way. The subset of Kcr (θ)

consisting of all maximal extensions from Kcr (θ) will be denoted by Kcr,max(θ) or
simply Kcr,max.

A description of the sets Kr,max(θ) and Kcr,max(θ) is given by the following
theorem, which follows directly from Definition 5.10 and Theorem 5.9.

Theorem 5.13 Let θ(eit ) belongs to CM[G,F].
(a) Let �(eit ) ∈ Kr (θ) be a regular extension of form (3.32), ω(eit ) ∈

CM[G,F(1)] and λ(eit ) ∈ CM[G(1),F] be the corresponding coisometric and
isometric operator functions, respectively, from representation (4.9) satisfying
conditions (4.8) and let

L⊥ := �L2(G)� Ranω∗, L⊥∗ := �L2(F)� Ranλ.

Then �(eit ) ∈ Ur,max(θ) iff the conditions

α� <∞, αL⊥ = 0 or α� = ∞, L⊥ = {0}

and

α� <∞, αL⊥∗ = 0 or α� =∞, L⊥∗ = {0}

are satisfied. The element [�] ∈ Kr (θ/∼ is the largest iff the extension �(eit )
is unitary.

(b) Let �(eit ) ∈ Kcr (θ) be a completely regular extension of form (3.32), ω(eit ) ∈
CM[G,F(1)] and λ(eit ) ∈ CM[G(1),F] be the corresponding coisometric
and isometric operator functions, respectively, from representations (4.11)
satisfying condition (4.10) and let

N := Kerθ, N∗ := Kerθ∗, L⊥ := N� Ranω∗, L⊥∗ := N∗ � Ranλ.
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Then �(eit ) ∈ Kcr,max(θ) iff the conditions

αN <∞, αL⊥ = 0 or αN = ∞, L⊥ = {0}

and

αN∗ <∞, αL⊥∗ =0 or αN∗ = ∞, L⊥∗ = {0}

are satisfied. The element [�] ∈ Kcr (θ)/∼ is the largest iff the equalities

Ranω∗ = N, Ranλ = N∗

are valid.

5.3 On Some Extremal Properties of the Norm of Regular
Extensions

The following assertion can be regarded as a special case of Theorem 8.9 ([13]), but
with somewhat weakened requirements.

Theorem 5.14 Let θ(eit ) belongs to CM[G,F]. If F �= {0}(G �= {0}) and there
exists only trivial extension �(eit ) ∈ Ur (θ)(�(eit ) ∈ Lr (θ)), then ‖θ‖L∞[G,F] = 1.

Proof In both cases, we infer that F �= {0} and G �= {0}. If ‖θ‖L∞[G,F] < 1, then
θ(eit ) is a strictly contractive operator at almost all t . But in this case, as was noted
in Remark 4.4, there exist non-trivial regular extensions both upwards and leftwards.
This contradicts the prerequisites of the theorem. ��

The following assertion was proved in [13] (see Theorem 8.8).

Theorem 5.15 Let σ be a minimal unitary coupling of form (2.1) and θ(eit ) :=
θσ (e

it ). If for a pair of bilateral channels

{(M(
◦
F1),F1;VF1), (M(

◦
G1),G1;VG1)}

of the coupling σ at least one of the inclusions (3.20) is strict, then for the function
θ2(e

it ) ∈ CM[G1,F1] from the corresponding factorization (3.21) the equality
‖θ2‖L∞[G1,F1] = 1 holds.

From this theorem, by Theorem 3.8 and Definition 3.11, we obtain
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Corollary 5.16 If θ(eit ) ∈ CM[G,F] and �(eit ) ∈ Kr (θ) is a non-trivial
extension of form (3.32), then

‖�‖L∞[G(1)⊕G,F(1)⊕F] = 1.

Remark 5.17 In conclusion of this section, we note that, considering extensions
�(eit )(�(eit )) of form (3.15) and �(eit ) of form (3.22), but not requiring their
regularity, we could constract a similar theory. For example, in an obvious way, we
could give a description of the sets U(θ)(L(θ)) and K(θ) of all (not necessarily
regular) extensions, using representations (4.2) and (4.9), but without conditions
(4.1) and (4.8). Or, introducing the comparison relation on U(θ)(L(θ)) by condition
(b) from Theorem 5.5, we could study its properties. But this is beyond the scope of
the present work.

6 Defect Functions in the Schur Class for Contractive
Measurable Operator Functions

In this section we consider regular extensions of form (3.15), where θ12(e
it ) ∈

L∞+ [G,F(1)] (θ21(e
it ) ∈ L∞+ [G(1),F]).

6.1 Fundamental Contraction, Internal and External
Unilateral Channels of Unitary Couplings

We begin with some necessary information on properties of contractions acting on
Hilbert spaces. Recall that a contraction T ∈ [H], where H is a Hilbert space, is
called completely nonunitary if there is no non-zero subspace of H that reduces T
and on which the restriction of T is unitary.

Theorem 6.1 (The Canonical Decomposition of a Contraction, [29]) Let H be a
Hilbert space and T ∈ [H] be a contraction. There exists the unique decomposition
H = H0 ⊕ H1 such that

(1) Hj reduces T (j = 0, 1);
(2) U0 := T |H0 is a unitary operator;
(3) T1 := T |H1 is a completely nonunitary contraction.

Certainly, it is possible that H0 = {0} or H1 = {0} is valid. The operators U0 ∈
[H0] and T1 ∈ [H1] are called the unitary and completely nonunitary parts of the
contraction T , respectively. The decomposition T = U0⊕T1 is called the canonical
decomposition of T .
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Corollary 6.2 (The Wold Decomposition, [29]) Let H be a Hilbert space and
a contraction V ∈ [H] be an isometry. Then the subspace N := KerV ∗ of H is
wandering with respect to V and the subspaces H0 and H1 corresponding to the
canonical decomposition of V are given by the formulas

H0 :=
∞⋂
n=1

V nH, H1 :=M+(N).

Thus, in this case, the completely nonunitary contraction V1 := V |H1 is a
unilateral shift, that is,

H1 =
∞⊕
k=0

V k1 N.

If V ∈ [H] is a unilateral shift, then Ṽ := V ∗ ∈ [H] is termed the backward shift
or, for simplicity, the coshift associated with the shift V .

If T ∈ [H] is a contraction, L is a subspace of H invariant for T , and V := T |L is
an isometry, then we say that V ∈ [L] is contained in T and denote this by V ⊂ T .
If L∗ is a subspace of H invariant for T ∗, then we say that Ṽ ∈ [L∗] is a coisometry
contained in T if Ṽ ∗ ∈ [L∗] is an isometry contained in T ∗. We also denote this by
Ṽ ⊂ T . Further, considering the set VT (ṼT ) of isometries (coisometries) contained
in T with the inclusion relation on it, we turn it into a partially ordered set. From
the arguments carried out in [29] (Chapter I, §3, Theorem 3.2) we can formulate

Theorem 6.3 Let T ∈ [H] be a contraction.

(a) In the set VT (ṼT ) there exists the largest isometry VT ∈ [HVT ](coisometry
ṼT ∈ [HṼT ]), where

HVT := {h ∈ H : ‖T nh‖ = ‖h‖, n = 1, 2, . . .}

(HṼT := {h ∈ H : ‖(T ∗)nh‖ = ‖h‖, n = 1, 2, . . .}),

VT := T |HVT
(ṼT := (T ∗|H

ṼT
)∗).

(b) If U0 ∈ [H0] is the unitary part of T , then

H0 = HVT ∩ HṼT .

In the case of a completely nonunitary contraction T , the set VT (ṼT ) consists of
all unilateral shifts (coshifts) contained in T and its largest element VT (ṼT ) will be
called the largest shift (coshift) contained in T .

Now let σ be a unitary coupling of form (2.1). Note that any unilateral output
(input) channel (L+,N;VN) ((L−,N;VN)) of the coupling σ determines uniquely
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the unilateral shift V (coshift Ṽ ) defined by the formula V := U |L+ ∈ [L+](Ṽ :=
(U∗|L−)∗ ∈ [L−]) and contained in U . Conversely, any unilateral shift V (coshift
Ṽ ) contained in U and defined on a subspace L+ (L−) of H generates the unilateral
output (input) channel (L+,N;VN) ((L−,N;VN)) of σ . It is determined up to the
choice of a Hilbert space N such that

dimN = dim(KerV ∗) (dimN = dim(KerṼ ))

and of an embedding isometry VN ∈ [N,H] such that

RanVN = KerV ∗ (RanVN = U(KerṼ )).

In addition to the notation RN := H�M(N) for any wandering subspace N of
H introduced in Sect. 2.1, we denote by R+N := H�M−(N)(R−N := H�M+(N))
the subspace of H that is invariant with respect to U(U∗). It is clear that RN =
R+N ∩R−N.

Definition 6.4 Let σ be a unitary coupling of form (2.1) and

HT := H� (M−(
◦
F) ∨M+(

◦
G))(= R+◦

F
∩R−◦

G
), T := PHT

U |HT
. (6.1)

The contraction T ∈ [HT ]will be called the fundamental contraction of the coupling
σ . To emphasize its dependence on σ we sometimes denote it by Tσ . The subspace
HT will be termed the internal subspace of the coupling σ . A unilateral output
(input) channel (L+,N;VN)((L−,N;VN)) such that L+ ⊂ HT (L− ⊂ HT ),
as well as the corresponding unilateral shift V := U |L+ ∈ [L+](coshift Ṽ :=
(U∗|L−)∗ ∈ [L−]), will be called internal for the coupling σ .

At the same time, the unilateral output (input) channel (L+,N;VN)
((L−,N;VN)), as well as the corresponding unilateral shift V ( coshift Ṽ ), will
be called external for the coupling σ if

L+ ⊂ M−(
◦
F) ∨M+(

◦
G) (L− ⊂M−(

◦
F) ∨M+(

◦
G)).

In particular, the shift Vσ := U |
M+(G

◦
)
∈ [M+(G

◦
)] and the coshift Ṽσ :=

(U∗|
M−(F
◦
)
)∗ ∈ [M−(F

◦
)] will be referred as the principal external unilateral shift

and coshift of σ .

The concept of the fundamental contraction for unitary couplings is a generaliza-
tion of its particular case for orthogonal unitary couplings (see [11], Section 6) and,
hence, of the concept of the basic contraction for unitary colligations (see [19]).

Theorem 6.5 A unitary coupling σ is minimal iff the fundamental contraction Tσ
is completely nonunitary.
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Proof Let σ be a coupling of form (2.1) and T := Tσ . If U0 ∈ [H0] is the unitary
part of the contraction T , then U0 = U |H0 follows from U0 = T |H0 . Hence, in

view of the reducibility of H0 for U , the condition H0 ⊥ M−(
◦
F) (H0 ⊥ M+(

◦
G))

is equivalent to the condition H0 ⊥ M(
◦
F) (H0 ⊥ M(

◦
G)). Thus, from H0 ⊂ HT we

obtain

H0 ⊂ H(0) := H� (M(
◦
F) ∨M(

◦
G)).

Similarly, we infer that H(0) ⊂ H0, whence H(0) = H0 follows. ��

Remark 6.6 Let σ ∗ be the adjoint unitary coupling of form (2.7) in relation to the
coupling σ and T∗ := Tσ ∗ ∈ [HT∗ ]. Then for the abundant subspace H(0) of σ (and,
hence, of σ ∗) we obtain

H(0) = R ◦
F
∩R ◦

G
= (R+◦

F
∩R−◦

G
) ∩ (R+◦

G
∩R−◦

F
) = HT ∩ HT∗ .

For the fundamental contraction of a minimal unitary coupling we can refine the
information formulated in Theorem 6.3.

Theorem 6.7 Let σ be a minimal unitary coupling of form (2.1) and T := Tσ . Then

HVT = R+◦
F
∩R ◦

G
(HṼT = R ◦

F
∩R−◦

G
) (6.2)

and for the largest internal unilateral shift VT (coshift ṼT ) the equality

VT = U |HVT
(ṼT = (U∗|H

ṼT
)∗)

holds.

Proof It suffices to prove the theorem for VT .
The subspace L(0)+ := R+◦

F
∩R ◦

G
is obviously invariant with respect to U and, in

addition, we obtain that

L
(0)
+ = (H�M−(

◦
F)) ∩ (H�M(

◦
G)) ⊂ (H�M−(

◦
F)) ∩ (H�M+(

◦
G)) = HT .

Hence,

U |
L
(0)
+
= (PHT

U |HT
)|
L
(0)
+
= T |

L
(0)
+

and, in view of the complete nonunitarity of T , the isometry V (0) := U |
L
(0)
+

is an

internal unilateral shift of the coupling σ .
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If V ∈ [L+] is an internal unilateral shift of the coupling σ , then L+ is invariant
for T and

V = T |L+ = PL+T |L+ = PL+(PHT
U |HT

)|L+ = PL+U |L+ = U |L+ .

Thus, L+ is invariant for U and, hence, from L+ ⊥ M+(
◦
G) it follows that L+ ⊥

M(
◦
G), whence we obtain the inclusion

L+ ⊂ R+◦
F
∩R ◦

G
= L

(0)
+

Thus, L(0)+ = HVT and V (0) is the largest internal unilateral shift VT of the coupling
σ . ��

In this connection, in the case of a minimal unitary coupling σ , the largest internal
shift VT ∈ [HVT ] and coshift ṼT ∈ [HṼT ] will be referred as the principal internal
shift and coshift of σ . The corresponding unilateral channels will also be called the
principal internal unilateral output and input channels of σ , respectively.

Important for the study of completely regular extensions is the subset

WT := {V ∈ VT : V ⊂ Vσ ∗} (W̃T := {Ṽ ∈ ṼT : Ṽ ⊂ Ṽσ ∗})

of the set VT (ṼT ). Here Vσ ∗(Ṽσ ∗) is the principal external unilateral shift (coshift)
of the coupling σ ∗ of form (2.7).

Theorem 6.8 Let σ be a minimal unitary coupling and T := Tσ . Among shifts
(coshifts) from WT (W̃T ) there exists the largest shift WT ∈ [HWT ] (coshift W̃T ∈
[HW̃T

]). Moreover,

HWT := HVT ∩M+(
◦
F) (HW̃T

:= HṼT ∩M−(
◦
G)), (6.3)

WT := U |HWT
(W̃T := (U∗|H

W̃T
)∗).

Proof This assertion for WT is a direct corollary of the equalities

VT = U |HVT
, Vσ ∗ = U |

M+(
◦
F)
.

The assertion for W̃T is dual in relation to it. ��
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6.2 Extensions from Ur(θ) (Lr(θ)) Generated by Internal
Unilateral Coshifts (Shifts) of a Coupling

Let θ(eit ) belong to CM[G,F]. Denote by U+r (θ) (L+r (θ)) or simply U+r (L+r ) the
subset of Ur (θ) (Lr (θ)) consisting of regular upward (leftward) extensions of�(eit )
(�(eit )) of form (3.15) such that

θ12(e
it ) ∈ L∞+ [G,F(1)] (θ21(e

it ) ∈ L∞+ [G(1),F]). (6.4)

Its subset of completely regular upward (leftward) extensions will be denoted by
U+cr (θ) (L+cr (θ)) or simply U+cr (L+cr ).

Let σ be a minimal unitary coupling of form (2.1) and θ(eit ) := θσ (e
it ). As it

follows from Definition 3.6 and Theorem 3.2 (Theorem 3.4), θ12(e
it ) = θσ12(e

it )

(θ21(e
it ) = θσ21(e

it )), where σ12 (σ21) is the coupling of form (3.6) and (3.11).
Hence, by Theorem 2.33, condition (6.4) is satisfied iff the coupling σ12 (σ21) is
orthogonal, that is, the condition

M−(
◦
F(1)) ⊥ M+(

◦
G) (M−(

◦
F) ⊥ M+(

◦
G
(1))) (6.5)

is fulfilled. Taking into account (3.7) (3.12), (6.1), and (6.5), we see that condition
(6.4) is satisfied iff the inclusion

M−(
◦
F(1)) ⊂ HT (M+(

◦
G
(1)) ⊂ HT ) (6.6)

is satisfied.
In the case of completely regular extensions, taking into account additional

condition (3.9) and (3.14), we obtain that �(eit ) ∈ U+cr (�(eit ) ∈ L+cr ) iff, besides
(6.6), the inclusion

M−(
◦
F(1)) ⊂ M−(

◦
G) (M+(

◦
G
(1)) ⊂ M+(

◦
F)) (6.7)

holds.
Thus, we can reformulate Theorem 3.2 (Theorem 3.4) for U+r (L+r ) in terms of

internal unilateral channels.

Theorem 6.9 Let θ(eit ) ∈ CM[G,F] and σ be a minimal unitary coupling of form
(2.1) such that θσ (eit ) = θ(eit ).
(a) There exists a bijective correspondence between extensions �(eit ) ∈ U+r (θ)

(�(eit ) ∈ L+r (θ)) of form (3.15) and internal unilateral input (output) channels

(M−(
◦
F (1)),F(1);VF(1)) ((M+(

◦
G (1)),G(1);VG(1))) of the coupling σ . This

correspondence is established by the equality θ12(e
it ) = θσ12(e

it ) (θ21(e
it ) =

θσ21(e
it )), where σ12 (σ21) is a unitary coupling of form (3.6) and (3.11).
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(b) An extension �(eit ) ∈ U+r (θ) (�(eit ) ∈ L+r (θ)) is completely regular iff the
corresponding internal unilateral input (output) channel satisfies additionally
condition (6.7).

Parts (b) and (c) of Theorem 4.2 can be refine for U+r (L+r ) in the following way.

Theorem 6.10 Let θ(eit ) ∈ CM[G,F] and �(eit ) ∈ Ur (θ) (�(eit ) ∈ Lr (θ)) be
its extension of form (3.15).

(a) �(eit ) ∈ U+r (θ)(�(eit ) ∈ L+r (θ)) iff there exists a coisometric (isometric)
operator function ω(eit ) ∈ CM[G,F(1)](λ(eit ) ∈ CM[G(1),F]) such that for
the function ω(eit ) (λ(eit )) inclusion (4.1) and the condition

ω(eit )�(eit ) ∈ L∞+ [G,F(1)] (�(eit )λ(eit ) ∈ L∞+ [G(1),F])

are satisfied and representation (4.2) is valid.
(b) �(eit ) ∈ U+cr (θ)(�(eit ) ∈ L+cr (θ)) iff the corresponding functionω(eit )(λ(eit ))

is the boundary value function of some ∗-inner (inner) operator function
ω(ζ ) ∈ S[G,F(1)](λ(ζ ) ∈ S[G(1),F]) and inclusion (4.3) is valid. In this case,
representation (4.2) takes form (4.4).

For what follows we need some refinement of Theorem 4.1 (part (a)) for
unilateral channels (see [12], Theorem 7.10).

Theorem 6.11 There exists a bijective correspondence between unilateral input
(output) channels (L−,N;VN) ((L+,N;VN)) in L2(K) and isometric operator
functions θ(eit ) ∈ CM[N,K]. This correspondence is established by the formulas

VN = θ |N, L− = M−(
◦
N) (L+ = M+(

◦
N)); θ = (�N

U×K
)∗.

Moreover, the subspace M−(
◦
N)(M+(

◦
N)) determines the function θ(eit ) uniquely

up to a right constant unitary factor.

From Theorems 6.9–6.11 we obtain

Theorem 6.12 Let θ(eit ) ∈ CM[G,F], σ be a minimal unitary coupling of form
(2.1) such that θσ (eit ) = θ(eit ), and T := Tσ .

(a) There exists a bijective correspondence between internal coshifts Ṽ ∈ ṼT
(shifts V ∈ VT ) of the coupling σ and extensions �(eit ) ∈ U+r (θ) (�(eit ) ∈
L+r (θ)) of form (3.15) if the block θ12(e

it ) (θ21(e
it )) is considered up to a

left (right) constant unitary factor. This correspondence is obtained from the
correspondence established in Theorem 6.9 (part (a)) if we take into account
the equality

Ṽ = (U∗|
M−(

◦
F
(1)
)
)∗ (V = U |

M+(
◦
G
(1)
)
).
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(b) An extension �(eit ) ∈ U+r (θ) (�(eit ) ∈ L+r (θ)) is completely regular iff the
corresponding coshift Ṽ ∈ ṼT (shift V ∈ VT ) belongs to the subset W̃T (WT ).

Proof

(a) As was shown in the proof of Theorem 4.2 (part (b)), the isometric operator
function Ŷ (eit ) ∈ CM[F(1),K], K := G⊕ F, corresponding to a bilateral chan-

nel (M̂(
◦
F(1)),F(1); V̂F(1)) (and, hence, to a unilateral input channel (M̂−(

◦
F(1)),

F(1); V̂F(1))) of the coupling σ , is given by formula (4.7). By Theorem 6.11, the

function Ŷ (eit ) is determined by the subspace M̂−(
◦
F (1)) (and, hence, by the

coshift Ṽ := (Û∗|
M̂−(

◦
F
(1)
)
)∗) up to a right constant unitary factor. It follows

from this that the functions ω(eit ) and, in view of (4.2), θ12(e
it ) are determined

up to left constant unitary factor.
(b) This part follows from part (a) of this theorem, Theorems 6.9 (part (b)), 6.10

(part ( b)), and the definition of W̃T .
The dual assertion is proved in a similar way. ��

Theorem 6.12 enables us to say that extensions �(eit ) ∈ U+r (θ) (�(eit ) ∈
L+r (θ)) of form (3.15) are generated by internal unilateral coshifts (shifts) of a
minimal unitary coupling σ such that θσ (eit ) = θ(eit ).

6.3 Defect Functions in the Schur Class

Let θ(eit ) belong to CM[G,F]. From now on we will study extensions �(eit ) ∈
U+r (θ) (�(eit ) ∈ L+r (θ)) of form (3.15) considering both the block θ12(e

it )

(θ21(e
it )) and the coisometric (isometric) operator function ω(eit ) (λ(eit )) from

representation (4.2) up to a left (right) constant unitary factor.
Let θ(eit ) ∈ CM[G,F], σ be a minimal unitary coupling of form (2.1) such that

θσ (e
it ) = θ(eit ), and T := Tσ .

Leaning on Theorem 6.12 (part (a)), we denote by

�+0 (e
it ) :=

[
ϕ+(eit )
θ(eit )

]
∈ CM[G,K⊕ F](�+0 (eit ) := [ψ+(eit ), θ(eit )] ∈ CM[K∗ ⊕G,F])

(6.8)

the extension from U+r (θ) (L+r (θ)) corresponding to the principal internal coshift
ṼT ∈ ṼT (shift VT ∈ VT ) of the coupling σ . Thus, ϕ+(eit ) (ψ+(eit ) is the boundary
value function of some Schur function ϕ+(ζ ) ∈ S[G,K] (ψ+(ζ ) ∈ S[K∗,F]). It
admits the representation of type (4.2), that is,

ϕ+(eit ) = ω+0 (eit )�(eit ) a.e. (ψ+(eit ) = �(eit )λ+0 (eit ) a.e.), (6.9)
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where ω+0 (eit ) ∈ CM[G,K] (λ+0 (eit ) ∈ CM[K∗,G]) is the coisometric (isometric)
operator function corresponding to the largest internal coshift ṼT (shift VT ) of the
coupling σ and satisfying the condition of type (4.1), that is,

Ran(ω+0 )
∗ ⊂ �L2(G) (Ranλ+0 ⊂ �L2(F)).

Definition 6.13 Let θ(eit ) belong to CM[G,F]. The Schur function ϕ+(ζ ) ∈
S[G,K] (ψ+(ζ ) ∈ S[K∗,F]) generating the regular extension �+0 (eit ) ∈ U+r (θ)
(�+0 (eit ) ∈ L+r (θ)) of form (6.8) will be called the defect (�-defect) function of
θ(eit ) in the Schur class.

Note that these concepts are generalizations of their analogs for a Schur operator
function θ(ζ ) ∈ S[G,F] studied in [14] and [23], where they were called the right
and left defect functions, respectively.

Recall that a Schur operator function θ(ζ ) ∈ S[G,F] is termed outer (∗-outer) if

θH 2+(G) = H 2+(F) (θ∼H 2+(F) = H 2+(G)).

It is said to be two-sided outer if it is outer and ∗-outer.

Theorem 6.14 Let θ(eit ) belong to ∈ CM[G,F]. Then its defect (∗-defect)
function ϕ+(ζ ) ∈ S[G,K] (ψ+(ζ ) ∈ S[K∗,F]) is outer (∗-outer).

Proof It suffices to prove the theorem for ϕ+(ζ ).
Let σ be a minimal unitary coupling of form (2.1) such that θσ (eit ) = θ(eit ), and

T := Tσ .
Since �+0 (eit ) ∈ CM[G,K⊕ F] of form (6.8) corresponds to the largest coshift

ṼT ∈ [M−(
◦
K)] in the set ṼT , then, by Theorem 6.9 (part (a)), ϕ+(eit ) = θσ+12

(eit ).
Here

σ+12 := (H,K,G;U,VK, VG) (6.10)

is a coupling of type (3.6) generated by the principal internal unilateral input channel

(M−(
◦
K),K;VK). In view of (6.2), M(

◦
K) ⊂ R ◦

F
and, hence, we obtain

M−(
◦
K) = R ◦

F
∩R−◦

G
= M(

◦
K) ∩ (M+(

◦
G))
⊥. (6.11)

Since for any subspace M ⊂ H the equality

M(
◦
K) = (M(

◦
K) ∩M⊥)⊕ P

M(
◦
K)
M
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holds, then, setting M := M+(
◦
G), we infer from (6.11) that

M+(
◦
K) = P

M(
◦
K)
M+(

◦
G) = Sσ+12

M+(
◦
G)

where Sσ+12
:= P

M(
◦
K)
|
M(
◦
G)

(see (2.4)). From this, taking into account (2.5) and the

properties of the Fourier representations, we obtain

ϕ+L2+(G) = �K
USσ+12

(�G
U )
∗L2+(G) = �K

USσ+12
M+(

◦
G) = �K

UM+(
◦
K) = L2+(K).

��

Similarly, taking into account Theorem 6.12 (part (b)), we denote by

�+c0(e
it ) :=

[
γ+(eit )
θ(eit )

]
∈ CM[G,N⊕ F]

(�+c0(e
it ) := [δ+(eit ), θ(eit )] ∈ CM[N∗ ⊕G,F]) (6.12)

the extension from U+cr (θ) (L+cr (θ)) corresponding to the largest coshift W̃T ∈ W̃T

(shift WT ∈ WT ). Thus, by virtue of Theorem 6.10 (part (b)), γ+(eit )(δ+(eit ))
is the boundary value function of some ∗-inner (inner) operator function γ+(ζ ) ∈
S[G,N](δ+(ζ ) ∈ S[N∗,F]) which satisfies the condition of type (4.3), that is,

Ranγ ∗+ ⊂ Kerθ (Ranδ+ ⊂ Kerθ∗).

Definition 6.15 Let θ(eit ) belong to CM[G,F]. The ∗-inner (inner) operator
function γ+(ζ ) ∈ S[G,N] (δ+(ζ ) ∈ S[N∗,F]) generating the completely regular
extension �+c0(eit ) ∈ U+cr (θ) (�+c0(eit ) ∈ L+cr (θ)) of form (6.12) will be called the
defect (∗-defect) function of θ(eit ) in the class of ∗-inner (inner) operator functions.

Similarly, for any function θ(eit ) ∈ CM[G,F] we can consider the set
U−r (θ)(L−r (θ)) of all regular upward (leftward) extensions�(eit ) ∈ CM[G,F(1)⊕
F](�(eit ) ∈ CM[G(1)⊕G,F]) of form (3.15) where the block θ12(e

it ) (θ21(e
it )) is

the boundary value function of some contractive antiholomorphic operator function
θ12(ζ )(θ21(ζ )) onD. The latter means that θ∗12(ζ ) ∈ S[F(1),G](θ∗21(ζ ) ∈ S[F,G(1)])
is a Schur function. This leads us to the necessity of considering unilateral shifts
(coshifts) contained in the fundamental contraction T∗ := Tσ ∗ . It is clear that

U−r (θ) = {�(eit ) ∈ Ur (θ) : �∗(eit ) ∈ L+r (θ∗)}

(L−r (θ) = {�(eit ) ∈ Lr (θ) : �∗(eit ) ∈ U+r (θ∗)}). (6.13)
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The largest shift VT∗ ∈ [HVT∗ ] (coshift ṼT∗ ∈ [HṼT∗ ]) acts on the subspace HVT∗ :=
R ◦

F
∩HT∗ ( HṼT∗ := HT∗ ∩R ◦

G
) of the space HT∗ .

It generates the regular upward (leftward) extension

�−0 (e
it ) :=

[
ϕ−(eit )
θ(eit )

]
∈ CM[G,K− ⊕ F]

(�−0 (e
it ) := [ψ−(eit ), θ(eit )] ∈ CM[K−∗ ⊕G,F])

from U−r (θ) (L−r (θ)), where ϕ∗−(ζ ) ∈ S[K−,G] (ψ∗−(ζ ) ∈ S[G,K−∗ ]) is some ∗-
outer (outer) operator function.

The function ϕ−(ζ ) (ψ−(ζ )) will be called the defect (∗-defect) function of
θ(eit ) in the class of contractive antiholomorphic operator functions. It is clear that,
denoting ϕ±(ζ ; θ) and ψ±(ζ ; θ) the corresponding defect function of the function
θ(eit ), we come to the equalities

ϕ∗±(ζ ; θ) = ψ∓(ζ ; θ∗), ϕ∼±(ζ ; θ) = ψ±(ζ ; θ∼), ζ ∈ D, (6.14)

(see Sect. 2.1, where the associated function θ∼(eit ) is defined).
Similarly, one can introduce the set U−cr (θ)(L−cr (θ)), the largest shiftWT∗ (coshift

W̃T∗ ) contained simultaneously in Tσ ∗ and Vσ (Ṽσ ). Analogously, the defect function
γ−(ζ ) (δ−(ζ ), where γ ∗−(ζ ) ∈ S[N−,G] (δ∗−(ζ ) ∈ S[F,N−∗ ]) is an inner (∗-inner)
operator function, is determined by the extension

�−c0(e
it ) :=

[
γ−(eit )
θ(eit )

]
∈ U−cr (θ) (�−c0(e

it ) := [δ−(eit ), θ(eit )] ∈ L−cr (θ))

that corresponds to WT∗ (W̃T∗).
We will call an antiholomorphic operator function inner (∗-inner) if its boundary

value function is isometric (coisometric). The function γ−(ζ ) (δ−(ζ )) will be called
the defect (∗-defect) function of θ(eit ) in the class of an antiholomorphic ∗-inner
(inner) operator functions. It is obvious that

γ ∗±(ζ ; θ) = δ∓(ζ ; θ∗), γ∼± (ζ ; θ) = δ±(ζ ; θ∼). (6.15)

Established connections (6.13)–(6.15) allow us to reduce the study of regular
extensions from U−r (L−r ) to the investigation of regular extensions from L+r (U+r ).
Therefore, all subsequent results will be formulated only for extensions from the
sets U+r and L+r .
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7 Applications of Defect Functions in the Schur Class
to the Study of Regular Extensions

7.1 Descriptions of the Sets U+
r (θ) and L+

r (θ)

First of all, we need some refinements of Theorems 3.1 and 5.2 for the cases of
the boundary value functions of ∗-inner and inner operator functions (see [12],
Corollaries 7.5 and 7.7; [13], Corollaries 8.2 and 8.4).

Theorem 7.1 Let θ(eit ) ∈ CM[G,F] and σ be a minimal unitary coupling of form
(2.1) such that θσ (eit ) = θ(eit ).
(a) θ(eit ) is the boundary value function of some ∗-inner (inner) operator function

θ(ζ ) ∈ S[G,F] iff

M−(
◦
F) ⊂M−(

◦
G) (M+(

◦
G) ⊂ M+(

◦
F)).

The function θ(ζ ) is two-sided inner iff both these conditions are satisfied.
(b) There exists a bijective correspondence between unilateral input (output)

channels (M−(
◦
F1),F1;VF1) ((M+(

◦
G1),G1;VG1)) of the coupling σ satisfying

the condition

M−(
◦
F) ⊂ M−(

◦
F1) (M+(

◦
G) ⊂ M+(

◦
G1)) (7.1)

and regular factorizations of the form

θ(eit ) = θ2(e
it )θ1(e

it ), (7.2)

where θ2(e
it ) ∈ CM[F1,F] (θ1(e

it ) ∈ CM[G,G1]) is the boundary value
function of some ∗-inner (inner) operator function. This correspondence is
established by the equality θ2(e

it ) = θσ2(e
it )(θ1(e

it ) = θσ1(e
it )), where σ2(σ1)

is unitary coupling of form (3.3) and (3.4).

Remark 7.2 Note that in the case of a non-minimal coupling σ one can only
state that for any unilateral input (output) channel of σ satisfying condition (7.1)
there exists a unique factorization of form (7.2) with the required properties,

but not necessarily regular. This factorization is regular iff (M−(
◦
F1),F1;VF1)

((M+(
◦
G1),G1;VG1)) is a unilateral channel of the principal part σ (1) of the

coupling σ ( see Definition 2.3).

We also need the following refinement of Lemma 5.4 for the cases of ∗-inner and
inner operator functions.



202 S. S. Boiko and V. K. Dubovoy

Lemma 7.3

(a) Let ω(ζ ) ∈ S[G,F] and ω1(ζ ) ∈ S[G,K] be ∗-inner operator functions. If
ω1(e

it ) is a right divisor of ω(eit ) and the corresponding unique left divisor
ω2(e

it ) belongs to L∞+ [K,F], then ω2(ζ ) ∈ S[K,F] is also ∗-inner and both
divisors ω2(e

it ) and ω1(e
it ) are completely regular.

(b) Let λ(ζ ) ∈ S[G,F] and λ2(ζ ) ∈ S[K,F] be inner operator functions. If λ2(e
it )

is the left divisor of λ(eit ) and the corresponding unique right divisor λ1(e
it )

belongs to L∞+ [G,K], then λ1(ζ ) ∈ S[G,K] is also inner and both divisors
λ2(e

it ) and λ1(e
it ) are completely regular.

Proof It suffices to prove the part (a). By Lemma 5.4 (part (a)), ω2(e
it ) is a

coisometric operator function and both divisors are completely regular. In view of
ω2(e

it ) ∈ L∞+ [K,F], it is the boundary value function of some ∗-inner operator
function ω2(ζ ) ∈ S[K,F]. ��

Thus, we can consider the concept of the divisibility within the class of ∗-inner

(inner) operator functions, denoting it by ω(ζ )
...ω1(ζ ) (on the right) (λ(ζ )

...λ2(ζ )) (on
the left)), if the conditions of part (a) (part (b)) of Lemma 7.3 are valid.

Theorem 7.4 Let θ(eit ) ∈ CM[G,F], ϕ+(ζ ) ∈ S[G,K], (ψ+(ζ ) ∈ S[K∗,F]) be
its defect (∗-defect) function in the Schur class, and γ+(ζ ) ∈ S[G,N](δ+(ζ ) ∈
S[N∗,F]) be its defect (∗-defect) function in the class of ∗-inner (inner) operator
functions.

(a) A nontrivial extension �(eit ) ∈ U+r (θ) (�(eit ) ∈ L+r (θ)) exists iff ϕ+(ζ ) �≡ 0
(ψ+(ζ ) �≡ 0).

Let �(eit ) ∈ CM[G,F(1)⊕F](�(eit ) ∈ CM[G(1)⊕G,F]) be an operator
function of form (3.15).

(b) �(eit ) ∈ U+r (θ)(�(eit ) ∈ L+r (θ)) iff there exists a ∗-inner (inner) operator
function ω(ζ ) ∈ S[K,F(1)](λ(ζ ) ∈ S[G(1),K∗]) such that the function θ12(e

it )

(θ21(e
it )) admits the representation of the form

θ12(e
it ) = ω(eit )ϕ+(eit ) a.e. (θ21(e

it ) = ψ+(eit )λ(eit ) a.e.). (7.3)

(c) �(eit ) ∈ U+cr (θ) (�(eit ) ∈ L+cr (θ)) iff there exists a ∗-inner (inner) operator
function ω(ζ ) ∈ S[N,F(1)](λ(ζ ) ∈ S[G(1),N∗]) such that the function
θ12(e

it )(θ21(e
it )) admits the representation of the form

θ12(e
it ) = ω(eit )γ+(eit ) a.e. (θ21(e

it ) = δ+(eit )λ(eit ) a.e.). (7.4)

(d) There exists an isometric (coisometric) extension �(eit ) ∈ U+r (θ) (�(eit ) ∈
L+r (θ)) iff

ϕ∗+L2(K) = �L2(G) (ψ+L2(K∗) = �L2(F)). (7.5)
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All such extensions in this case are given by formulas (3.15) and (7.3), whereω(ζ ) ∈
S[K,F(1)](λ(ζ ) ∈ S[G(1),K∗]) is an arbitrary two-sided inner operator function.
These extensions are unitary iff θ(eit ) is a coisometric (isometric) operator function.
In this case, they are completely regular,

ϕ+(ζ ) = γ+(ζ ) (ψ+(ζ ) = δ+(ζ )), ζ ∈ D,

and condition (7.5) is equivalent to the equality

Ranϕ∗+ ⊕ Ranθ∗ = L2(G) (Ranψ+ ⊕ Ranθ = L2(F)). (7.6)

Proof

(a) This part follows from part (b).
(b) As before, we again restrict ourselves to the consideration of regular upward

extensions. Let �(eit ) ∈ U+r and σ̂ be the functional model of a minimal
coupling of form (2.11) described in Theorem 2.11. We again consider Ĥ with
the other order of its orthogonal components, as in the proof of Theorem 4.2. It
was shown there that θ12(e

it ) = θσ̂12, where

σ̂12 := (Ĥ,F(1),G; Û×, V̂F(1) , V̂G)

is not necessarily minimal coupling. By Theorem 6.12 (part (a)), �(eit )
corresponds to some internal coshift Ṽ ∈ Ṽ

T̂
of the coupling σ̂ where T̂ := Tσ̂ .

The coshift Ṽ is also the principal external coshift for σ̂12, that is, Ṽ = Ṽσ̂12 ∈
[M−(

◦
F(1))].

Consider the unilateral input channel (M̂−(
◦
K),K; V̂K) of the coupling σ̂

(and, hence, of σ̂12) corresponding, by Theorem 6.9 (part (a)), to the extension
�+0 (eit ) ∈ U+r of form (6.8) and generating, by Definition 6.13, the defect
function ϕ+(ζ ). It corresponds to the largest internal coshift Ṽ

T̂
∈ Ṽ

T̂
of σ̂

and, hence, Ṽ ⊂ ṼT , whence the inclusion M̂−(
◦
F (1)) ⊂ M̂−(

◦
K) holds. By

Theorem 7.1 (part (b)) applied to the function θ12(e
it ) and the coupling σ̂12,

taking into account Remark 7.2, we obtain the factorization

θ12(e
it ) = θτ̂ (eit )θσ̂+12

(eit ) a.e.,

where

τ̂ := (M̂(
◦
K),F

(1),K; Ûτ̂ , V̂F(1) , V̂K), Ûτ̂ := Û×|
M̂(
◦
K)
,
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and σ̂+12 is the coupling of type (6.10), that is,

σ̂+12 := (Ĥ,K,G; Û×, V̂K, V̂G).

Moreover, ω(eit ) := θτ̂ (e
it ) is the boundary value function of some ∗-inner

operator function ω(ζ ) ∈ S[K,F(1)] and, by Definition 6.13, θσ̂+12
(eit ) =

ϕ+(eit ).
Conversely, let representation (7.3) be valid. Consequently, θ12(e

it ) ∈
L∞+ [G,F(1)]. In view of (6.9),

θ12(e
it ) = α(eit )�(eit ) a.e., (7.7)

where α(eit ) = ω(eit )ω+0 (eit ) ∈ CM[G,F(1)] is a coisometric operator
function satisfying the condition

Ranα∗ ⊂ Ran(ω+0 )
∗ ⊂ �L2(G). (7.8)

By Theorem 4.2 (part(b)), �(eit ) ∈ Ur , whence, in view of θ12(e
it ) ∈

L∞+ [G,F(1)], �(eit ) ∈ U+r
(c) The proof of part (c) does not differ in principal from the proof of part (b) if we

replace the function ϕ+(ζ ) by the function γ+(ζ ), the subspace �L2(G) by the
subspace Kerθ , and representation (4.2) by representation (4.4).

(d) As was shown in the proof of Theorem 4.2 (part (d)), an extension�(eit ) ∈ Ur
of form (3.15) is isometric iff the equality Ranω∗ = �L2(G) holds, where
ω(eit ) is a coisometric function from representation (4.2). By part (b) of the
present theorem, for �(eit ) ∈ U+r of form (3.15) the function θ12(e

it ) admits
representation (7.7), where α(eit ) := ω(eit )ω+0 (eit ) a.e., ω(ζ ) ∈ S[K,F(1)] is a
∗-inner function, ω+0 (eit ) is a coisometric operator function from equality (6.9).
Hence, inclusions (7.8) are valid. Thus, �(eit ) is isometric iff

Ranα∗ = Ran(ω+0 )
∗ = �L2(G).

In view of (6.9), these equalities are equivalent to the conditions

Ranω∗ = ϕ∗+L2(K) = �L2(G).

Consequently, �(eit ) is isometric iff condition (7.5) is satisfied and ω(ζ ) is
two-sided inner functions.

As was shown in Theorem 4.2 (part (d)), an isometric extension �(eit ) ∈
Ur is unitary iff θ(eit ) is a coisometric function and, in this case, �L2(G) =
Kerθ , �(eit ) ∈ Ucr , θ12(e

it ) = ω(eit ) a.e., and Ranω∗ = Kerθ . In view of
ϕ∗+L2(K) = Kerθ , from parts (b) and (c) we obtain that ϕ+(ζ ) = γ+(ζ ), ζ ∈ D.
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Since the defect function ϕ+(ζ ) is ∗-inner in this case, we see that (7.5) is
equivalent to (7.6).

Similarly, the dual assertion can be proved. ��

Remark 7.5 Note that constancy of ρ�(eit ) (ρ�(eit )) almost everywhere is a
necessary condition for the existence of an isometric (coisometric) extensions
�(eit ) ∈ U+r (θ) (�(eit ) ∈ L+r (θ)) (see Theorem 4.2 (part (d))). But it is not
sufficient for this, since the existence of such an extension is obviously equivalent
to the validity of the equality

ϕ∗+(eit )ϕ+(eit ) = �2(eit ) a.e. (ψ+(eit )ψ∗+(eit ) = �2(eit ) a.e.),

what can be untruly under such a condition (in this regard see [13], Remark 8.46).

7.2 Refined Comparison Relations on the Sets U+
r (θ)

and L+
r (θ)

Theorem 6.12 gives us a possibility to introduce a stronger comparison relation on
U+r (L+r ) than the relation induced on it by the comparison relation ≺ on Ur (Lr ).
As agreed at the beginning of Sect. 6.3, we identify extensions from U+r (L+r ) of
form (3.15) that differ by a left (right) constant unitary factor at the block θ12(e

it )

(θ21(e
it )).

Definition 7.6 Let θ(eit ) ∈ CM[G,F] and σ be a minimal unitary coupling of
form (2.1) such that θσ (eit ) = θ(eit ). Let �j(eit ) ∈ U+r (θ)(�j (e

it ) ∈ L+r (θ)), j =
1, 2, be two extensions of form (5.1) and Ṽj ∈ [M−(

◦
F(j))](Vj ∈ [M+(

◦
G(j))]), j =

1, 2, be the corresponding two internal unilateral coshifts (shifts) of the coupling
σ (see Theorem 6.12). We will write �1(e

it ) ≺≺ �2(e
it ) (�1(e

it ) ≺≺ �2(e
it )) if

Ṽ1 ⊂ Ṽ2 (V1 ⊂ V2), and call the relation ≺≺ the refined comparison relation on
U+r (θ) (L+r (θ)).

Clearly, this definition does not depend on the choice of a minimal unitary
coupling σ such that θσ (eit ) = θ(eit ).

Since ṼT (VT ), where T := Tσ , is a partially ordered set, then Definition 7.6
turns the U+r (L+r ) into a partially ordered set too and the sets ṼT (VT ) and U+r
(L+r ) become isomorphic to each other. Since ṼT (VT ) is the largest coshift (shift) in
ṼT (VT ), then, in view of Definitions 6.13 and 7.6, �+0 (eit ) (�+0 (eit ) is the largest
extension in U+r (L+r ) in the refined sense. Similarly, by Definitions 6.15 and 7.6,
�+c0(eit ) (�+c0(eit )) is the largest extension in U+cr (L+cr ) in the same sense.

The introduced so refined comparison relation≺≺ on U+r (L+r ) is indeed stronger
than the relation induced on it by the comparison relation≺ on Ur (Lr ). Really, from
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the inclusion

M−(
◦
F(1)) ⊂M−(

◦
F(2)) (M+(

◦
G
(1)) ⊂M+(

◦
G
(2)))

the inclusion

M(
◦
F(1)) ⊂ M(

◦
F(2)) (M(

◦
G
(1)) ⊂ M(

◦
G
(2)))

follows, but the converse is not always true.

Theorem 7.7 Let θ(eit ) ∈ CM[G,F] and �j(eit ) ∈ U+r (θ) (�j (e
it ) ∈ L+r (θ)),

j = 1, 2, be its extensions of form (5.1). Let

θ
(j)

12 (e
it ) = ωj (eit )ϕ+(eit ) a.e. (θ

(j)

21 (e
it ) = ψ+(eit )λj (eit ) a.e.), j = 1, 2,

(7.9)

where ωj (ζ ) ∈ S[K,F(j)](λj (ζ ) ∈ S[G(j),K∗]), j = 1, 2, are ∗-inner (inner)
operator functions corresponding, by Theorem 7.4 (part (b)), to �j(eit ) (�j (e

it )).
The following statements are equivalent:

(a) �1(e
it ) ≺≺ �2(e

it ) (�1(e
it ) ≺≺ �2(e

it ));

(b) ω1(ζ )
...ω2(ζ )(on the right)(λ1(ζ )

...λ2(ζ )(on the left)).

Proof As usual, we prove the theorem only for regular upward extensions from
U+r .

As was shown in the proof of Theorem 7.4 (part (b)), ωj (eit ) := θτ̂j (e
it ) (j =

1, 2), where

τ̂j := (M̂(
◦
K),F

(j),K; Ûτ̂j , V̂F(j) , V̂K) (j = 1, 2), Ûτ̂1 = Ûτ̂2 := Û×|M̂(
◦
K)
,

Û× ∈ [F̂] is the unitary operator of the coupling σ̂ of form (2.11), V̂F(j) (j = 1, 2)

and V̂K are the embedding isometries from the internal unilateral input channels
corresponding, by Theorem 6.9 (part (a)), to the extensions �j(eit ) (j = 1, 2)
and �+0 (eit ), respectively. By Definition 7.6, the statement (a) is equivalent to the
validity of the inclusions

M̂−(
◦
F(1)) ⊂ M̂−(

◦
F(2)) ⊂ M̂−(

◦
K). (7.10)

Applying Theorem 7.1 to the function ω1(e
it ), we see that (7.10) is equivalent

to the existence of the factorization ω1(ζ ) = ω12(ζ )ω2(ζ ), ζ ∈ D, where
ω12(ζ ) ∈ S[F(2),F(1)] is also ∗-inner function. Thus, the statements (a) and (b) are
equivalent. ��
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For any function θ(eit ) ∈ CM[G,F] we will denote by J +∗ (θ) (J +(θ)) or
simply J +∗ (J +) the set of ∗-inner (inner) operator functions ω(ζ ) ∈ S[K,F(1)]
(λ(ζ ) ∈ S[G(1),K∗]) identifying them up to a left (right) constant unitary factor.
By Theorem 7.7, we establish one more isomorphism between the set U+r (θ)
(�+r (θ)), partially ordered by the relation ≺≺, and the set J +∗ (θ) (J +(θ), partially
ordered by the right (left) divisibility relation. It is obvious that the largest extension
�+0 (eit ) ∈ U+r (θ) (�+0 (eit ) ∈ L+r (θ)) corresponds to the greatest common right
(left) divisor α(ζ ) ≡ IK(β(ζ ) ≡ IK∗ ) of all function from J +∗ (θ) (J +(θ)) within
the class of ∗-inner (inner) operator functions.

In fact, we can say more about the pairwise isomorphic partially ordered sets ṼT
(VT ), J +∗ (θ) (J +(θ)), and U+r (θ) (L+r (θ)). Recall that a partially ordered set X is
called a complete lattice if for any subset Y of the set X there exist infY and supY .

Lemma 7.8 Let σ be a minimal unitary coupling of form (2.1) and T := Tσ . The
partially ordered set ṼT (VT ) is a complete lattice.

Proof It suffices to prove the lemma for the set VT . If VT ∈ [M+(
◦
K∗)], then, by the

definition of the partial order on VT (see Sect. 6.1) and Corollary 6.2, the partially
ordered set VT is isomorphic to the partially ordered (by inclusion) set LatVT of

subspaces of the space M+(
◦
K∗) that are invariant for the shift VT . The set LatVT is

a complete lattice, since for any nonempty set {Lγ : γ ∈ �} ⊂ LatVT there exist

inf
γ∈�Lγ (=

⋂
γ∈�

Lγ ), sup
γ∈�

Lγ (= span
γ∈�

Lγ ).

��

Corollary 7.9 Let θ(eit ) belong to CM[G,F]. The sets J +∗ (θ) (J +(θ)) and
U+r (θ) (L+r (θ)) are isomorphic complete lattices. Thus, for any subset {ωγ (ζ ) :
γ ∈ �} ⊂ J +∗ (θ) ({λγ (ζ ) : γ ∈ �} ⊂ J +(θ)) there exists the greatest common
right (left) divisor and the least common left (right) multiple within the set J +∗ (θ)
(J +(θ)).

Similarly, one can introduce the set of ∗-inner (inner) operator functions
ω(ζ ) ∈ S[N,F(1)](λ(ζ ) ∈ S[G(1),N∗]) from representation (7.4) for the block
θ12(e

it )(θ21(e
it )) of �(eit ) ∈ U+cr (θ)(�(eit ) ∈ L+cr (θ)) and partially order it by

divisibility on the right (on the left). On the other hand, taking into account the
inclusion U+cr (θ) ⊂ U+r (θ) (L+cr (θ) ⊂ L+r (θ)), one can consider the corresponding
subset of J +∗ (θ) (J +(θ)) partially ordered by divisibility on the right (on the left)
as well. Thirdly, one can partially order by divisibility on the right (on the left) the
set of ∗-inner (inner) operator function θ12(ζ ) ∈ S[G,F(1)](θ21(ζ ) ∈ S[G(1),F])
satisfying the condition Ranθ∗12 ⊂ Kerθ (Ranθ21 ⊂ Kerθ∗). It is easy to understand
that all three approaches lead to the three complete lattices of parameters that are
also isomorphic to the complete lattices W̃T (WT ) and U+cr (θ) (L+cr (θ)).
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7.3 Defect Functions as the Largest Minorants

Theorem 7.4 (part (b)) enables us to establish a connection between the defect (∗-
defect) function ϕ+(ζ ) ∈ S[G,K](ψ+(ζ ) ∈ S[K∗,F]) in the Schur class for a
function θ(eit ) ∈ CM[G,F] and the largest minorant (∗-minorant) in this class for
its defect function �(eit ) ∈ CM[G] (�(eit ) ∈ CM[F]) in the class of contractive
measurable operator functions (see, e.g. [29], Chapter V, Subsection 4.2; [14],
Section 4; [13], Subsection 8.8).

Definition 7.10 Let ν(eit ) ∈ CM[G] be a function that is nonnegative at almost
all t . A Schur function α+(ζ ) ∈ S[G,C](β+(ζ ) ∈ S[C∗,G]) is called the largest
holomorphic minorant (∗-minorant) for the function ν(eit ) if

(a)

α∗+(eit )α+(eit ) ≤ ν2(eit ) a.e. (β+(eit )β∗+(eit ) ≤ ν2(eit ) a.e.); (7.11)

(b) for any function τ (ζ ) ∈ S[G,M] (υ(ζ ) ∈ S[M∗,G]) such that

τ ∗(eit )τ (eit ) ≤ ν2(eit ) a.e. (υ(eit )υ∗(eit ) ≤ ν2(eit ) a.e.) (7.12)

the inequality

τ ∗(eit )τ (eit ) ≤ α∗+(eit )α+(eit ) a.e. (υ(eit )υ∗(eit ) ≤ β+(eit )β∗+(eit ) a.e.)
(7.13)

holds.

Theorem 7.11 ([13, 29]) Let ν(eit ) ∈ CM[G] be nonnegative at almost all t .
There exists the largest minorant (∗-minorant)α+(ζ ) ∈ S[G,C](β+(ζ ) ∈ S[C∗,G])
for the function ν(eit ), α+(ζ )(β+(ζ )) is outer (∗-outer), and it is unique up to a left
(right) constant unitary factor.

Moreover, inequality (7.11) turns into equality almost everywhere iff the condi-
tion

∞⋂
n=0

(U×G)
nνL2+(G) = {0} (

∞⋂
n=0

(U×G)
−nνL2−(G) = {0})

is satisfied.

We need the following well-known fact (see, e.g., [29], Chapter V, §4, Theorem
4.1; [13], Theorem 8.30).
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Lemma 7.12 Let μ(ζ ) ∈ S[G,F] and "(ζ ) ∈ S[G,M](τ (ζ ) ∈ S[L,F]) be two
outer (∗-outer) operator function such that the equality

μ∗(eit )μ(eit ) = "∗(eit )"(eit ) a.e. (μ(eit )μ∗(eit ) = τ (eit )τ ∗(eit ) a.e.)

holds. Then the functionsμ(ζ ) and "(ζ ) (τ (ζ )) coincide up to a left (right) constant
unitary factor.

The following assertion follows directly from the proof of Theorem 8.54 in [13].

Lemma 7.13 Let ν(eit ) ∈ CM[G] be nonnegative almost everywhere and α+(ζ ) ∈
S[G,C](β+(ζ ) ∈ S[C∗,G]) be the largest minorant (∗-minorant) for the function
ν(eit ). Let σν := (H,G,G;U,V (i)

G , V
(o)
G ) be a minimal unitary coupling such that

θσν (e
it ) = ν(eit ). Then α+(eit ) = θσα+ (e

it ) (β+(eit ) = θσβ+ (e
it )), where the

coupling

σα+ := (H,C,G;U,VC, V (o)
G ) (σβ+ := (H,G,C∗;U,V (i)G , VC∗)) (7.14)

is generated by the bilateral channel (M(
◦
C),C;VC) ((M(

◦
C∗),C∗;VC∗)) of the

coupling σν , the subspace
◦
C (
◦
C∗) is determined by the Wold decomposition

P
M(
◦
Gi )
M+(

◦
Go) = M+(

◦
C)⊕N+0 (P

M(
◦
Go)

M−(
◦
Gi ) = M−(

◦
C∗)⊕N−0 ), (7.15)

◦
Gi := RanV (i)G ,

◦
Go:= RanV (o)

G ,

N+0 :=
∞⋂
n=0

UnP
M(
◦
Gi )
M+(

◦
Go) (N−o :=

∞⋂
n=0

U−nP
M(
◦
Go)

M−(
◦
Gi )).

The next theorem is a generalization of the result obtained in [23] and [14] for
matrix- and operator-valued Schur functions θ(ζ ) ∈ S[G,F].
Theorem 7.14 Let θ(eit ) belong to CM[G,F]. The defect (∗-defect) function
ϕ+(ζ ) ∈ S[G,K] (ψ+(ζ ) ∈ S[K∗,F]) of θ(eit ) in the Schur class is the largest
minorant (∗-minorant) for its defect (∗-defect) function�(eit ) ∈ CM[G](�(eit ) ∈
CM[F]) in the class of contractive measurable operator function.

Proof We consider only the case of the defect function ϕ+(ζ ).
Let α+(ζ ) ∈ S[G,C] be the largest minorant for the function �(eit ) ∈ CM[G]

and σ� := (H,G,G;U,V (i)G , V
(o)
G ) be a minimal unitary coupling such that

θσ�(e
it ) = �(eit ). Let σα+ be unitary coupling of type (7.14) generated, as in

Lemma 7.13, by the channel (M(
◦
C),C;VC) of σ� that is determined by the Wold

decomposition (7.15). By the same Lemma 7.13, θσα+ (e
it ) = α+(eit ).
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Consider the coupling

σω := (M(
◦
Gi ),C,G;Uω, VC, V (i)

G ), Uω := U |
M(
◦
Gi )
,

and the function ω(eit ) := θσω(eit ) ∈ CM[G,C]. In view of the inclusion M(
◦
C) ⊂

M(
◦
Gi ) and Definition 2.15, we obtain σα+ = σωσ� and, hence,

α+(eit ) = ω(eit )�(eit ) a.e. (7.16)

By Theorem 5.2, the function ω(eit ) is coisometric. From equality (7.15) it follows
that

M(
◦
C) ⊂ P

M(
◦
Gi )
M(
◦
Go) (7.17)

(see, e.g., [13], Lemma 8.32). Taking into account (2.4), we can rewrite (7.17) in the
form

S∗σωM(
◦
Gi ) ⊂ Sσ�M(

◦
Go),

which, by virtue of (2.5), is equivalent to

Ranω∗ ⊂ �L2(G). (7.18)

According to Theorem 4.2 (part (b)), from (7.16) and (7.18) it follows that

�α+(e
it ) :=

[
α+(eit )
θ(eit )

]
∈ Ur (θ).

In view of α+(eit ) ∈ L∞+ [G,C], we see that �α+(e
it ) ∈ U+r (θ). Consequently,

dy Definition 7.6, �α+(e
it ) ≺≺ �+0 (eit ), where �+0 (eit ) is the largest extension

in U+r (θ) of form (6.8). From this we obtain that �α+(e
it ) ≺ �+0 (eit ) and, by

Theorem 5.5, the inequality

α∗+(eit )α+(eit ) ≤ ϕ∗+(eit )ϕ+(eit ) a.e. (7.19)

holds.
On the other hand, the contractivity of �+0 (eit ) is equivalent to the inequality

ϕ∗+(eit )ϕ+(eit ) ≤ �2(eit ) a.e.,
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whence, by Definition 7.10, the inequality

ϕ∗+(eit )ϕ+(eit ) ≤ α∗+(eit )α+(eit ) a.e. (7.20)

follows. From (7.19) and (7.20), taking into account Lemma 7.12, we infer that
ϕ+(ζ ) and α+(ζ ) coincide up to a left constant unitary factor. ��

Taking into account Theorem 7.4 (part (d)) and Theorem 7.11, from Theo-
rem 7.14 we obtain

Corollary 7.15 Let θ(eit ) belong to CM[G]. There exists an isometric
(coisometric) extension �(eit ) ∈ U+r (θ) (�(eit ) ∈ L+r (θ) iff the condition

∞⋂
n=0

(U×G)
n�L2+(G) = {0} (

∞⋂
n=0

(U×F )
−n�L2−(F) = {0})

is satisfied.

Definition 7.10 and Theorem 7.14 enable us to refine the fact from Sect. 7.2 that
�+0 (eit ) (�

+
0 (e

it )) is the largest extension in U+r (θ) (L+r (θ)).

Remark 7.16 Considering the set U+(θ) (L+(θ)) of all contractive extension
�(eit ) (�(eit )) of form (3.15) with θ12(e

it ) ∈ L∞+ [G,F(1)] (θ21(e
it ) ∈

L∞+ [G(1),F]), we can spread, as was already noted in Remark 5.17, the comparison
relation≺ on it using condition (b) from Theorem 5.5. Thus, the set U+(θ) (L+(θ))
becomes partially preordered and [�+0 ] ([�+0 ]) is the greatest element in the quotient
set U+/ ∼ (L+/ ∼). Note also that for �j(eit ) ∈ U+(θ) (�j (e

it ) ∈ L+(θ)),
j = 1, 2, of form (5.1)

�1(e
it ) ∼ �2(e

it ) (�1(e
it ) ∼ �2(e

it ))

iff the function θ
(j)
12 (ζ ) ∈ S[G,F(1)] (θ(j)21 (ζ ) ∈ S[G(1),F]), j = 1, 2, have

the common outer (∗-outer) factor in their canonical (∗-canonical) inner-outer
factorizations up to a left (right) constant unitary factor (see, e.g., [29], Chapter
V, Subsection 4.3; [13], Corollaries 8.41 and 8.44).

Theorem 7.11 gives us a possibility to strengthen Theorem 5.14 in the case when
ϕ+(ζ ) ≡ 0 or ψ+(ζ ) ≡ 0, ζ ∈ D.

Theorem 7.17 Let θ(eit ) belong to CM[G]. If F �= {0} (G �= {0}) and there is
only a trivial extension �(eit ) := θ(eit ) (�(eit ) := θ(eit )) in U+r (θ) (L+r (θ)), then
‖θ‖L∞[G,F] = 1.

Proof It is obvious that in both cases F �= {0} and G �= {0}. It suffices to consider
only the case when, according to Theorem 7.4 (part (a)), ϕ+(ζ ) ≡ 0 ∈ [G,K],
where K = {0}.
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Suppose that ‖θ‖L∞[G,F] = a < 1. Then the inequality

�2(eit ) ≥ b2IG > 0,

where b := √1− a2 > 0, holds almost everywhere. Then, by Definition 7.10 and
Theorem 7.14, setting τ (ζ ) := bIG ∈ S[G], ν(eit ) := �(eit ) ∈ CM[G] in (7.12),
from (7.13) we obtain that ϕ∗+(eit )ϕ+(eit ) ≥ b2IG > 0 is valid almost everywhere.
Thus, ϕ(ζ ) �≡ 0, ζ ∈ D, which contradicts the assumption. ��

8 Bidirectional Extensions Generated by Extensions from
U+

r (θ) and L+
r (θ)

We will denote by K+r (θ) or simply K+r the set of extensions �(eit ) ∈ Kr (θ)

of form (3.32) such that the corresponding unidirectional extensions �(eit ) and
�(eit ) of form (3.15) belong to the sets U+r (θ) and L+r (θ), respectively. In other
words, �(eit ) ∈ K+r (θ) iff θ12(e

it ) ∈ L∞+ [G,F(1)] and θ21(e
it ) ∈ L∞+ [G(1),F]. By

K+cr (θ) or simply K+cr we will denote the subset of K+r (θ) consisting of completely
regular extensions. The subset of extensions �(eit ) ∈ K+r (θ) such that θ11(e

it ) ∈
L∞+ [G(1),F(1)] will be denoted by K++r (θ) or simply K++r . It is not necessary to
introduce the notation K++cr (θ), since the subset of completely regular extensions
�(eit ) ∈ K++r (θ) coincides with K+cr (θ) in view of θ11(e

it ) ≡ 0 ∈ [G(1),F(1)] (see
Remark 3.10).

8.1 Description of the Set K+
r (θ)

Let θ(eit ) ∈ CM[G,F] and�+0 (eit ) ∈ CM[G,K⊕F], �+0 (eit ) ∈ CM[K∗ ⊕G,F]
be its largest unidirectional extensions of form (6.8) in the sets U+r (θ) and L+r (θ),
respectively. Denote by

�+0 (e
it ) :=

[
χ(eit ) ϕ+(eit )
ψ+(eit ) θ(eit )

]
∈ CM[K∗ ⊕G,K⊕ F] (8.1)

the regular up-leftward extension from K+r (θ) corresponding to �+0 (eit ) and
�+0 (eit ). The function χ(eit ) ∈ CM[K∗,K] is determined uniquely by the defect
functions ϕ+(ζ ) ∈ S[G,K] and ψ+(ζ ) ∈ S[K∗,F] of the function θ(eit ) (see
Remark 3.12). Since ϕ+(ζ ) and ψ+(ζ ) are considered up to left and right constant
unitary factors, respectively (see Sect. 6.3), the function χ(eit ) is also viewed only
up to constant unitary factors on both sides.
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If σ is a minimal unitary coupling of form (2.1), then, by Theorem 3.9 and
Definition 3.11, χ(eit ) = θσ+11

(eit ),where σ+11 is the coupling of type (3.25), namely,

σ+11 := (H,K,K∗;U,VK, VK∗). (8.2)

Notice that the coupling σ+11, unlike the couplings

σ+12 := (U,K,G;U,VK, VG), σ+21 := (H,F,K∗;U,VF, VK∗),

need not to be orthogonal and, hence, the condition χ(eit ) ∈ L∞+ [K∗,K] is not
necessarily satisfied (see [11], Theorem 6.2).

The following theorem is a direct corollary of Theorem 6.9.

Theorem 8.1 Let θ(eit ) ∈ CM[G,F] and σ be a minimal unitary coupling of form
(2.1) such that θσ (eit ) = θ(eit ).
(a) There exists a bijective correspondence between pairs

{(M−(
◦
F(1)),F(1);VF(1)), (M+(

◦
G
(1)),G(1);VG(1))} (8.3)

of internal unilateral input and output channels of the coupling σ and exten-
sions�(eit ) ∈ K+r (θ) of form (3.32). This correspondence is established by the
equalities

θ12(e
it ) = θσ12(e

it ), θ21(e
it ) = θσ21(e

it ), θ11(e
it ) = θσ11(e

it ),

where σ12, σ21, σ11 are unitary couplings of form (3.6), (3.11), (3.25), respec-
tively.

(b) An extension �(eit ) ∈ K+r (θ) is completely regular iff the corresponding pair
of internal unilateral channels additionally satisfies the conditions

M−(
◦
F(1)) ⊂ M−(

◦
G), M+(

◦
G
(1)) ⊂M+(

◦
F).

Taking into account the obvious interrelations between unilateral input (output)
channels of σ and unilateral coshifts (shifts) contained in U (see Sect. 6.1), we can
reformulate Theorem 8.1 in terms of unilateral coshifts (shifts).

Theorem 8.2 Suppose that the conditions of the preceding theorem are satisfied
and T := Tσ .

(a) There exists a bijective correspondence between pairs {Ṽ , V } ∈ ṼT × VT of
internal unilateral coshifts and shifts of σ and extensions �(eit ) ∈ K+r (θ)
of form (3.32) if the pairs of blocks of the upper row and the left column are
considered up to left and right common constant unitary factors, respectively.
This correspondence is established as in Theorem 8.1.
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(b) An extension �(eit ) ∈ K+r (θ) is completely regular iff the corresponding pair
{Ṽ , V } belongs to W̃T ×WT .

Definition 8.3 Let θ(eit ) ∈ CM[G,F], σ be a minimal unitary coupling of form
(2.1) such that θσ (eit ) = θ(eit ), and T := Tσ . If �(eit ) ∈ K+r (θ) of form (3.32)
corresponds to a pair of form (8.3) consisting of internal unilateral input and output
channels of the coupling σ (in other words, corresponds to a pair of internal coshift
Ṽ := (U∗|

M−(
◦
F(1))

)∗ ∈ ṼT and shift V := U |
M+(

◦
G(1))

∈ VT ), then the function

θ11(e
it ) ∈ CM[G(1),F(1)] will be called the scattering suboperator generated by

the internal unilateral channels (8.3) of the coupling σ . In particular, the function
χ(eit ) ∈ CM[K∗,K] from the representation (8.1) of �+0 (eit ) generated by the pair

(M−(
◦
K),K;VK), (M+(

◦
K∗),K∗;VK∗)

of the principal internal unilateral channels of σ will be called the suboperator of
internal scattering of the coupling σ .

In the case of the completely regular extension �(eit ) ∈ K+cr (θ) of form (3.32),
the function θ11(e

it ) vanishes identically. This fact can be interpreted as the absence
of the scattering generated by the corresponding pair of internal unilateral channels
of form (8.3).

As it follows from Theorem 4.5 (part (b)), the function χ(eit ) admits the
representation

χ(eit ) = −ω+0 (eit )θ∗(eit )λ+0 (eit ), (8.4)

where ω+0 (eit ) ∈ CM[G,K] and λ+0 (eit ) ∈ CM[K∗,F] are coisometric and
isometric operator functions, respectively, from representation (6.9).

From Theorem 7.4 we obtain

Theorem 8.4 Let θ(eit ) ∈ CM[G,F] and ϕ+(ζ ) ∈ S[G,K], ψ+(ζ ) ∈ S[K∗,F] be
its defect and �-defect functions in the Schur class, γ+(ζ ) ∈ S[G,N] and δ+(ζ ) ∈
S[N∗,F] be its defect and �-defect functions in the classes of �-inner and inner
operator functions, respectively.

(a) A nontrivial extension �(eit ) ∈ K+r (θ) exists iff ϕ+(ζ ) �≡ 0 or ψ+(ζ ) �≡ 0.
Let�(eit ) ∈ CM[G(1)⊕G,F(1)⊕F] be an operator function of form (3.32).

(b) �(eit ) ∈ K+r (θ) iff there exists a �-inner operator function ω(ζ ) ∈ S[K,F(1)]
and an inner operator function λ(ζ ) ∈ S[G(1),K∗] such that the functions
θ12(e

it ), θ21(e
it ) and θ11(e

it ) admit the representations

θ12(e
it ) = ω(eit )ϕ+(eit ), θ21(e

it ) = ψ+(eit )λ(eit ), θ11(e
it ) = ω(eit )χ(eit )λ(eit )

(8.5)

almost everywhere.
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(c) �(eit ) ∈ K+cr (θ) iff there exist a �-inner operator function ω(ζ ) ∈ S[N,F(1)]
and an inner operator function λ(ζ ) ∈ S[G(1),N∗] such that the function
θ12(e

it ) and θ21(e
it ) admit the representations

θ12(e
it ) = ω(eit )γ+(eit ), θ21(e

it ) = δ+(eit )λ(eit )

almost everywhere and θ11(e
it ) ≡ 0 ∈ [G(1),F(1)].

(d) There exists an isometric (coisometric) extension �(eit ) ∈ K+r (θ) iff the
condition

ϕ∗+L2(K) = �L2(G) (ψ+L2(K∗) = �L2(F)) (8.6)

is satisfied. If equality (8.6) is valid, then all isometric (coisometric) extensions
are given by formulas (3.32) and (8.5), where ω(ζ ) (λ(ζ )) is an arbitrary two-
sided inner operator function.

A unitary extension �(eit ) ∈ K+r (θ) exists iff both dual equalities (8.6) are
valid. In this case, all such extensions are given by the same formulas (3.32)
and (8.5), where both functions ω(ζ ) and λ(ζ ) are arbitrary two-sided inner
operator functions.

Proof It is necessary to prove only the third equality (8.5).
From the first two equalities (8.5) and equalities (6.9) we obtain

θ12(e
it ) = α(eit )�(eit ) a.e., θ21(e

it ) = �(eit )β(eit ) a.e.,

where α(eit ) ∈ CM[G,F(1)] and β(eit ) ∈ CM[G(1),F] are coisometric and
isometric functions, respectively, that are defined by the equalities

α(eit ) := ω(eit )ω+0 (eit ), β(eit ) := λ+0 (eit )λ(eit ).

Then, by Theorem 4.5 (part (b)), we obtain θ11(e
it ) = −α(eit )θ∗(eit )β(eit ),

whence, taking into account (8.4), the third equality (8.5) follows. ��

Remark 8.5 Recall that the condition (8.6) is equivalent to the condition

∞⋂
n=0

(U×G)
n�L2+(G) = {0} (

∞⋂
n=0

(U×F )
−n�L2−(F) = {0})

(see Corollary 7.15).

Remark 8.6 As it was already done for Kr (θ) in Remark 4.6, we can also
reformulate the part (b) of Theorem 8.4 in the following way.
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The general form of �(eit ) ∈ K+r (θ) for any function θ(eit ) ∈ CM[G,F] is
given by the formula

�(eit ) = A(eit )�+0 (eit )B(eit ),

where �+0 (eit ) ∈ CM[K∗ ⊕ G,K ⊕ F] is the extension from K+r (θ) of form (8.1),
A(eit ) ∈ L∞+ [K ⊕ F,F(1) ⊕ F], B(eit ) ∈ L∞+ [G(1) ⊕ G,K∗ ⊕ G] are operator
functions of form (4.18), ω(ζ ) ∈ S[K,F(1)] and λ(ζ ) ∈ S[G(1),K∗] are arbitrary
�-inner and inner operator functions, respectively.

8.2 Refined Comparison Relation on the Set K+
r (θ)

Using the refined comparison relations ≺≺ on U+r (θ) and L+r (θ), we can introduce
the relation≺≺ onK+r (θ) as well. As before, we identify extensions�(eit ) ∈ K+r (θ)
of form (3.32) for which the pairs of blocks of the upper row and the left column
differ by left and right common constant unitary factors, respectively.

Definition 8.7 Let θ(eit ) ∈ CM[G,F] and �j(eit ) ∈ K+r (θ), j = 1, 2, be two
its extensions of form (5.10). Let �j(eit ) ∈ U+r (θ),�j (e

it ) ∈ L+r (θ), j = 1, 2,
be two pairs of extensions of form (5.11) and (5.12), respectively, that correspond
to �j(eit ), j = 1, 2. We will write �1(e

it ) ≺≺ �2(e
it ) if �1(e

it ) ≺≺ �2(e
it ) and

�1(e
it ) ≺≺ �2(e

it ). The relation ≺≺ will be called the refined comparison relation
on K+r (θ).

Let σ be a minimal unitary coupling of form (2.1), θ(eit ) := θσ (e
it ), and T :=

Tσ . If �j (eit ) ∈ K+r (θ), j = 1, 2, and {Ṽj , Vj } ∈ ṼT × VT , j = 1, 2, are the two
corresponding pairs of internal unilateral coshifts and shifts of σ (see Theorem 8.2),
then �1(e

it ) ≺≺ �2(e
it ) iff Ṽ1 ⊂ Ṽ2 and V1 ⊂ V2 (see Definitions 7.6 and 8.7).

Note that the latter does not depend on the choice of a minimal coupling σ such that
θσ (e

it ) = θ(eit ). Thus, introducing the partial order on ṼT × VT in a natural way,
we obtain that the partially ordered sets K+r (θ) and ṼT ×VT are isomorphic to each
other.

As it follows from the arguments similar to those given in Sect. 7.2, the relation
≺≺ on K+r is stronger than the relation induced on it by the relation ≺ on Kr .

Since �+0 (eit ) ∈ U+r and �+0 (eit ) ∈ L+r of form (6.8) are the largest extensions
in the sets U+r (θ) and L+r (θ), respectively, then, by Definition 8.7, �+0 (eit ) ∈ K+r
of form (8.1) is the largest extension in the set K+r . Similarly, since �+c0(eit ) ∈ U+cr
and �+c0(eit ) ∈ L+cr of form (6.12) are the largest extensions in the sets U+cr and L+cr ,
respectively, then �+c0(eit ) ∈ K+cr , where

�+c0(e
it ) :=

[
0 γ+(eit )

δ+(eit ) θ(eit )

]
∈ CM[N∗ ⊕G,N⊕ F],

is the largest extension in the set K+cr .
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Using the sets J +∗ (θ) and J +(θ), introduced in Sect. 7.2 and partially ordered

by the relation
... of divisibility on the right and on the left, respectively, from

Theorem 7.7, Theorem 8.4 (part(b)) and Definition 8.7 we obtain

Theorem 8.8 Let θ(eit ) ∈ CM[G,F],�j (eit ) ∈ K+r (θ), j = 1, 2, be its
extensions of form (5.10) and

θ
(j)

12 (e
it ) = ωj (eit )ϕ+(eit ), θ

(j)

21 (e
it ) = ψ+(eit )λj (eit ),

θ
(j)
11 (e

it ) = ωj (eit )χ(eit )λj (eit ),

where ωj (ζ ) ∈ S[K,F(j)] and λj (ζ ) ∈ S[G(j),K∗], j = 1, 2, are the two pairs of
the �-inner and inner functions that, by Theorem 8.4 (part (b)), correspond to the
pair �j(eit ), j = 1, 2. The following statements are equivalent:

(a) �1(e
it ) ≺≺ �2(e

it );

(b) ω1(ζ )
... ω2(ζ ) ( on the right ) and λ1(ζ )

... λ2(ζ ) (on the left).

In this way we establish an isomorphism between the set K+r (θ), partially ordered
by the relation ≺≺, and the set J +∗ (θ) × J +(θ), partially ordered in a natural way
(as the Cartasian product), by the statement (b).

In the same way, as it was noted at the end of Sect. 7.2, we can remark that the
pairwise isomorphic partially ordered sets K+r , ṼT × VT and J +∗ (θ) × J +(θ) are
complete lattices.

Similarly, using the part (c) of Theorem 8.4 instead of the part (b), we could
introduce the refined comparison relation on the set K+cr (θ).

8.3 The Case of χ(eit) ∈ L∞
+ [K∗,K]

If the suboperator χ(eit ) ∈ CM[K∗,K] of internal scattering of the coupling from
(8.1) is the boundary value function of some Schur operator function χ(ζ ) ∈
S[K∗,K], then, obviously, K++r (θ) = K+r (θ). Hence, in this case, the required
description of K++r (θ) was already obtained in Theorem 8.4. We find conditions
on a function θ(eit ) ∈ CM[G,F] under which χ(eit ) ∈ L∞+ [K∗,K].
Theorem 8.9 Let θ(eit ) ∈ CM[G,F] and σ be a minimal unitary coupling of form
(2.1) such that θσ (eit ) = θ(eit ). Let χ(eit ) ∈ CM[K∗,K] be the suboperator of
internal scattering of the coupling σ . Then the functionχ(eit ) belongs toL∞+ [K∗,K]
iff any of the two following equivalent conditions

(a) θg belongs to �L2−(F) for any g ∈ �L2(G) such that �g ∈ L2−(G);
(b) θ∗f belongs to �L2+(G) for any f ∈ �L2(F) such that �f ∈ L2+(F)

is valid.
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Proof Consider the functional model σ̂ of a minimal unitary coupling of form
(2.11) described in Theorem 2.11. Let

σ̂+11 := (Ĥ,K,K∗; Û , V̂K, V̂K∗) (8.7)

be the coupling of type (8.2) generated by the largest internal unilateral input and

output channels (M̂−(
◦
K),K; V̂K) and (M̂+(

◦
K∗),K∗; V̂K∗), respectively. If T̂ ∈ [Ĥ

T̂
]

is the fundamental contraction of σ̂ and Ṽ
T̂
∈ [ĤṼ

T̂
] is the largest internal unilateral

coshift of σ̂ , then, by Theorem 6.7,

M̂−(
◦
K) = ĤṼ

T̂
= R̂ ◦

F
∩ R̂−◦

G
, (8.8)

where R̂ ◦
F
:= Ĥ � M̂( ◦F), R̂−◦

G
:= Ĥ � M̂+(

◦
G). Since Ĥ := L2(F)⊕�L2(G) and

M̂(
◦
F) = L2(F)⊕ {0}, we obtain R̂ ◦

F
= {0} ⊕�L2(G). Hence, in view of

M̂+(
◦
G) = {(θg,�g) : g ∈ L2+(G)},

from (8.8) we see that (0, g) ∈ M̂−(
◦
K) iff g ∈ �L2(G)��L2+(G), that is, for any

g1 ∈ L2+(G) the equality 〈g,�g1〉 = 0 holds. Thus,

M̂−(
◦
K) = {(0, g) : g ∈ �L2(G),�g ∈ L2−(G)}. (8.9)

In the dual way, considering the functional model σ̃ of a minimal unitary
coupling of form (2.13) described in Theorem 2.12 and the coupling

σ̃+11 := (Ĥ,K,K∗; Ũ , ṼK, ṼK∗)

of type (8.2), we obtain

M̃+(
◦
K∗) = {(f, 0) : f ∈ �L2(F),�f ∈ L2+(F)}. (8.10)

In view of the unitary equivalence of the coupling σ̂ and σ̃ , the couplings σ̂+11 and σ̃+11

are also unitarily equivalent. Consequently, M̂+(
◦
K∗) = W∗M̃+(

◦
K∗), where W ∈

L∞[L2(F) ⊕ L2(G)] is “multiplication” unitary operator by the operator function
W(eit ) ∈ L∞[F ⊕ G] of form (2.14) (see Theorem 2.13). Thus, from (2.14) and
(8.10) we infer that

M̂+(
◦
K∗) = {(�f,−θ∗f ) : f ∈ �L2(F),�f ∈ L2+(F)}. (8.11)
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Since χ(eit ) = θσ̂+11
(eit ), the condition χ(eit ) ∈ L∞+ [K∗,K] is equivalent to the

orthogonality of the coupling σ̂+11, that is, to the condition

M̂−(
◦
K) ⊥ M̂+(

◦
K∗) (8.12)

(see Theorem 2.33). The latter, in view of (8.9) and (8.11), is tantamount to the
validity of the equality 〈θ∗f, g〉 = 0 for any f ∈ �L2(F) and g ∈ �L2(G) such
that �f ∈ L2+(F) and �g ∈ L2−(G). Taking into account that θ∗f ∈ �L2(G)

for any f ∈ �L2(F), we see that (8.12) is valid iff θ∗f ∈ �L2+(G) for any f ∈
�L2(F) such that �f ∈ L2+(F), that is, (8.12) is equivalent to the condition (b).

Similarly, since 〈θ∗f, g〉 = 〈f, θg〉, we obtain that (8.12) is equivalent to the
condition (a). ��

In the general case, when the condition χ(eit ) ∈ L∞+ [K∗,K] is not necessarily
valid, maximal extensions in the set K++r (θ) with respect to the relation ≺≺ are
of particular interest. Denote by K++r,max(θ) or simply K++r,max the subset of K++r (θ)

consisting of all such extensions.

8.4 Description of the Set K++
r,max(θ)

Let θ(eit ) ∈ CM[G,F], σ be a minimal unitary coupling of form (2.1) such that
θσ (e

it ) = θ(eit ), and T := Tσ . Taking into account that the complete lattices
K+r (θ), ṼT × VT and J +∗ (θ) × J +(θ) are pairwise isomorphic (see Definition 8.7
and Theorem 8.8), we can study the subsets K++r (θ) and K++r,max(θ) using the

corresponding subsets of the sets ṼT × VT and J +∗ (θ)× J +(θ).
For the convenience of the further exposition, a pair {Ṽ , V } ∈ ṼT × VT will be

called orthogonal and this will be denoted by Ṽ ⊥ V if Ṽ ∈ [M−(
◦
F(1))], V ∈

[M+(
◦
G(1))] and M−(

◦
F(1)) ⊥ M+(

◦
G(1)).

The next theorem is a direct corollary of Theorems 2.33, 8.2, 8.4, 8.8, and
Definition 8.7.

Theorem 8.10 Let θ(eit ) ∈ CM[G,F], σ be a minimal unitary coupling of form
(2.1) such that θσ (eit ) = θ(eit ), and T := Tσ . Let �(eit ) ∈ K+r (θ) be extension
of form (3.32), {Ṽ , V } ∈ ṼT × VT be the corresponding, by Theorem 8.2 (part
(a)), pair of internal unilateral coshift and shift of the coupling σ , {ω(ζ ), λ(ζ )} ∈
J +∗ (θ)× J +(θ) be the corresponding, by Theorem 8.4 ( part (b)), pair of �-inner
and inner functions.

(a) The following statements are equivalent:

(1) �(eit ) belongs to K++r (θ);
(2) {Ṽ , V } is an orthogonal pair;
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(3) ω(ζ ) and λ(ζ ) satisfy the condition

ω(eit )χ(eit )λ(eit ) ∈ L∞+ [G(1),F(1)], (8.13)

(b) The following statements are equivalent:

(1) �(eit ) belongs to K++r,max(θ);

(2) {Ṽ , V } is a maximal pair in the subset of orthogonal pairs of the set ṼT ×
VT ;

(3) {ω(ζ ), λ(ζ )} is a maximal pair in the subset of the set J +∗ (θ)×J +(θ) that
consists of all pairs satisfying the condition (8.13).

Theorem 8.11 Let θ(eit ) ∈ CM[G,F], �(eit ) ∈ K++r (θ) be an extension of
form (3.32), and �(eit ) ∈ U+r (θ), �(eit ) ∈ L+r (θ) be the corresponding pair of
unidirectional extensions of form (3.15). The extension �(eit ) belongs to K++r,max(θ)

iff

[θ11(ζ ), θ12(ζ )] = ϕ+(ζ ;�), col[θ11(ζ ), θ21(ζ )] = ψ+(ζ ;�). (8.14)

Proof Since the bidirectional extension �(eit ) ∈ K++r (θ) can be simultaneously
considered as unidirectional extensions from U+r (�) and L+r (�), we infer that
�(eit ) ∈ K++r,max(θ) iff �(eit ) is simultaneously the largest extension in the sets
U+r (�) and L+r (�). The latter is equivalent to the simultaneous fulfillment of
conditions (8.14) (see Definition 6.13). ��

Corollary 8.12 Let �(eit ) ∈ K++r,max(θ) be an extension of form (3.32). Then the
functions

[θ11(ζ ), θ12(ζ )] ∈ S[G(1) ⊕G,F(1)], col[θ11(ζ ), θ21(ζ )] ∈ S[G(1),F(1) ⊕ F]

are outer and �-outer, respectively.

Proof The assertion follows from Theorems 6.14 and 8.11. ��

Now we consider in more detail the subset of maximal orthogonal pairs of the
set ṼT × VT . For convenience, we denote by

Ṽ ′0 := ṼT ; V ′0 := sup{V ∈ VT : Ṽ ′0 ⊥ V }, (8.15)

V ′′0 := VT ; Ṽ ′′0 := sup{Ṽ ∈ ṼT : Ṽ ⊥ V ′′0 }, (8.16)

Note that Ṽ ′0 ⊥ V ′0 and Ṽ ′′0 ⊥ V ′′0 , since, for any set {Lγ }γ∈� of subspaces of a
Hilbert space H and any subspace M of H, the condition Lγ ⊥M, γ ∈ � , implies
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the condition
∨
γ∈�

Lγ ⊥ M. It is obvious that the pairs {Ṽ ′0, V ′0} and {Ṽ ′′0 , V ′′0 } are

maximal in the subset of orthogonal pairs of the set ṼT × VT .

Lemma 8.13 Let σ be a minimal unitary coupling of form (2.1) and T := Tσ .

(a) If {Ṽ , V } ∈ ṼT × VT is a maximal pair in the subset of orthogonal pairs, then
the inclusions

Ṽ ′′0 ⊂ Ṽ ⊂ Ṽ ′0, V ′0 ⊂ V ⊂ V ′′0 (8.17)

are valid.
(b) For any coshift Ṽ ∈ ṼT (shift V ∈ VT ) satisfying the first (second) inclusion

(8.17) there exists the unique shift V ∈ VT (coshift Ṽ ∈ ṼT ) such that the pair
{Ṽ , V } is the maximal in the subset of orthogonal pairs of the set ṼT × VT .

Proof

(a) The inclusions Ṽ ⊂ Ṽ ′0, V ⊂ V ′′0 follow from the definitions of Ṽ ′0 and V ′′0 (see
(8.15) and (8.16), respectively). Since the pair {Ṽ , V } is maximal in the subset
of orthogonal pairs of the set ṼT × VT , then

Ṽ = sup{Ṽ1 ∈ ṼT : Ṽ1 ⊥ V }, V = sup{V1 ∈ VT : Ṽ ⊥ V1}. (8.18)

Taking into account (8.16), (8.18) and the inclusions Ṽ ⊂ Ṽ ′0, V ⊂ V ′′0 , we
obtain the inclusions Ṽ ′′0 ⊂ Ṽ , V ′0 ⊂ V .

(b) Let Ṽ ∈ ṼT be a coshift satisfying the first inclusion (8.17). Let

V := sup{V1 ∈ VT : V1 ⊥ Ṽ }. (8.19)

As was noted above, the shift V ∈ VT defined in this way is orthogonal to the
coshift Ṽ . For the maximality of the pair {Ṽ , V } in the subset of orthogonal
pairs of the set ṼT × V , it remains to prove the equality

Ṽ = sup{Ṽ1 ∈ ṼT : Ṽ1 ⊥ V }. (8.20)

If Ṽ ∈ [M−(
◦
F(1))], V ∈ [M+(

◦
G(1))], Ṽ ′0 ∈ [M−(

◦
K)], V ′′0 ∈ [M+(

◦
K∗)], then

(8.19) is equivalent to the equality

M+(
◦
G
(1)) = M+(

◦
K∗) ∩R+◦

F(1)
. (8.21)

In view of (8.16), the inclusions Ṽ ′′0 ⊂ Ṽ ⊂ Ṽ ′0 means that the inclusions

M−(
◦
K) ∩R−◦

K∗
⊂ M−(

◦
F(1)) ⊂M−(

◦
K) (8.22)
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hold. Hence, by virtue of (8.21) and (8.22), we come to

M−(
◦
K)∩R−◦

G(1)
= M−(

◦
K)∩ (R ◦

K∗
∨M−(

◦
F(1))) = M−(

◦
K)∩M−(

◦
F(1)) = M−(

◦
F(1)),

that is, (8.20) is valid.

The uniqueness of V follows from (8.19).
The dual assertion can be proved in a similar way.

��

Leaning on the isomorphicity of the complete lattices ṼT × VT and J +∗ (θ) ×
J +(θ), we can reformulate Lemma 8.13. Let ω′0(ζ ) := IK (λ′′0(ζ ) := IK∗ ) and
ω′′0(ζ ) ∈ S[K,K′′] (λ′0(ζ ) ∈ S[K′∗,K∗]) be the greatest right (left) common divisor
of all �-inner (inner) functions ω(ζ ) ∈ S[K,F(1)] (λ(ζ ) ∈ S[G(1),K∗] satisfying the
condition

ω(eit )χ(eit ) ∈ L∞+ [K∗,F(1)] (χ(eit )λ(eit ) ∈ L∞+ [G(1),K])

(see Corollary 7.9). The pairs {ω′(ζ ), λ′(ζ )} and {ω′′(ζ ), λ′′(ζ )} are maximal in the
subset of all pairs {ω(ζ ), λ(ζ )} ∈ J +∗ (θ)× J +(θ) satisfying condition (8.13).

Lemma 8.14 Let θ(eit ) belong to CM[G,F].
(a) If {ω(ζ ), λ(ζ )} ∈ J +∗ (θ)×J +(θ) is a maximal pair in the subset of pairs from

J +∗ (θ)× J +(θ) satisfying condition (8.13), then ω(ζ ) and λ(ζ ) are right and
left divisors of the function ω′′0 (ζ ) and λ′0(ζ ), respectively.

(b) For any right (left) divisor ω(ζ ) (λ(ζ )) of the ω′′0 (ζ ) (λ′0(ζ )) within the class of
�-inner (inner) operator functions there exists a unique left (right) divisor λ(ζ )
(ω(ζ )) of the function λ′0(ζ ) (ω′′0(ζ ))within the class of inner (�-inner) operator
functions such that the pair {ω(ζ ), λ(ζ )} ∈ J +∗ (θ)× J +(θ) is maximal in the
subset of pairs from J +∗ (θ)× J +(θ) satisfying condition (8.13).

Lemmas 8.13 and 8.14 lead us to

Definition 8.15 Let θ(eit ) ∈ CM[G,F], σ be a minimal unitary coupling of form
(2.1) such that θσ (eit ) = θ(eit ), and T := Tσ . Let �(eit ) ∈ K++r,max(θ), {Ṽ , V } ∈
ṼT ×VT be the corresponding maximal pair in the subset of orthogonal pairs of the
set ṼT × VT and {ω(ζ ), λ(ζ )} ∈ J +∗ (θ) × J +(θ) be the corresponding maximal
pair in the subset of all pairs from J +∗ (θ) × J +(θ) satisfying condition (8.13).
Then the coshift Ṽ and the shift V , as well as the �-inner function ω(ζ ) and the
inner function λ(ζ ), will be called mutually complementary (with respect to the set
K++r,max(θ)). The pairs

{Ṽ ′0, V ′0}and{Ṽ ′′0 , V ′′0 }, {ω′0(ζ ), λ′0(ζ )}and{ω′′0(ζ ), λ′′0(ζ )},
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as well as the corresponding extensions

�′0(eit ) ∈ CM[K′∗ ⊕G,K⊕ F] and �′′0(eit ) ∈ CM[K∗ ⊕G,K′′ ⊕ F],

will be called extreme in the corresponding subsets of ṼT × VT , J +∗ (θ) × J +(θ)
and in the set K++r,max(θ), respectively.

It is clear that for any ω(ζ ) ∈ J +∗ (θ) (λ(ζ ) ∈ J +(θ) such that ω(ζ ) (λ(ζ ))
is a right (left) divisor of the function ω′′0(ζ ) (λ′0(ζ )) the complementary function
λ(ζ ) ∈ J +(θ) (ω(ζ ) ∈ J +∗ (θ)) is the greatest left (right) divisor among all
left (right) divisors λ̃(ζ ) (ω̃(ζ )) of λ′0(ζ ) (ω′′0(ζ )) such that ω(eit )χ(eit )λ̃(eit )
(ω̃(eit )χ(eit )λ(eit )) is the boundary value function of some Schur operator function.

Note that

�′0(eit ) = [ψ+(eit ;�+0 ),�+0 (eit )], �′′0(eit ) = col[ϕ+(eit ;�+0 ),�+0 (eit )],

where �+0 (eit ) ∈ U+r (θ) and �+0 (eit ) ∈ L+r (θ) are the largest extensions of form
(6.8) in the sets U+r (θ) and L+r (θ), respectively. Note also that in the case of χ(eit ) ∈
L∞+ [K∗,K] the extreme maximal extensions �′0(eit ) and �′′0(eit ) coincide with the
largest extension�+0 (eit ) of form (8.1) in the set K+r (θ) (= K++r (θ)). Moreover, in
this case, K++r,max(θ) = {�+0 (eit )}.

From (8.19)) and (8.20) the next obvious assertion follows.

Lemma 8.16 Let θ(eit ) ∈ CM[G,F], σ be a minimal unitary coupling of form
(2.1) such that θσ (eit ) = θ(eit ), and T := Tσ . Let �1(e

it ) and �2(e
it ) be two

extensions from K++r,max(θ), {Ṽ1, V1} and {Ṽ2, V2} be the two corresponding pairs
of mutually complementary internal coshifts and shifts of σ , {ω1(ζ ), λ1(ζ )} and
{ω2(ζ ), λ2(ζ )} be the two corresponding pairs of mutually complementary �-inner
and inner functions. Then the following conditions are equivalent:

(1) Ṽ1 ⊂ Ṽ2; (2) V2 ⊂ V1; (3) ω1(ζ )
...ω2(ζ )(on the right); (4) λ2(ζ )

...λ1(ζ )(on the left).

Refining Remarks 4.6 and 8.6, we come to

Remark 8.17 The general form of �(eit ) ∈ K++r,max(θ) for any function θ(eit ) ∈
CM[G,F] is given by the formula

�(eit ) = A(eit )�+0 (eit )B(eit ),

where �+0 (eit ) ∈ CM[K∗ ⊕G,K⊕ F] is the extension of form (8.1),

A(eit ) ∈ L∞+ [K⊕ F,F(1) ⊕ F], B(eit ) ∈ L∞+ [G(1) ⊕G,K∗ ⊕G]

are operator functions of form (4.18), ω(ζ ) ∈ S[K,F(1)], λ(ζ ) ∈ S[G(1),K∗] is an
arbitrary pair of mutually complementary �-inner and inner functions, respectively.
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8.5 Description of the Set K++
r (θ)

Let σ be a minimal unitary coupling and T := Tσ . For any orthogonal pair {Ṽ , V } ∈
ṼT × VT we define

V ′ := sup{V1 ∈ VT : V1 ⊥ Ṽ }, Ṽ ′′ := sup{Ṽ1 ∈ ṼT : Ṽ1 ⊥ V }. (8.23)

Denote by Ṽ ′ ∈ ṼT and V ′′ ∈ VT the internal coshift and shift of σ that are
complementary to the shift V ′ ∈ VT and the coshift Ṽ ′′ ∈ ṼT , respectively.

This definition is correct, because, obviously, the inclusions V ′0 ⊂ V ′, Ṽ ′′0 ⊂ Ṽ ′′
are valid (see Lemma 8.13 (part (b))). By Definition 8.15 and Lemma 8.13 (part (b)),
the pairs {Ṽ ′, V ′}, {Ṽ ′′, V ′′} are maximal in the subset of orthogonal pairs of the set
ṼT × VT and they are preceded by the pair {Ṽ , V }.
Definition 8.18 Let σ be a minimal unitary coupling and T := Tσ . Let {Ṽ , V } ∈
ṼT × VT be an orthogonal pair of internal coshift and shift. The pairs {Ṽ ′, V ′} and
{Ṽ ′′, V ′′} defined above will be called the extreme maximal pairs in the subset of
orthogonal pairs of the set ṼT × VT for the orthogonal pair {Ṽ , V }.

To justify the term “extreme”introduced above we prove

Lemma 8.19 Let σ be a minimal unitary coupling and T := Tσ . Let {Ṽ , V } ∈
ṼT × VT be an orthogonal pair and {Ṽ ′, V ′}{Ṽ ′′, V ′′} be the extreme maximal
pairs for {Ṽ , V } in the subset of orthogonal pairs of the set ṼT × VT . A maximal
orthogonal pair {Ṽ ′′′, V ′′′} ∈ ṼT × VT in the same subset is preceded by the pair
{Ṽ , V } iff any of the following equivalent conditions

1) Ṽ ′ ⊂ Ṽ ′′′ ⊂ Ṽ ′′; 2) V ′′ ⊂ V ′′′ ⊂ V ′

is satisfied.

Proof The equivalence of these conditions follows from Lemma 8.16. The
sufficiency of each of them is trivial.

Now let {Ṽ ′′′, V ′′′} is a maximal pair in the subset of subset of orthogonal pairs
of the set ṼT × VT that is preceded by the pair {Ṽ , V } . Since Ṽ ⊂ Ṽ ′′′, V ⊂ V ′′′,
and Ṽ ′′′ ⊥ V ′′′, we infer that Ṽ ⊥ V ′′′, Ṽ ′′′ ⊥ V . Hence, in view of (8.23), the
inclusions Ṽ ′′′ ⊂ Ṽ ′′, V ′′′ ⊂ V ′ are valid and, by Lemma 8.16, the inclusions
Ṽ ′ ⊂ Ṽ ′′′, V ′′ ⊂ V ′′′ hold.

��

Definition 8.20 Let θ(eit ) ∈ CM[G,F], σ be a minimal unitary coupling of
form (2.1) such that θσ (eit ) = θ(eit ), and T := Tσ . Let �(eit ) ∈ K++r (θ) and
{Ṽ , V } ∈ ṼT × VT be the corresponding orthogonal pair. Let {Ṽ ′, V ′}, {Ṽ ′′, V ′′}
be the extreme maximal pairs for {Ṽ , V } in the subset of orthogonal pairs of the set
ṼT × VT . Then the corresponding, by Theorem 8.10 (part (b)), extensions �′(eit ),
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�′′(eit ) will be called extreme among all maximal extensions in the set K++r,max(θ)

that are preceded by �(eit ). If {ω(ζ ), λ(ζ )}, {ω′(ζ ), λ′(ζ )}, {ω′′(ζ ), λ′′(ζ )} are the
pairs that correspond, by Theorem 8.4 (part (b)), to the extensions �(eit ), �′(eit ),
�′′(eit ), respectively, then the pairs {ω′(ζ ), λ′(ζ )}, {ω′′(ζ ), λ′′(ζ )} will be called
extreme for the pair {ω(ζ ), λ(ζ )} among all maximal pairs {ω̃(ζ ), λ̃(ζ )} in the

subset of pairs satisfying condition (8.13) and the conditions ω(ζ )
...ω̃(ζ ) (on the

right), λ(ζ )
...λ̃(ζ ) (on the left).

If �(eit ) ∈ U+r (θ), �(eit ) ∈ L+r (θ) is the pair of unidirectional extensions
corresponding to�(eit ) ∈ K++r (θ), then the extreme maximal extensions�′(eit ) ∈
K++r,max(θ), �

′′(eit ) ∈ K++r,max(θ) can be obtained in the following way. According to
(8.23), first we construct the extensions

�1(e
it ) := [ψ+(eit ;�),�(eit )], �2(e

it ) := col[ϕ+(eit ;�),�(eit )].

Then, writing �1(e
it ) and �2(e

it ) in the form

�1(e
it ) = col[�12(e

it ),�′(eit )],�2(e
it ) = [�21(e

it ),�′′(eit )],

we come to

�′(eit ) := col[ϕ+(eit ;�′),�′(eit )], �′′(eit ) := [ψ+(eit ;�′′),�′′(eit )].

Note that the extensions �′0(eit ) and �′′0(eit ), introduced in Definition 8.15,
obviously provide examples of the case of the unique extension in the set K++r,max(θ)

which is preceded by a given, possibly non-maximal, extension �(eit ) from
K++r (θ). (Here we mean that the extensions �+0 (eit ) and �+0 (eit ) of form (6.8)
are considered as �(eit ) from K++r (θ)).

Reformulating Lemma 8.19, we obtain a description of the subset of extensions
from K++r,max(θ) preceded by a given extensions�(eit ) ∈ K++r (θ).

Theorem 8.21 Let θ(eit ) ∈ CM[G,F], �(eit ) ∈ K++r (θ) and let �′(eit ) ∈
K++r,max(θ), �

′′(eit ) ∈ K++r,max(θ) be the extrem maximal extensions for �(eit ). Let
{ω(ζ ), λ(ζ }, {ω′(ζ ), λ′(ζ }, {ω′′(ζ ), λ′′(ζ } be the pairs from J +∗ (θ) × J +(θ) that,
by Theorem 8.4 (part (b)), correspond to�(eit ),�′(eit ),�′′(eit ), respectively.Then
a maximal extension �̂(eit ) ∈ K++r,max(θ) is preceded by �(eit ) iff the pair

{ω̂(ζ ), λ̂(ζ } ∈ J +∗ (θ) × J +(θ) corresponding to �̂(eit ) satisfies any of the
following equivalent conditions:

(1) ω′(ζ )
...ω̂(ζ ) ( on the right) and ω̂(ζ )

...ω′′(ζ ) ( on the right);

(2) λ′′(ζ )
...λ̂(ζ ) (on the left) and λ̂(ζ )

...λ′(ζ ) (on the left).

In conclusion of this section, taking into account Theorem 8.4, 8.10, and 8.21,
we give a description of the set K++r (θ) as their direct corollary.
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Theorem 8.22 Let θ(eit ) ∈ CM[G,F] and let ϕ+(ζ ) ∈ S[G,K], ψ+(ζ ) ∈
S[K∗,F] be its defect and �-defect functions in the Schur class, respectively.

(a) A non-trivial extension �(eit ) ∈ K++r (θ) exists iff ϕ+(ζ ) �≡ 0 or ψ+(ζ ) �≡ 0.
Let �(eit ) ∈ CM[G(1) ⊕G,F(1) ⊕ F] be a function of form (3.32).

(b) �(eit ) ∈ K++r (θ) iff there exist �-inner and inner functions ω(ζ ) ∈ S[K,F(1)]
and λ(ζ ) ∈ S[G(1),K∗], respectively, such that, in addition to the equalities
(8.5), the functions ω(ζ ) and λ(ζ ) admit the representation

ω(ζ ) = ω̃(ζ )ω̂(ζ ), λ(ζ ) = λ̂(ζ )λ̃(ζ ), (8.24)

where ω̂(ζ ) ∈ S[K, F̂], λ̂(ζ ) ∈ S[Ĝ,K∗] is a maximal pair of mutually
complementary �-inner and inner functions and ω̃(ζ ) ∈ S[F̂,F(1)], λ̃(ζ ) ∈
S[G(1), Ĝ] is a pair of �-inner and inner functions, respectively.

(c) There exists an isometric (coisometric) extension �(eit ) ∈ K++r (θ) iff the
condition (8.6) is satisfied. If the condition (8.6) is valid, then all isometric
(coisometric) extensions are given by the formulas (3.32), (8.5), and (8.24),
where ω̃(ζ ) and ω̂(ζ ) (λ̃(ζ ) and λ̂(ζ )), in addition to the properties listed in
part (b), are two-sided inner.

A unitary extension �(eit ) ∈ K++r (θ) exists iff both dual equalities (8.6) are
valid and there exists a pair of two-sided inner functions ω(ζ ) ∈ S[K,F(1)],
λ(ζ ) ∈ S[G(1),K∗] such that condition (8.13) is satisfied. In this case, all
such extensions are given by the same formulas (3.32), (8.5), and (8.24), where
ω̂(ζ ) ∈ S[K, F̂], λ̂(ζ ) ∈ S[Ĝ,K∗] is a maximal pair of mutually complementary
two-sided inner functions and ω̃(ζ ) ∈ S[F̂,F(1)], λ̃(ζ ) ∈ S[G(1), Ĝ] are two-
sided inner functions.

Remark 8.23 Recall that a description of the subset of the set K++r (θ) consisting of
all completely regular extensions is obtained in Theorem 8.4 (part (c)).

Remark 8.24 Let θ(ζ ) belongs to S[G,F]. Define its holomorphic regular extension
�(ζ ) ∈ S[G(1) ⊕ G,F(1) ⊕ F] as a Schur function whose boundary value function
�(eit ) ∈ L∞+ [G(1) ⊕ G,F(1) ⊕ F] is a regular extension of θ(eit ) ∈ L∞+ [G,F]. In
this case, we can consider Theorem 8.22 as a description of all such extensions.
Moreover, part (c) gives a description of all inner, �-inner and two-sided inner
regular up-leftward extensions for the function θ(ζ ).
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how they induce free-homomorphic sub-structures of Banach ∗-probability space
LQ generated by the |Z|-many semicircular elements. Roughly speaking, free-
homomorphic relations are ∗-homomorphic relations preserving free probability.
Free-isomorphic relations are naturally defined by bijective-free-homomorphic
relations. The main results of this paper characterize some free-homomorphic, or
free-isomorphic relations in LQ.

1.1 Motivations

There are various different approaches to construct semicircular elements (e.g., [5,
8, 10, 26, 27]). They fall naturally in two groups: (1) analysis on measure spaces
(i.e., an approach from classical statistics), and approaches used in (2) topological
∗-probability spaces (including that of C∗-probability spaces, or W∗-probability
spaces, or Banach ∗-probability spaces, etc. e.g., see [16–19, 25]).

Our present approach is different. We offer a new construction of semicircular
elements. It is motivated by a systematic study of weighted-semicircular elements
in certain Banach ∗-probability spaces from [9] and [12], and is based on our use
of a new analysis on the p-adic number fields Qp, for primes p. In conclusion, our
present construction is different from, and independent of, those in earlier papers.
Also, see [10, 11] for additional discussion.

In [9, 12], we studied weighted-semicircular elements induced by measurable
functions on p-adic number fields Qp, and those from a free product Banach
∗-algebra generated by the weighted-semicircular elements. The authors applied
number-theoretic results (e.g., [14, 23]), and free-probabilistic techniques (e.g., [6–
8, 17, 18, 20]) to consider free-probabilistic models of [12], and they realized there
are well-defined semicircular-like elements, called weighted-semicircular elements.
Interestingly, these operators automatically generate corresponding semicircular
elements. In [9], the constructions and results of [12] are extended under free
product over primes.

Motivated by Cho [9] and Cho and Jorgensen [12], the first-named author
considered the similar constructions of (weighted-)semicircular elements from
“arbitrary” C∗-probability spaces containing |Z|-many mutually orthogonal pro-
jections in [10]. The main results of [10] show that whenever one can have
mutually orthogonal |Z|-many projections in a C∗-probability space, the corre-
sponding weighted-semicircular elements whose weights are characterized by the
free-distributional data of the projections; moreover, under suitable (additional)
conditions, semicircular elements are well-defined (see short Sects. 3–5, below). As
an application of [10], the authors consider free, semicircular elements induced by
orthogonal projections acting on infinite-dimensional separable Hilbert spaces in
[11].

In this paper, we are interested in certain adjointable Banach-space operators (in
the sense of [13]) acting on weighted-semicircular elements of [10]. We focus on
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studying how such operators preserve free probability on inner sub-structures of the
Banach ∗-algebra LQ generated by our semicircular elements.

1.2 Overview

Section 2 begins with a brief review of background material on free probability
as it will be needed inside the paper. In Sects. 3–5, we prove lemmas for families
of weighted-semicircular elements. We discuss induction of semicircular elements,
induction from prescribed mutually orthogonal |Z|-many projections. For related
results in detail, see [10, 11].

In Sect. 6, we construct a suitable free-probabilistic, operator-algebraic structure
LQ generated by our (weighted-)semicircular elements. And free-distributional data
on LQ are studied.

In Sect. 7, certain adjointable Banach-space operators acting on LQ are
constructed-and-studied. In particular, shifting processes on Z are defined in
Sect. 7.1, and the corresponding ∗-isomorphisms on LQ are introduced in Sect. 7.2.
We realize that the collection of such ∗-isomorphisms forms a subgroup B of the
automorphism group Aut(LQ) of LQ. The structure theorem of this group B is
provided in Sect. 7.2: B is group-isomorphic to the infinite cyclic abelian group
(Z, +). We then study how the group B generate our Banach-space operators (in
the sense of [13]) on LQ, and how they affects the free-probabilistic information on
LQ in Sect. 7.3.

In Sect. 8, by using the group B of Sect. 7, we construct a noncommutative
monoid B(Z) consisting of certain ∗-homomorphisms induced by restrictions of
the ∗-isomorphisms of B, contained in the homomorphism semigroup Hom(LQ).
The algebraic properties of B(Z) is studied in details.

In Sect. 9, the free-homomorphic relations in LQ are considered. We study
how to construct suitable free-homomorphisms (∗-homomorphisms preserving free-
distributional data) among the subalgebras of LQ from the monoid B(Z), in
Sect. 9.1. The free-homomorphic relations among the subalgebras of LQ, generated
by “finitely” many, free, semicircular elements, are studied in Sect. 9.2 up to free-
homomorphisms of Sect. 9.1. In Sect. 9.3, the free-isomorphic relations among the
subalgebras of LQ, generated by “infinitely” many, free, semicircular elements, are
characterized. Finally, we discuss interesting open problems in Sect. 9.4.

2 Preliminaries

For a review of relevant and fundamental tools from free probability theory, analytic-
and-combinatorial, we refer to [21, 25] (and the cited papers therein). In rough
outline, free probability serves as the noncommutative operator-algebraic version of
classical measure theory and statistics. We get a new noncommutative, i.e., operator-
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algebraic, framework, which parallel notions, commutative vs. noncommutative.
In the better known commutative world from statistics (or measure theory), we
deal with measure spaces and function algebras. In passing to the free probability,
the commutative concept of independence if replaced by what is called freeness.
Similarly, measures on sample spaces are replaced with linear functionals defined
on noncommutative ∗-algebras. Free probability has many applications, not only in
pure mathematics (e.g., [6–8, 16, 18, 19, 22, 24]), but also in related fields, especially
in quantum physics (e.g., [2–4, 9–12, 17, 20, 26, 27]).

In particular, we use combinatorial free probability of Speicher (e.g., [21]).
Free moments and free cumulants of operators will be computed without detailed
definitions. Also, free product (in the sense of [21, 25]) will be used without precise
introduction.

3 Fundamental Settings

In this section, we establish basic settings of our works. Let (B, ϕ) be a topological
∗-probability space (a C∗-probability space, or a W∗-probability space, or a Banach
∗-probability space, etc), where B is a topological ∗-algebra (a C∗-algebra, resp.,
a W∗-algebra, resp., a Banach ∗-algebra, etc), and ϕ is a (bounded or unbounded)
linear functional on B.

An operator a of B is said to be a free random variable, whenever it is regarded
as an element of (B, ϕ). As usual in operator theory, an operator a is said to be
self-adjoint, if a∗ = a in B, where a∗ is the adjoint of a (e.g., [15]).

Definition 3.1 A self-adjoint free random variable a is said to be weighted-
semicircular in (B, ϕ) with its weight t0 ∈ C

× = C \ {0} (or, in short,
t0-semicircular), if a satisfies the free cumulant computations,

kn(a, . . . , a) =
{
k2(a, a) = t0 if n = 2
0 otherwise,

(3.1)

for all n ∈ N, where kn(. . .) is the free cumulant on B in terms of ϕ under the
Möbius inversion of [21].

If t0 = 1 in (3.1), the 1-semicircular element a is said to be semicircular in
(B, ϕ), i.e., a is semicircular in (B, ϕ), if a satisfies

kn(a, . . . , a) =
{

1 if n = 2
0 otherwise,

(3.2)

for all n ∈ N.

Remark 3.1 There is a number of differences and intriguing similarities between
properties of free random variables from operator algebra theory on the one



Free-Homomorphic Relations 233

hand, and on the other, the more familiar random variables in commutative case.
For example, in the free case, the distribution is the semicircular law, while the
“preferred” law in the commutative case is the Gaussian distribution. This distinction
is stressed in [1]; in [1], a comparative study of the two theories with emphasis on
correspondences between free probability on the one hand, vs. Gaussian processes
on the other, is provided. Our present paper offers a new approach to the calculus
of a class of free random variables, arising naturally in free probability theory (e.g.,
see [2, 3, 22]).

By the Möbius inversion of [21], one can characterize the weighted-
semicircularity (3.1) as follows: a self-adjoint operator a is t0-semicircular in
(B, ϕ), if and only if

ϕ(an) = ωn
(
t
n
2

0 c n2

)
, (3.3)

where

ωn
def=

{
1 if n is even
0 if n is odd,

for all n ∈ N, and ck are the k-th Catalan numbers,

ck
def= 1

k + 1

(
2k
k

)
= (2k)!
k!(k + 1)! ,

for all k ∈ N0 = N ∪ {0}.
Similarly, a self-adjoint free random variable a is semicircular in (B, ϕ), if and

only if a is 1-semicircular in (B, ϕ), if and only if

ϕ(an) = ωncn
2
, (3.4)

by (3.2) and (3.3), for all n ∈ N, where ωn are in the sense of (3.3).
So, we use the t0-semicircularity (3.1) (or the semicircularity (3.2)) and its

characterization (3.3) (resp., (3.4)) alternatively from below.
If a is a self-adjoint free random variable in (B, ϕ), then the sequences

consisting of

the free moments
(
ϕ(an)

)∞
n=1 ,

and

the free cumulants (kn(a, . . . , a))
∞
n=1

provide equivalent free-distributional data of a in (B, ϕ), characterizing the free
distribution of a (e.g., [21]).
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In the rest of this section, we fix a C∗-probability space (A, ψ), and assume that
there are |Z|-many projections {qj }j∈Z in the C∗-algebra A, i.e., the operators qj
satisfy

q∗j = qj = q2
j in A,

for all j ∈ Z. Assume further that these projections {qj }j∈Z are mutually orthogonal
in A, in the sense that:

qiqj = δi,j qj in A, for all i, j ∈ Z, (3.5)

where δ is the Kronecker delta.
Now, we fix the family {qj }j∈Z of mutually orthogonal projections (3.5) of A,

and we denote it by Q, i.e.,

Q = {qj : qj satisfy (3.5)}j∈Z in A. (3.6)

Remark 3.2 One can have such a C∗-algebraic structure A containing a family Q
of (3.6), naturally, or artificially. Clearly, in the settings of [9, 12], one can naturally
take such structures.

Suppose there is a C∗-algebra A0 containing a family Q0 = {q1, . . . , qN } of
mutually orthogonal N-many projections q1, . . . , qN, for N ∈ N∞ = N ∪ {∞}.
Then, under suitable direct product, or tensor product, or free product of copies of
A0 under product topology, one can construct a C∗-algebra A containing a family
Q with |Z|-many mutually orthogonal projections, where Q0 is contained in Q, and
every projection of Q is unitarily equivalent to a projection of Q0 in A (e.g., see
[10, 11]).

Let Q be the C∗-subalgebra of A generated by the family Q of (3.6),

Q
def= C∗ (Q) ⊆ A. (3.7)

Proposition 3.1 Let Q be the C∗-subalgebra (3.7) of a fixed C∗-algebra A. Then

Q
∗-iso= ⊕

j∈Z
(
C · qj

) ∗-iso= C
⊕|Z|, (3.8)

in A.

Proof The proof of (3.8) is done by the orthogonality (3.5) of the generator set Q
of (3.6) on Q. ��

Define now linear functionals ψj on the C∗-algebra Q of (3.7) by

ψj (qi) = δijψ(qj ), for all i ∈ Z, (3.9)
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for all j ∈ Z, where ψ is the linear functional of the fixed C∗-probability
space (A, ψ). The linear functionals {ψj }j∈Z of (3.9) are well-defined on Q by
the structure theorem (3.8).

Assumption Let (A, ψ) be a fixed C∗-probability space, and let Q be the C∗-
subalgebra (3.7) of A. In the rest of this paper, we further assume that

ψ(qj ) ∈ C
×, for all j ∈ Z.

�
Definition 3.2 The C∗-probability spaces

(
Q, ψj

)
are called the j -th C∗-

probability spaces of Q in a given C∗-probability space (A, ψ), where Q is in
the sense of (3.7), and ψj are the linear functionals of (3.9), for all j ∈ Z.

Now, let’s define bounded linear transformations c and a acting on theC∗-algebra
Q, by linear morphisms satisfying

c
(
qj

) = qj+1, and a
(
qj

) = qj−1, (3.10)

for all j ∈ Z. Then c and a are well-defined bounded linear operators “on Q.”
One can understand they are Banach-space operators in the operator space B(Q)
consisting of all bounded linear transformations acting on Q, by regarding Q as a
Banach space equipped with its C∗-norm (e.g., [13]).

Definition 3.3 We call these Banach-space operators c and a of (3.10), the creation,
respectively, the annihilation on Q.

The creation c and the annihilation a on Q are indeed well-defined by the
structure theorem (3.8) of Q. Define now a new Banach-space operator l on Q

by

l = c + a ∈ B(Q). (3.11)

Definition 3.4 We call the Banach-space operator l ∈ B(Q) of (3.11), the radial
operator on Q.

Now, define a closed subspace L of the operator space B(Q) by

L
def= C[{l}]‖.‖, (3.12)

generated by the radial operator l of (3.11), where the operator norm ‖.‖ on the
operator space B(Q) is defined to be

‖T ‖ = sup{‖T q‖Q : ‖q‖Q = 1},

for all T ∈ B(Q), where ‖.‖Q is the C∗-norm onQ (inherited from the C∗-norm on

A), and where X
‖.‖

mean the operator-norm closures of subsets X of the operator
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space B(Q) (e.g., [13]). It is not difficult to check that, by the definition (3.12),
this subspace L forms an algebra in the vector space B(Q), i.e., it forms a Banach
algebra embedded in the topological vector space B(Q).

On this Banach algebra L of (3.12), define a unary operation (∗) by
(∑∞

n=0
tnl

n
)∗ =∑∞

n=0
tnl

n in L, (3.13)

where z mean the conjugates of z ∈ C.

Then this operation (3.13) becomes a well-defined adjoint on the Banach algebra
L of (3.12) (e.g., [10, 15]), and hence, every element of L is adjointable in B(Q)
in the sense of [13]. So, the algebra L forms a Banach ∗-algebra in B(Q) with the
adjoint (3.13).

Definition 3.5 We call the Banach ∗-algebra L of (3.12), the radial (Banach ∗-)
algebra on Q.

Now, let L be the radial algebra on Q. Define the tensor product Banach
∗-algebra LQ by

LQ = L⊗C Q, (3.14)

where⊗C is the tensor product of Banach ∗-algebras. Since L is a Banach ∗-algebra,
and Q is a C∗-algebra, the tensor product LQ of (3.14) is a well-defined Banach ∗-
algebra under product topology.

Definition 3.6 We call the tensor product Banach ∗-algebra LQ of (3.14), the radial
projection (Banach ∗-)algebra on Q.

4 Weighted-Semicircular Elements Induced by Q

We here construct weighted-semicircular elements induced by the family Q of
mutually orthogonal projections inducing the radial projection algebra LQ of (3.14).
Let (Q, ψj ) be the j -th C∗-probability spaces ofQ in (A, ψ), where ψj are in the
sense of (3.9), for all j ∈ Z.

Remark that, if uj are the generating operators of LQ,

uj
def= l ⊗ qj ∈ LQ, for all j ∈ Z, (4.1)

then

unj =
(
l ⊗ qj

)n = ln ⊗ qj , for all n ∈ N,

since qkj = qj , for all k ∈ N, with axiomatization:

u0
j

axiom= l0 ⊗ qj = 1Q ⊗ qj ,
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where 1Q is the identity operator of B(Q), satisfying

1Q(T ) = T , for all T ∈ Q,

for all n ∈ N0 = N ∪ {0}, for j ∈ Z.

Then one can construct a linear functional ϕj on LQ by a linear morphism
satisfying that

ϕj
(
(l ⊗ qi)n

) def= ψj
(
ln(qi)

)
, (4.2)

for all n ∈ N0, for all i, j ∈ Z.

These linear functionals ϕj of (4.2) are well-defined by (3.8), (3.12) and (3.14),
for all j ∈ Z.

Definition 4.1 We call the Banach ∗-probability spaces

(
LQ, ϕj

)
, for all j ∈ Z, (4.3)

the j -th (Banach-)∗-probability spaces on Q.

Observe that, if c and a are the creation, respectively, the annihilation on Q in
the sense of (3.10), then

ca = 1Q = ac. (4.4)

Indeed, for any generators qj ∈ Q of Q,

ca
(
qj

) = c (a (qj)) = c (qj−1
) = qj−1+1 = qj ,

and

ac
(
qj

) = a (c (qj )) = a (qj+1
) = qj+1−1 = qj ,

for all j ∈ Z. More generally, one has

cnan = 1Q = ancn, for all n ∈ N, (4.4′)

and

cn1an2 = an2cn1 , for all n1, n2 ∈ N,

by (4.4).
Thus, one obtains that

ln = (c + a)n =
∑n

k=0

(
n

k

)
ckan−k, (4.5)
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for all n ∈ N, by (4.4′), where

(
n

k

)
= n!
k!(n− k)! ,∀k ≤ n ∈ N0.

Note that, for any n ∈ N,

l2n−1 =
∑2n−1

k=0

(
2n− 1
k

)
ckan−k, (4.6)

by (4.5). So, the formula (4.6) does not contain 1Q-terms by (4.4) and (4.4′).
Note also that, for any n ∈ N, one has

l2n =
∑2n

k=0

(
2n
k

)
ckan−k =

(
2n
n

)
cnan + [Rest terms], (4.7)

by (4.5). So, l2n contains

(
2n
n

)
-many 1Q-terms by (4.7).

Proposition 4.1 Let l be the radial operator (3.11) on Q. Then, for any n ∈ N,

l2n−1 does not contain 1Q-terms in L, (4.8)

l2n contains

(
2n
n

)
· 1Q in L. (4.9)

Proof The statements (4.8) and (4.9) are proven by (4.6), respectively, by (4.7).
��

Remark that, since

unj =
(
l ⊗ qj

)n = ln ⊗ qj ,
one has

ϕj

(
u2n−1
j

)
= ψj

(
l2n−1 (qj)

)
= 0, (4.10)

for all n ∈ N, by (3.9) and (4.8).
Similarly, we have

ϕj

(
u2n
j

)
= ψj

(
l2n

(
qj

)) = ψj
((

2n
n

)
qj + [Rest terms]

)

by (4.7)

=
(

2n
n

)
ψj

(
qj

) =
(

2n
n

)
ψ

(
qj

)
,
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by (3.9) and (4.9). i.e.,

ϕj

(
u2n
j

)
=

(
2n
n

)
ψ

(
qj

)
, (4.11)

for all n ∈ N.

Thus, one obtains the following free-distributional data on the j -th probability
space

(
LQ, ϕj

)
, for j ∈ Z.

Theorem 4.1 Fix j ∈ Z, and let uk = l ⊗ qk be the k-th generating operators of
the j -th ∗-probability space (LQ, ϕj ), for all k ∈ Z. Then

ϕj
(
unk

) = δj,kωn
((n

2
+ 1

)
ψ

(
qj

))
c n

2
, (4.12)

whereωn are in the sense of (3.3) for all n ∈ N, and ck are the k-th Catalan numbers
for all k ∈ N0.

Proof First, take the j -th generating operator uj in the j -th ∗-probability space(
LQ, ϕj

)
. By (4.10) and (4.11), one can get that:

ϕj

(
u2n−1
j

)
= 0,

and

ϕj

(
u2n
j

)
=

(
2n
n

)
ψ

(
qj

) =
(
n+ 1

n+ 1

)(
2n
n

)
ψ

(
qj

)

= (
(n+ 1)ψ

(
qj

))
cn,

for all n ∈ N.

Assume now that k �= j in Z. Then, by the definition (4.2) of ϕj (and by the
definition (3.9) of ψj ),

ϕj
(
unk

) = 0, for all n ∈ N.

Therefore, the formula (4.12) holds. ��

Motivated by (4.12), we define a linear morphism,

Ej,Q : LQ → LQ

by a bounded linear transformation satisfying

Ej,Q
(
uni

) def=
⎧⎪⎪⎨
⎪⎪⎩

ψ(qj)
n−1

([ n2 ]+1)
unj if i = j

0LQ
, the zero operator of LQ otherwise,

(4.13)
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for all n ∈ N, i, j ∈ Z, where [ n2 ] mean the minimal integers greater than or equal
to n

2 , for example,

[
3

2

]
= 2 =

[
4

2

]
.

The linear transformations Ej,Q of (4.13) are well-defined bounded linear transfor-
mations on LQ, because of the cyclicity (3.12) of the tensor factor L of LQ, and the
structure theorem (3.8) of the other tensor factor Q of LQ, for all j ∈ Z.

Define now new linear functionals τj on LQ by

τj
def= ϕj ◦ Ej,Q on LQ, for all j ∈ Z, (4.14)

where ϕj are in the sense of (4.2), and Ej,Q are in the sense of (4.13).

Definition 4.2 The well-defined Banach ∗-probability spaces

LQ(j)
denote= (

LQ, τj
)

(4.15)

are called the j -th filtered (Banach-)∗-probability spaces of LQ, where τj are the
linear functionals (4.14) on the radial projection algebra LQ, for all j ∈ Z.

On the j -th filtered ∗-probability space LQ(j) of (4.15), One can get that

τj

(
unj

)
= ϕj

(
Ej,Q

(
unj

))

= ϕj
(
ψ(qj)

n−1

([ n2 ]+1)

(
unj

))
= ψ(qj )

n−1

([ n2 ]+1)
ϕj

(
unj

)

= ψ(qj)
n−1

([ n2 ]+1)
ωn

((
n
2 + 1

)
ψ

(
qj

))
c n

2
,

by (4.12), i.e.,

τj

(
unj

)
= ωnψ(qj )nc n

2
, (4.16)

for all n ∈ N, for j ∈ Z, where ωn are in the sense of (3.3).

Lemma 4.1 Let LQ(j) = (LQ, τj ) be the j -th filtered ∗-probability space of LQ,
for an arbitrarily fixed j ∈ Z. Then

τj
(
uni

) = δj,i
(
ωnψ(qj )

nc n
2

)
, (4.17)

for all n ∈ N, for all i ∈ Z.
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Proof If i = j in Z, then the free-momental data (4.17) holds true by (4.16), for
all n ∈ N.

If i �= j in Z, then, by the very definition (4.13) of Ej,Q, and also by the
definition (4.2) of ϕj ,

τj
(
uni

) = 0, for all n ∈ N.

Therefore, the free-distributional data (4.17) holds true, for all i ∈ Z. ��

The following theorem is proven by the above free-distributional data (4.17)
in terms of the weighted-semicircularity characterization (3.3) of the weighted-
semicircularity (3.1).

Theorem 4.2 Let LQ(j) be the j -th filtered ∗-probability space
(
LQ, τj

)
of LQ,

for j ∈ Z, and let uj = l⊗ qj be the “j -th” generating operator of LQ. Then uj is
ψ(qj )

2-semicircular in LQ(j).

Proof First of all, the generating operators ui are self-adjoint in LQ, for all i ∈ Z.
Indeed,

u∗i = (l ⊗ qi)∗ = l ⊗ qi = ui in LQ,

for all i ∈ Z, by (3.13).
Let’s fix j ∈ Z, and let uj = l ⊗ qj be the j -th generating operator of the j -th

filtered ∗-probability space LQ(j). Then, by (4.17), we have that

τj

(
unj

)
= ωn

(
ψ

(
qj

)2
) n

2
c n

2
,

for all n ∈ N, where ck are the k-th Catalan numbers, for all k ∈ N0. Therefore, this
self-adjoint element uj is ψ(qj )2-semicircular in LQ(j), by (3.3). ��

The above theorem shows that, for any j ∈ Z, the j -th generating operator uj
is ψ(qj )2-semicircular in the j -th filtered ∗-probability space LQ(j). Meanwhile,
also by (4.17), one can verify the following result, too.

Theorem 4.3 Let ui = l⊗ui be the i-th generating operators of the j -th filtered ∗-
probability space LQ(j), for all j �= i ∈ Z. Then ui have the zero free distribution
in LQ(j).

Proof Let LQ(j) be the j -th filtered ∗-probability space for a fixed j ∈ Z, and
assume i �= j in Z. Consider the i-th generating operators ui of LQ(j). It is shown
already that ui are self-adjoint in LQ, and hence, the free distributions of ui are
completely characterized by the free-momental sequences,

(
τj (u

n
i )
)∞
n=1 = (0, 0, 0, . . . ) ,
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the zero sequence, by (4.17). It guarantees that the free distributions of ui ∈ LQ(j)
are the zero free distribution, for all j �= i ∈ Z. ��

The above two theorems characterize the free-probabilistic information of the
generators {ui}i∈Z of our j -th filtered ∗-probability space LQ(j), for j ∈ Z. From
below, we focus on “non-zero” free-distributional data on LQ(j), for j ∈ Z.

Note that, by the Möbius inversion of [21], if ui are the i-th generating operators
of the j -th filtered ∗-probability space LQ(j), then

k
j
n (ui, . . . , ui) =

{
δj,iψ

(
qj

)2 if n = 2
0 otherwise,

(4.18)

for all n ∈ N, and i ∈ Z, by (4.17), where kjn(. . .) is the free cumulant on LQ with
respect to the linear functional τj , for j ∈ Z.

5 Semicircular Elements Induced by Q

As in Sect. 4, let LQ(j) be the j -th filtered ∗-probability space ofQ for j ∈ Z. Then
the j -th generating operator uj = l ⊗ qj of LQ is ψ(qj )2-semicircular in LQ(j),
satisfying that

τj

(
unj

)
= ωnψ(qj )nc n

2
, (5.1)

equivalently,

k
j
n

(
uj , . . . ,uj

) =
{
ψ(qj )

2 if n = 2
0 otherwise,

for all n ∈ N, by (4.17) and (4.18).
By the weighted-semicircularity (5.1), one may/can obtain the following semicir-

cular element Uj of LQ(j) (under an additional condition),

Uj
def= 1

ψ(qj )
uj ∈ LQ(j), (5.2)

for j ∈ Z. Recall that we assumedψ(qk) ∈ C
×, for all k ∈ Z, and hence, the above

operator Uj of (5.2) is well-defined in LQ(j).

Theorem 5.1 Let Uj = 1
ψ(qj )

uj be a free random variable (5.2) of LQ(j), for

j ∈ Z, where uj is the j -th generating operator of LQ. If

ψ(qj ) ∈ R
× = R \ {0} in C

×,

then Uj is semicircular in LQ(j).
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Proof Fix j ∈ Z, and assume ψ(qj ) ∈ R
× in C

×. Then

U∗j =
(

1

ψ(qj )
uj

)∗
= Uj ,

by the self-adjointness of uj in LQ. Thus,

τj

(
Un
j

)
=

(
1

ψ(qj )

)n
τj

(
unj

)

=
(

1
ψ(qj )

n

) (
ωnψ(qj )

nc n
2

)
= ωncn

2
,

(5.3)

for all n ∈ N.

So, by (5.3), and by the free-momental characterization (3.4) of the semicircular-
ity (3.2), the self-adjoint operator Uj is semicircular in LQ(j). ��

The above theorem shows that, from our ψ(qj )2-semicircular elements uj =
l ⊗ qj , the corresponding semicircular elements Uj = 1

ψ(qj )
uj are canonically

obtained in LQ(j), whenever ψ(qj ) ∈ R
× in C, for j ∈ Z.

Assumption 5.1 (In Short, A 5.1, from Below) For convenience, we will assume
that

ψ(qj ) ∈ R
× in C, for qj ∈ Q,

for all j ∈ Z. �

6 The Free Filterization �
j∈Z

LQ(j) of Q

Let (A, ψ) be a fixed C∗-probability space containing a family Q = {qk}k∈Z of
mutually orthogonal projections qk satisfying

ψ(qk) ∈ R
×, for all k ∈ Z,

and let LQ(j) be the corresponding j -th filtered ∗-probability space of Q, for all
j ∈ Z.

For the system

{LQ(j) : j ∈ Z}
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of Banach ∗-probability spaces, define the free product Banach ∗-probability space
LQ(Z) by

LQ(Z)
denote= (

LQ(Z), τ
)

def= �
j∈ZLQ(j) =

(
�
j∈ZLQ,j , �

j∈Z τj
)
,

(6.1)

with

LQ(Z) = �
j∈ZLQ,j , with LQ,j = LQ,∀j ∈ Z,

and

τ = �
j∈Z

τj on LQ(Z).

i.e., our j -th filtered ∗-probability spaces LQ(j) of (4.15) are the free blocks of
LQ(Z), for all j ∈ Z. For more about free product ∗-probability spaces, see [21, 25].

Definition 6.1 Let LQ(Z) be the free product Banach ∗-probability space (6.1) of
the system {LQ(j)}j∈Z of all j -th filtered ∗-probability spaces of Q. Then it is said
to be the free filterization of Q ⊂ (A, ψ).

Now, construct two subsets X and S of LQ(Z),

X = {uj ∈ LQ(j) : j ∈ Z}, (6.2)

and

S = {Uj ∈ LQ(j) : j ∈ Z},

where uj are the j -th generating operators (4.1) of the radial projection algebra LQ,
and Uj = 1

ψ(qj )
uj are the operators (5.2) in LQ, under A 5.1, for all j ∈ Z.

Recall that a subset Y of an arbitrary topological ∗-probability space (B, ϕ) is
said to be a free family, if all elements of Y are free from each other in (B, ϕ). Also,
a free family Y is called a free (weighted-)semicircular family in (B, ϕ), if this
family Y is not only a free family in (B, ϕ), but also a subset of B whose elements
are (weighted-)semicircular in (B, ϕ). (e.g., [11, 25]).

Theorem 6.1 Let X and S be in the sense of (6.2) in the free filterization LQ(Z)
of (6.1).

The family X is a free weighted-semicircular family in LQ(Z). (6.3)

The family S is a free semicircular family in LQ(Z). (6.4)
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Proof Let X be in the sense of (6.2) in LQ(Z). All elements uj of X are taken
from mutually distinct free blocks LQ(j) of LQ(Z), for all j ∈ Z, and hence, they
are free from each other in LQ(Z). Thus, this family X is a free family in LQ(Z).
Moreover, every element uj is ψ(qj )2-semicircular in LQ(j) by (5.1). Note now
that the powers unj of each self-adjoint operator uj ∈ X are again contained in
the free block LQ(j) as free reduced words of LQ(Z) with their lengths-1, for all
n ∈ N, for j ∈ Z. Thus,

τ
(
unj

)
= τj

(
unj

)
= ωnψ(qj )nc n

2
,

for all n ∈ N, for all j ∈ Z. It shows that each element uj ∈ X is ψ(qj )2-
semicircular in LQ(Z), for all j ∈ Z. Therefore, the family X of (6.2) is a free
weighted-semicircular family in LQ(Z). Equivalently, the statement (6.3) holds.

Similarly, one can verify that the family S of (6.2) is a free family in LQ(Z),
because Uj are the scalar-products 1

ψ(qj )
uj of uj in the free family X of LQ(Z),

for all j ∈ Z. So, the semicircularity (5.3) of Uj ’s (under A 5.1) guarantees that this
free family S is a free semicircular family in the free filterization LQ(Z). i.e., the
statement (6.4) holds. ��

By (4.17) and (4.18), the only “j -th” generating operators uj of the free blocks
LQ(j) provide possible non-zero free distributions on LQ(Z) by (6.1). Thus, we
now restrict our interests to the Banach ∗-subalgebra LQ of the free filterization
LQ(Z), whose elements have possible non-zero free distributions.

Definition 6.2 Let LQ(Z) be the free filterization of Q. Define a Banach
∗-subalgebra LQ of LQ(Z) by

LQ
def= C [X ], (6.5)

where X is the free weighted-semicircular family (6.3) in LQ(Z), and Y are
the Banach-topology closures of subsets Y of LQ(Z). Construct the Banach
∗-probability space,

LQ
denote= (

LQ, τ = τ |LQ
)
, (6.6)

as a free-probabilistic sub-structure of LQ(Z) =
(
LQ(Z), τ

)
.

We call the Banach ∗-algebra LQ of (6.5), or the Banach ∗-probability space LQ
of (6.6), the semicircular (free-sub-)filterization of LQ(Z).

By the definitions (6.5) and (6.6), the operators of the semicircular filterization
LQ are the free random variables in the free filterization LQ(Z), having “possible”
non-zero free distributions. In particular, all free reduced words of LQ(Z) in the
free weighted-semicircular family X of (6.3) (and hence, those of LQ) have non-
zero free distributions in LQ(Z) by (4.17) and (4.18).
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Theorem 6.2 Let LQ be the semicircular filterization (6.5) in the free filterization
LQ(Z). Then

LQ
def= C [X ] = C[S]
∗-iso= �

j∈ZC[{uj }]
∗-iso= C

[
�
j∈Z{uj }

]
,

(6.7)

in LQ(Z), where “
∗-iso= ” means “being Banach-∗-isomorphic,” and where (�) in

the first ∗-isomorphic relation of (6.7) means the free-probabilistic free product of
[21, 25], and (�) in the second ∗-isomorphic relation of (6.7) is the pure-algebraic
free product inducing noncommutative free words in X .

Proof The free weighted-semicircular family X of (6.3) can be re-written by

X = {ψ(qj )Uj ∈ LQ(j) : j ∈ Z}

in the free filterization LQ(Z) ofQ,whereUj are the semicircular elements 1
ψ(qj )

uj

of the free semicircular family S of (6.4). Therefore,

C[X ] = C[S] in LQ(Z).

It shows that the (set-)equality (=) of (6.7) holds.
By the definition (6.5) of LQ, it is generated by the free family X by (6.3), and

hence, the first ∗-isomorphic relation of (6.7) holds in the free filterization LQ(Z)
by (6.1), because

C
[{uj }] ⊂ LQ(j) in LQ(Z), for all j ∈ Z.

Since

LQ
∗-iso= �

j∈ZC[{uj }] in LQ(Z),

every element T of LQ is a limit of linear combinations of free reduced words (in
the sense of [21, 25]). Also, all (pure-algebraic) free words in X have their unique
free-reduced-word forms under operator-multiplication on LQ(Z). Furthermore, if
we have a free (reduced) word

W = N

�
l=1
ujl in X ,

then, as an operator, its adjoint W∗ satisfies

W∗ = N

�
l=1
ujN−l+1 in LQ,
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by the self-adjointness of uj ∈ X . Therefore, the second ∗-isomorphic relation
of (6.7) holds, too. ��

7 Shifts on Z and Integer-Shifts on LQ

Let (A, ψ) be the fixed C∗-probability space containing a family Q = {qj }j∈Z of
mutually-orthogonal projections qj ’s having

ψ(qj ) ∈ R
×, for all j ∈ Z,

and let LQ be the semicircular filterization of the free filterization LQ(Z) of Q =
C∗ (Q) .

7.1 (±)-Shifts on Z

Let Z be the set of all integers. Define bijective functions h+ and h− on Z by

h+(j) = j + 1, (7.1.1)

and

h−(j) = j − 1,

for all j ∈ Z.

Then, for these bijections h± of (7.1.1), one can construct the following
bijections h(n)± on Z,

h
(n)
± = h± ◦ h± ◦ · · · ◦ h±︸ ︷︷ ︸

n-times

, (7.1.2)

for all n ∈ N0, with axiomatization:

h0± = idZ, the identity function on Z,

satisfying, h(1)± = h±, where (◦) is the usual functional composition. i.e.,

h
(n)
± (j) = j ± n, for all j ∈ Z,

for all n ∈ N0, by (7.1.2).
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Definition 7.1 Let h(n)± be in the sense of (7.1.2), for all n ∈ N0. Then we call h(n)± ,

the n-(±)-shifts on Z. If n = 1, then the 1-(±)-shifts h± of (7.1.1) are simply said
to be (±)-shifts on Z.

From these shifting processes h(n)± on Z, we construct certain ∗-isomorphisms on
the semicircular filterization LQ.

7.2 Integer-Shifts on LQ

Let LQ be the semicircular filterization in the free filterization LQ(Z) of Q, and

let h(n)± be n-(±)-shifts on Z, for all n ∈ N0. In this section, by using h(n)± , the

corresponding ∗-isomorphisms β(n)± on LQ are constructed, and we study how these
∗-isomorphisms act on LQ, for n ∈ N0.

Define a “multiplicative” bounded linear transformationβ± onLQ by morphisms
satisfying that:

β±
(
Uj

) = Uh±(j), (7.2.1)

for Uj ∈ S, for all j ∈ Z, where S is the free semicircular family (6.4) generating
LQ.

Remark that, by (6.7), the free semicircular family S is the generator set of LQ.
So, by (6.6), the above multiplicative linear transformation β± of (7.2.1) is well-
defined on LQ. By (7.2.1), we obtain the following computations.

Lemma 7.1 Let Y = N

�
l=1
U
nl
jl
∈ LQ, for Uj1, . . . , UjN ∈ S, and n1, . . . , nN ∈ N,

for N ∈ N. Then

β± (Y ) =
N

�
l=1
U
nl
jl±1. (7.2.2)

Proof Let Y be given as above in LQ. Then, by the multiplicativity of the linear
transformations β± of (7.2.1), one has that

β±(Y ) =
N

�
l=1
β±

(
U
nl
jl

)
= N

�
l=1

(
β±

(
Ujl

))nl = N

�
l=1
U
nl
h±(jl ).

Therefore, the formula (7.2.2) holds. ��

Now, let uj1, . . . , ujN ∈ X be weighted-semicircular elements generating LQ,

for N ∈ N, where X is the free weighted-semicircular family (6.3), and let

X = N

�
l=1
u
nl
jl
, for n1, . . . , nN ∈ N.
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Then

β± (X) = β±
((

N

�
l=1
ψ(qjl )

nl

)(
N

�
l=1
U
nl
jl

))

since

Ujl =
1

ψ(qjl )
ujl ⇐⇒ ujl = ψ(qjl )Ujl in LQ,

and hence, the above equality goes to

=
(
N

�
l=1
ψ(qjl )

nl

)
β±

(
N

�
l=1
U
nl
jl

)

=
(
N

�
l=1
ψ(qjl )

nl

) (
N

�
l=1
U
nl
jl±1

)
,

by (7.2.2).

Corollary 7.1 Let X = N

�
l=1
u
nl
jl
∈ LQ, for uj1, . . . , ujN ∈ X in LQ, for

n1, . . . , nN , N ∈ N. Then

β±(X) =
(
N

�
l=1
ψ(qjl )

nl

)(
N

�
l=1
U
nl
h±(jl )

)

=
(
N

�
l=1
ψ(qjl )

nl

)(
β±

(
N

�
l=1
U
nl
jl

))
,

(7.2.2′)

in LQ, where Ujl = 1
ψ(qjl )

ujl ∈ S in LQ, for all l = 1, . . . , N.

Proof The proof of (7.2.2′) is done by (7.2.2), and by the discussion in the very
above paragraph. ��

By (7.2.2) and (7.2.2′), one can realize that the freeness on LQ is preserved by
that on the set β±(LQ). Indeed, if an arbitrary N-tuple (j1, . . . , jN) is alternating
in Z, then the N-tuples (h±(j1), . . . , h±(jN)) are alternating in Z, too, for all
N ∈ N. It guarantees that β± preserves the freeness on the semicircular filterization
LQ. So, if the operators Y and X are in the sense of the above lemma, respectively,
of the above corollary, and if we further assume they are free reduced words with
their lengths-N in LQ, then the images

β±(Y ), and β±(X)

are again free reduced words with their lengths-N in LQ.
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Theorem 7.1 Let β± be the multiplicative linear transformations (7.2.1) on LQ.

Then they are ∗-isomorphisms on LQ.

Proof By (6.5), (6.6) and (6.7), all elements of the semicircular filterization LQ

are the limits of linear combinations of free reduced words in the free semicircular
family S of (6.4). So, let’s focus on free reduced words of LQ in S.

Let (j1, . . . , jN) be an alternating N-tuple in Z for N ∈ N, and

Y = N

�
l=1
U
nl
jl
, for n1, . . . , nN ∈ N.

By the alternating-ness of (j1, . . . , jN), the above operator Y is a free reduced
word with its length-N in LQ.

Then, by (7.2.2′),

β±(Y ) =
N

�
l=1
U
nl
h±(jl), (7.2.3)

where h± are the (±)-shifts (7.1.1) on Z.

By the bijectivity of h± on Z, the relation (7.2.3) guarantees the bijectivity of
β± on LQ. i.e., these multiplicative linear transformations β± of (7.2.1) are not only
generator-preserving but also freeness-preserving. And hence, they are bounded and
bijective on LQ by (6.7). (Note that the restrictions β± |S are bijective functions on
the generator set S of LQ.)

Consider now that if Y is as above, then

β±(Y ∗) = β±
(
N

�
l=1
U
nN−l+1
jN−j+1

)

by the self-adjointness of Uj1, . . . , UjN

= N

�
l=1
U
nN−l+1
h±(jN−l+1)

by (7.2.2′)

=
(
N

�
l=1
U
nl
h±(jl)

)∗
= (β±(Y ))∗ . (7.2.4)

So,

β±(S∗) = (β±(S))∗ , for all S ∈ LQ,

by (7.2.4).
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Therefore, the bounded multiplicative linear transformations β± of (7.2.1) are
both bijective, and adjoint-preserving on LQ, equivalently, they are well-defined
∗-isomorphisms on LQ. ��

From the above theorem, one can realize that the (±)-shifts h± on Z induce the
corresponding ∗-isomorphisms β± on LQ.

Definition 7.2 Let β± be the ∗-isomorphisms (7.2.1) on the semicircular filteriza-
tion LQ, induced by the (±)-shifts h± of (7.1.1) on Z. Then they are said to be
(±)-integer-shift(-∗-isomorphism)s on LQ.

These two ∗-isomorphisms β± satisfy the following identity relation on LQ.

Proposition 7.1 Let β± be the (±)-integer-shifts (7.2.1) on LQ. Then

β+β− = 1LQ = β−β+ on LQ, (7.2.5)

where 1LQ is the identity map on LQ, satisfying

1LQ(T ) = T , for all T ∈ LQ.

Proof As we discussed above, it suffices to consider the cases where we have free
reduced words

Y = N

�
l=1
U
nl
jl

of LQ, for n1, . . . , nN ∈ N,

for N ∈ N, where Ujl ∈ S, for l = 1, . . . , N, and (j1, . . . , jN) is alternating in
Z, by (7.2.2), (7.2.2′), and (6.7).

Observe that

β+β−(Y ) = β+
(
N

�
l=1
U
nl
h−(jl)

)
= β+

(
N

�
l=1
U
nl
jl−1

)

= N

�
l=1
U
nl
h+(jl−1) =

N

�
l=1
U
nl
jl−1+1 = Y,

similarly,

β−β+(Y ) = Y.

Therefore, for any arbitrary operators S ∈ LQ,

β+β−(S) = β−β+(S) in LQ.

Therefore, the identity (7.2.5) holds. ��
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Let β± be the (±)-integer-shifts on LQ. Then one can construct ∗-isomorphisms
βn±,

βn± = β±β± · · · · · ·β±︸ ︷︷ ︸
n-times

on LQ, (7.2.6)

for all n ∈ N0 = N ∪ {0}, with axiomatization:

β0+ = 1LQ = β0−.

Since β± and 1LQ are ∗-isomorphisms, these morphisms βn± of (7.2.6) are well-
defined ∗-isomorphisms on LQ, too, for all n ∈ N0.

Definition 7.3 Let βn± be the ∗-isomorphisms (7.2.6) on the semicircular filteriza-
tion LQ, for all n ∈ N0, with axiomatization β0± = 1LQ. Then they are called the
n-(±)-(integer-)shifts on LQ, for all n ∈ N0.

By (7.2.5) and (7.2.6), one obtains the following relations on the system {βn± :
n ∈ N0} of ∗-isomorphisms on the semicircular filterization LQ.

Lemma 7.2 Let βn± be the n-(±)-shifts on the semicircular filterization LQ, for
n ∈ N0. Then they satisfy

β
n1+ β

n2− = βn2− β
n1+ =

⎧⎨
⎩

1LQ if n1 = n2

β
n1−n2+ if n1 > n2

β
n2−n1− if n1 < n2,

(7.2.7)

on LQ, for all n1, n2 ∈ N0. Also,

β
n1+ β

n2+ = βn1+n2+ , and βn1− β
n2− = βn1+n2− , (7.2.8)

on LQ, for all n1, n2 ∈ N0.

Proof By the identity (7.2.5), two ∗-isomorphisms β+ and β− are not only
commutative on LQ, but also their products β+β− and β−β+ become the identity
map 1LQ on LQ. So, for any n1, n2 ∈ N0,

β
n1+ β

n2− = βn2− β
n1+ on LQ.

Thus, let’s focus on the ∗-isomorphisms βn1+ β
n2− , for arbitrarily fixed n1, n2 ∈ N0.

Suppose first that n1 = n2 = n in N0. Then, by (7.2.5),

β
n1+ β

n2− = βn+βn− = (β+β−)n =
(
1LQ

)n = 1LQ. (7.2.9)
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Assume now that n1 > n2 in N0. Then

β
n1+ β

n2− = βn1−n2+ β
n2+ β

n2− = βn1−n2+ , (7.2.10)

on LQ, by (7.2.9).
Similar to (7.2.10), if n1 < n2 in N0, then

β
n1+ β

n2− = βn1+ β
n1− β

n2−n1− = βn2−n1− , (7.2.11)

on LQ.

So, the formula (7.2.7) is proven by (7.2.9), (7.2.10) and (7.2.11).
For any free generators Uj ∈ S of LQ (by (6.7)), one can get that

β
n1+ β

n2+
(
Un
j

)
= βn1+

(
Un
j+n2

)

= Un
j+n1+n2

= βn1+n2+
(
Un
j

)
,

(7.2.12)

and

β
n1− β

n2−
(
Un
j

)
= βn1−

(
Un
j−n2

)
= Un

j−n2−n1

= Un
j−(n1+n2)

= βn1+n2−
(
Un
j

)
,

for all j ∈ Z, for all n ∈ N, for all n1, n2 ∈ N0.

Therefore, the formula (7.2.8) holds on LQ by (7.2.2), (7.2.2′), and (7.2.12). ��

The above relations (7.2.7) and (7.2.8) can be re-expressed as follows;

βn1
e1
βn2
e2
= βn2

e2
βn1
e1
= β |e1n1+e2n2|

sgn(e1n1+e2n2)
on LQ, (7.2.13)

with

sgn(e1n1 + e2n2) =
{+ if e1n1 + e2n2 ≥ 0
− if e1n1 + e2n2 < 0,

for all e1, e2 ∈ {±}, and n1, n2 ∈ N0, where sgn in (7.2.13) is the sign map on Z,

sgn(j)
def=

{+ if j ≥ 0
− if j < 0,

for all j ∈ Z, and |.| is the absolute value on Z. From below, we use the re-
expression (7.2.13) for the results (7.2.7) and (7.2.8) for convenience.

Now, consider the system B of n-(±)-shifts βn± on LQ, i.e.,

B = {βn±}n∈N0 = {βn±}n∈N ∪ {1LQ}. (7.2.14)
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Let Aut(LQ) be the group,

Aut
(
LQ

) =
⎛
⎝
⎧⎨
⎩α : LQ → LQ

∣∣∣∣∣∣
α are

∗-isomorphisms
on LQ

⎫⎬
⎭ , ·

⎞
⎠ (7.2.15)

consisting of all ∗-isomorphisms on LQ, where the operation (·) is the prod-
uct (or composition) of ∗-isomorphisms. We call Aut(LQ) of (7.2.15), the (∗-)
automorphism group on LQ. (Recall that ∗-isomorphisms from a ∗-algebra onto
the same ∗-algebra are called ∗-automorphisms.)

By the construction (7.2.14), the system B is definitely a “subset” of the
automorphism groupAut(LQ) of (7.2.15), by Theorem 7.1. Note that the operation
(·) is closed on B, in the sense that:

(
βn1
e1
, βn2

e2

) ∈ B×B 
−→ βn1
e1
βn2
e2
∈ B, (7.2.16)

for all e1, e2 ∈ {±}, and n1, n2 ∈ N0, by (7.2.13).
Clearly, by (7.2.8), one can get that

(
βn1
e β

n2
e

)
βn3
e = βn1+n2+n3

e = βn1
e

(
βn2
e β

n3
e

)
, (7.2.17)

for all e ∈ {±}, and n1, n2, n3 ∈ N0.

Observe now that

(
β
n1+ β

n2−
)
β
n3+ = β |n1−n2|

σ(n1,n2)
β
n3+ = β ||n1−n2|−n3|

σ(|n1−n2|,n3)
, (7.2.18)

and

β
n1+

(
β
n2− β

n3+
) = βn1+ β

|n2−n3|
σ(n2,n3)

= β |n1−|n2−n3||
σ(n1,|n2−n3|),

by (7.2.7) (and (7.2.13)), for all n1, n2, n3 ∈ N0, where

σ (n, k)
def= sgn (n− k) , for all n, k ∈ N0,

in (7.2.18).
Consider two positive quantities a1 and a2,

a1 = ||n1 − n2| − n3| , (7.2.19)

and

a2 = |n1 − |n2 − n3|| ,

for n1, n2, n3 ∈ N0.
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If either n1 ≤ n2 ≤ n3, or n1 ≥ n2 ≥ n3 in N0, then

a1 = |n2 − n1 − n3| = a2; (7.2.20)

and if either n1 ≤ n3 ≤ n2, or n1 ≥ n3 ≥ n2 in N0, then

a1 = |n2 − n1 − n3| = a2; (7.2.21)

and if either n2 ≤ n3 ≤ n1, or n2 ≥ n3 ≥ n1 in N0, then

a1 = |n1 − n2 − n3| = a2, (7.2.22)

where a1 and a2 are the quantities (7.2.19).

Lemma 7.3 Let B = {βn±}n∈N0 be the system (7.2.14). Then

(
βn1
e1
βn2
e2

)
βn3
e3
= βn1

e1

(
βn2
e2
βn3
e3

)
on LQ, (7.2.23)

for all e1, e2, e3 ∈ {±}, and n1, n2, n3 ∈ N0.

Proof By (7.2.17), we have

(
βn1
e β

n2
e

)
βn3
e = βn1

e

(
βn2
e β

n3
e

)
on LQ,

for all e ∈ {±}, and n1, n2, n3 ∈ N0.

By (7.2.18), (7.2.20), (7.2.21) and (7.2.22),

(
β
n1+ β

n2−
)
β
n3+ = β ||n1−n2|−n3|

sgn(|n1−n2|−n3)
= βa1

sgn(a′1)
= βa2

sgn(a′2)
= β |n1−|n2−n3||

sgn(n1−|n2−n3|)
= βn1+

(
β
n2− β

n3+
)
,

(7.2.24)

on LQ, for all n1, n2, n3 ∈ N0, where a1 =
∣∣a′1

∣∣ and a2 =
∣∣a′2

∣∣ are in the sense
of (7.2.19), and sgn is the sign map on Z in (7.2.13).

Similar to (7.2.24), one can obtain that

(
β
n1− β

n2+
)
β
n3− = β ||n1−n2|−n3|

sgn(|n1−n2|−n3)

= β |n1−|n2−n3||
sgn(n1−|n2−n3|) = β

n1−
(
β
n2+ β

n3−
)
,

(7.2.25)

on LQ, for all n1, n2, n3 ∈ N0.

Therefore, the formula (7.2.23) holds on B, by (7.2.17), (7.2.24) and (7.2.25).
��

By the above lemma, we obtain the following structure theorem of the system B
of (7.2.14) in the automorphism group Aut(LQ).
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Theorem 7.2 Let B be the subset (7.2.14) of the automorphism group Aut(LQ)
of (7.2.15). Then B is a subgroup of Aut(LQ).

Proof Let B be in the sense of (7.2.14). Then, by (7.2.16), the operation (·) is
closed on B. So, the algebraic pair B = (B, ·) is well-constructed as an algebraic
sub-structure of Aut(LQ). By (7.2.23), this operation is associative on B, and
hence, it forms a semigroup. Since

β0+ = 1LQ = β0− in B,

and since

βne · 1LQ = βne = 1LQ · βne ,

for all e ∈ {±}, and n ∈ N0, the semigroup B contains its (·)-identity 1LQ. Thus, it
forms a monoid.

Finally, by (7.2.7), all elements βn± ∈ B have their unique (·)-inverses βn∓ ∈ B,
such that

βn+βn− = 1LQ = βn−βn+ on LQ,

for all n ∈ N0, i.e.,

(
βn±

)−1 = βn∓onLQ, for all n ∈ N0,

where x−1 mean the group-inverses of x. So, this monoid B forms a group.
Therefore, the system B is a subgroup of the automorphism group Aut(LQ).

��

By the above theorem, the system B of (7.2.14) forms a group. As a group, B
satisfies the following group-property.

Theorem 7.3 Let B be the subgroup (7.2.14) of the automorphism groupAut(LQ).
Then B is group-isomorphic to the infinite abelian cyclic group Z = (Z, +). i.e.,

B
Group= (Z, +), (7.2.26)

where “
Group= ” means “being group-isomorphic.”

Proof Define now a function� : Z→ B by

� : j ∈ Z 
−→ β
|j |
sgn(j) ∈ B, (7.2.27)

with �(0) = 1LQ.
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It is not hard to check that this function � of (7.2.27) is a well-defined bijection
from Z onto B, by (7.2.14). Consider now that

�(j1 + j2) = β |j1+j2|
sgn(j1+j2)

= β |j1|
sgn(j1)

β
|j2|
sgn(j2)

= �(j1)�(j2),
(7.2.28)

in B, by (7.2.13), for all j1, j2 ∈ Z.

So, the bijection � of (7.2.27) is a group-homomorphism by (7.2.28), equiva-
lently, it is a group-isomorphism from Z onto B. Therefore, the group-isomorphic
relation (7.2.26) holds true. ��

The above theorem characterizes the group-structure of the subgroup B =
{βn±}n∈N0 of the automorphism group Aut(LQ). i.e., B is an infinite cyclic abelian
group.

Definition 7.4 Let B be the subgroup (7.2.14) of the automorphism group
Aut(LQ). We call B, the integer-shift (sub)group (of Aut(LQ) acting) on LQ.

7.3 Free Distributions on LQ Under the Action of B

Let B be the integer-shift group (7.2.14) acting on the semicircular filterization LQ

of Q. Let

uj = l ⊗ qj ∈ X , and Uj = 1

ψ(qj )
uj ∈ S, (7.3.1)

in LQ, for j ∈ Z, where X is the free weighted-semicircular family (6.3), and S is
the free semicircular family (6.4) of LQ.

Theorem 7.4 Let uj and Uj be in the sense of (7.3.1) in LQ. Then, for βne ∈ B,
we have

τ
((
βne (uj )

)k) = ωkψ (
qj

)k
c k

2
= τ

(
ukj

)
, (7.3.2)

and

τ
((
βne (Uj )

)k) = ωkc k
2
= τ

(
Uk
j

)
,

for all k ∈ N, for all e ∈ {±1}, and n ∈ N0.

Proof Let e ∈ {±1}, and n ∈ N0 be arbitrarily taken, and let βne be the
corresponding ∗-isomorphism of the integer-shift group B. For the fixed ψ(qj )2
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-semicircular element uj of (7.3.1), one has that

βne
(
uj

)k = (
βne

(
ψ(qj )Uj

))k
= ψ(qj )kβne

(
Uj

)k = ψ(qj )kUk
jen,

(7.3.3)

where

jen =
{
j + n if e = 1
j − n if e = −1,

for all k ∈ N. Thus,

τ
((
βne (uj )

)k) = ψ(qj )kτ
(
Uk
jen

)
= ψ(qj )k

(
ωkc k

2

)
, (7.3.4)

since Ujen ∈ S in LQ, for all k ∈ N. Since

τ
(
Uk
m

)
= ωkc k

2
, for all Um ∈ S,

by the semicircularity (5.3) (under A 5.1),

τ
((
βne (uj )

)k) = ψ(qj )kτ
(
Uk
j

)
, ∀k ∈ N,

by (7.3.4). Therefore, the first free-distributional data of (7.3.2) holds.
By (7.3.3) and (7.3.4), one can get that

τ
((
βne (Uj )

)k) = τ (Uk
jen

)
= ωkc k

2
= τ

(
Uk
j

)
,

for all k ∈ N. It shows that the second free-distributional data of (7.3.2) holds, too.
�

The above theorem shows how the free probability on the semicircular filteriza-
tion LQ is affected by (actions of) the n-(e)-shift βne ∈ B on LQ.

Corollary 7.2 Let LQ be the semicircular filterization.

The semicircular law on LQ is preserved by the action of B. (7.3.5)

The ψ(qj )
2-semicircular laws induced by uj ∈ X on LQ is preserved

to be the ψ
(
qj

)2
-semicircular laws induced by ψ(qj )Ujen on LQ, for Uj ∈ S, for

all βne ∈ B, where jen are in the sense of (7.3.3). (7.3.6)
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Proof Now, let Uj ∈ S be a semicircular element (7.3.1) in the semicircular
filterization LQ. Then

τ
((
βne (Uj )

)k) = ωkc k
2
= τ

(
Uk
j

)
,

for all k ∈ N, for all e ∈ {±}, n ∈ N0, by (7.3.2).
It shows that the semicircular law induced by Uj ∈ S on LQ is preserved to be

the semicircular law induced by Ujen ∈ S on LQ, for all βne ∈ B. Therefore, the
statement (7.3.5) holds.

Now, consider the ψ(qj )2-semicircular element uj = ψ(qj )Uj ∈ X of (7.3.1)
in the semicircular filterization LQ. One has

τ
((
βne (uj )

)k) = ωnψ (
qj

)n
c n

2
= τ

(
ukj

)
,

for all k ∈ N, for all e ∈ {±1}, n ∈ N0, by (7.3.2).
Thus, the ψ(qj )2-semicircular laws on LQ induced by uj ∈ X are preserved to

be the ψ(qj )2-semicircular laws on LQ induced by

βne
(
uj

) = ψ(qj )Ujen ∈ LQ.

So, the statement (7.3.6) holds true. ��

The (weighted-)semicircular law(s) induced by our free (weighted-)semicircular
family (X∪)S on LQ is (resp., are) preserved to be the (weighted-)semicircular
law(s) induced by (X∪)S, under the action of the integer-shift group B, by (7.3.5)
and (7.3.6). So, one can verify that the free probability on the semicircular
filterization LQ is preserved under the action of B, by (6.7).

Definition 7.5 Let (B1, ϕ1) and (B2, ϕ2) be arbitrary topological ∗-probability
spaces. We say that (B1, ϕ1) is free-(∗-)homomorphic to (B2, ϕ2), if (i) there is a
∗-homomorphism� : B1 → B2, and (ii)

ϕ2 (�(a)) = ϕ1(a), for all a ∈ (B1, ϕ1),

where �(a) ∈ (B2, ϕ2). The ∗-homomorphism � is called a free-(∗-)
homomorphism.

If � in (i) is a ∗-isomorphism satisfying (ii), then it is said to be a free-(∗-)
isomorphism. In such a case, (B1, ϕ1) and (B2, ϕ2) are said to be free-(∗-)
isomorphic.

By (6.5), (6.7), (7.3.2), (7.3.5) and (7.3.6), we obtain the following free-
isomorphic relation on LQ.
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Theorem 7.5 Let LQ =
(
LQ, τ

)
be the semicircular filterization, and B, the

integer-shift group. Then the Banach ∗-probability spaces

{(
β
(
LQ

)
, τ ◦ β) : β ∈ B

}
(7.3.7)

are free-isomorphic from each other, where (◦) is the functional composition.

Proof Let LQ = (LQ, τ) be our semicircular filterization on Q. Since the integer-
shift group B is a subgroup of the automorphism group Aut(LQ), all elements
β ∈ B are ∗-isomorphisms from LQ onto LQ, and hence,

β(LQ) = LQ, for all β ∈ B.

So, the above family (7.3.7) is identified with

{(
LQ, τ ◦ β

) : β ∈ B
}
.

Thus, it suffices to show that

τ (T ) = τ (β(T )) , for all T ∈ LQ, (7.3.8)

for all β ∈ B.
By (7.3.2), the free distributions of the free generators of S (or, of X ) are

preserved under the action of B in LQ. It shows that the free distributions of all
free reduced words of LQ in S (or, in X ) are preserved by the action of B. Since
all elements of LQ are the limits of linear combinations of free reduced words, free
distributions of T ∈ LQ are preserved to be that of β(T ) ∈ LQ, for all β ∈ B. i.e.,(
LQ, τ

)
and

(
LQ, τ ◦ β

)
are free-isomorphic, for all β ∈ B. ��

The above theorem shows that all elements β of the integer-shift group B
are not only ∗-isomorphisms on LQ, but also free-isomorphisms on LQ, in the
automorphism group Aut(LQ).

8 The Monoid B(Z) Acting on LQ

In this section, we consider certain tools, and techniques for studying free-
homomorphic relations of embedded free-probabilistic sub-structures of the
semicircular filterization LQ.

Let J = (j1, . . . , jN) be the N-tuple of “mutually distinct” integers
j1, . . . , jN ∈ Z, for

N ∈ N>1
def= N \ {1},
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and define the corresponding Banach ∗-subalgebra L[J ] of LQ by

L[J ] def= N
�
l=1

Ljl , with Ljl = C
[{Ujl }], (8.1)

where Ljl are the free blocks of LQ, for Ujl ∈ S, for all l = 1, . . . , N (see (6.7)).
As a sub-structure of the semicircular filterization LQ = (LQ, τ), one can regard

the Banach ∗-algebra L[J ] of (8.1) as a Banach ∗-probability space,

L[J ] denote= (
L[J ], τ = τ |L[J ]

)
, (8.2)

in LQ.

Extending the definitions of (8.1) and (8.2), if an integer-sequence J =
(j1, j2, j3, . . . ) of mutually distinct infinitely many integers j1, j2, . . . is given, one
can construct the Banach ∗-subalgebra L[J ] of LQ, and the corresponding Banach
∗-probability space,

L[J ] = (
L[J ], τ = τ |L[J ]

)
. (8.3)

Including the extended case (8.3), for any J = (j1, . . . ,jN) of mutually distinct
integers j1, . . . , jN ∈ Z, for

N ∈ N
∞
>1

def= N>1 ∪ {∞},

one can get the free-probabilistic sub-structure

L[J ] = (L[J ], τ ) in LQ. (8.4)

Now, let B be the integer-shift group (7.2.14), an infinite cyclic abelian subgroup of
the automorphism group Aut(LQ) of LQ, and let βne ∈ B, for

(e, n) ∈ N
±
0

def= {±} × N0.

For any arbitrarily fixed k ∈ Z, and βne ∈ B, define a new morphism βne (k) on
LQ by a bounded “multiplicative” linear transformation satisfying

βne (k)
(
Uj

) =
{
βne (Uk) = Uken if k = j
1LQ

(
Uj

) = Uj if k �= j (8.5)

for all Uj ∈ S, for j ∈ Z.
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By the multiplicativity of the morphism βne (k) of (8.5), we have

βne (k)

(
N

�
l=1
U
njl
jl

)

def=

⎧⎪⎪⎨
⎪⎪⎩

(
N−t
�
l=1

U
njl
jl

) (
U
nk
ken

) ( N

�
l=t+1

U
njl
jl

)
if ∃t ∈ {1, . . . , N}
s.t., jt = k in Z

N

�
l=1
U
njl
jl

otherwise,

(8.6)

by (8.5), for all free reduced words N

l=1
U
njl
jl

of LQ in S, for nj1, . . . , njN ∈ N.

For example, one has

β2−(3)
(
U2

2U3U
3−1U

2
3U

2
1

) = U2
2U3−2U

3−1U
2
3−2U

2
1

= U2
2U1U

3−1U
4
1 ,

and

β2−(3)
(
U2

2U3U
3
−1U

4
1

) = U2
2U3−2U

3
−1U

4
1

= U2
2U1U

3−1U
4
1 ,

in LQ.

The above two examples demonstrate that the bounded multiplicative linear
transformation β2−(3) is not injective, and hence, the morphisms βne (k) of (8.5) are
not injective (and hence, not bijective) on LQ, in general. However, we have the
following result.

Lemma 8.1 Let (e, n) ∈ N
±
0 , and k ∈ Z, and let βne (k) be a bounded multiplicative

linear transformation (8.5) satisfying (8.6) on LQ, where βne ∈ B. Then

the morphism βne (k) of (8.5) is a ∗ -homomorphism on LQ. (8.7)

Proof Let βne (k) be a morphism (8.5) on LQ. By definition, this morphism βne (k)

is a bounded multiplicative linear transformation on LQ. Indeed, βne (k) satisfies that

βne (k) (T1T2) =
(
βne (k) (T1)

) (
βne (k)(T2)

)
, (8.8)

by (8.6) and the linearity, for all T1, T2 ∈ LQ.

Moreover,

βne (k)
(
W∗

) = (
βne (k)(W)

)∗
,
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for all free reduced words W of LQ in the free semicircular family S, by (8.6). It
guarantees that

βne (k)
(
T ∗

) = (
βne (k)(T )

)∗
in LQ, (8.9)

for all T ∈ LQ.

Therefore, the morphism βne (k) is a ∗-homomorphism on LQ by (8.8) and (8.9),
for any (e, n) ∈ N

±
0 , and k ∈ Z. Equivalently, the statement (8.7) holds. ��

Define now families B(k) by

B(k)
def=

{
βne (k)

∣∣∣∣β
n
e (k) are in the sense of (8.5),
∀βne ∈ B, ∀(e, n) ∈ N

±
0

}
, (8.10)

for all k ∈ Z.

Let Hom(LQ) be the (∗-)homomorphism semigroup of LQ. i.e.,

Hom
(
LQ

) def= ({
θ : LQ → LQ |θ is a ∗ -homomorphism

}
, ·) ,

where the operation (·) is the product (or, the composition) of ∗-homomorphisms on
LQ.

By definition, clearly, the automorphism group Aut(LQ) is a subgroup embed-
ded in the homomorphism semigroupHom(LQ).

Corollary 8.1 Let B(k) be the families (8.10) induced by the integer-shift group
B, for all k ∈ Z. Then

(
�
k∈ZB(k)

)
⊂ Hom(LQ). (8.11)

Proof The proof of the set-inclusion (8.11) is clear by (8.7). ��

Now, for a fixed k ∈ Z, let B(k) be the family (8.10) in Hom(LQ) of LQ. Then
it is not difficult to check that

βn1
e1
(k)βn2

e2
(k) =

{
β
n2
e2 (k) if n2 �= 0
β
n1
e1 (k) if n2 = 0,

(8.12)

for all (el, nl) ∈ N
±
0 , for l = 1, 2.

Indeed, if n2 = 0 ∈ N0, then

βn2
e2
(k) = β0

e2
(k) = 1LQ(k) = 1LQ,
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by (8.5) and (8.6). So, if n2 = 0, then

(
β
n1
e1 (k)β

0
e2
(k)

)
(T ) = βn1

e1 (k)
(
1LQ(T )

)
= βn1

e1 (k) (T ) ,
(8.13)

for all T ∈ LQ.

Meanwhile, if n2 �= 0 ∈ N0, then, for any free reduced word W = N

�
l=1
U
njl
jl

of

LQ in the free semicircular family S of (6.4), we have that: (i) if there is no integers
js such that js = k in Z, for s ∈ {1, . . . , N}, then

(
β
n1
e1 (k)β

n2
e2 (k)

)
(W) = βn1

e1 (k)
(
β
n2
e2 (k)(W)

)
= βn1

e1 (k) (W)

= W = βn2
e2 (k)(W);

(8.13′)

and (ii) if there exists js such that js = k in Z, for some s ∈ {1, . . . , N}, then

(
β
n1
e1 (k)β

n2
e2 (k)

)
(W) = βn1

e1 (k)
(
U
nj1
j1

. . . U
nk
ke2n2

. . . U
njN
jN

)

= Unj1
j1

. . . U
nk
ke2n2

. . . U
njN
jN

= βn2
e2 (k) (W) ,

(8.13′′)

by (8.6), for all βn1
e1 (k), β

n2
e2 (k) ∈ B(k).

Thus, by (8.13), (8.13)’ and (8.13)”, the formula (8.12) indeed holds true.

Lemma 8.2 The inherited operation (·) on the homomorphism semigroup
Hom(LQ) is closed in the family B(k) of (8.10), for all k ∈ Z. More precisely, if
β
n1
e1 (k), β

n2
e2 (k) ∈ B(k), then

βn1
e1
(k)βn2

e2
(k) =

{
β
n2
e2 (k) ∈ B(k) if n2 �= 0
β
n1
e1 (k) ∈ B(k) if n2 = 0,

for all (e1, n1), (e2, n2) ∈ N
±
0 , for all k ∈ Z.

Proof The proof is done by (8.12). ��

The above lemma shows that the pairs (B(k), ·) form well-determined algebraic
sub-structures of Hom(LQ), for all k ∈ Z. By Lemmas 8.1 and 8.2, we obtain the
following structure theorem of B(k), for k ∈ Z. Recall that a semigroup having its
binary-operation-identity is said to be a monoid. i.e., an algebraic structure (Y, ·) of
a set Y and a binary operation (·) is a monoid, if and only if (·) is associative, and
there exists a unique (·)-identity.
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Theorem 8.1 Let k ∈ Z, and B(k), the corresponding family (8.10). Then B(k)
is a noncommutative sub-monoid of the homomorphism semigroupHom(LQ). i.e.,

B(k)
denote= (B(k), ·) Monoid⊂ Hom(LQ), (8.14)

where “
Monoid⊂ ” means “being a sub-monoid of.”

Proof Note that the algebraic pair

B(k)
denote= (B(k), ·)

is a well-determined sub-structure of Hom(LQ) by (8.11) and (8.12).
Also, if n3 �= 0, then

(
βn1
e1
(k)βn2

e2
(k)

)
βn3
e3
(k) =

{
β
n2
e2 (k)β

n3
e3 (k) = βn3

e3 (k) if n2 �= 0
β
n1
e1 (k)β

n3
e3 (k) = βn3

e3 (k) if n2 = 0,

and

βn1
e1
(k)

(
βn2
e2
(k)βn3

e3
(k)

) = βn1
e1
(k)βn3

e3
(k) = βn3

e3
(k),

in B(k), by (8.12).
And, if n3 = 0 in N0, then

(
β
n1
e1 (k)β

n2
e2 (k)

)
β0
e3
(k) = βn1

e1 (k)β
n2
e2 (k)

= βn1
e1 (k)

(
β
n2
e2 (k)β

0
e3
(k)

)
,

by (8.12), too.
So, the operation (·) is associative, i.e., the algebraic pair B(k) forms a

semigroup.
Note that, if (e1, n1) �= (e2, n2) in N

±
0 , and if n1 �= 0, and n2 �= 0 in N0, then

βn1
e1
(k)βn2

e2
(k) = βn2

e2
(k) �= βn1

e1
(k) = βn2

e2
(k)βn1

e1
(k),

in B(k), by (8.12). Thus, this semigroup B(k) is not commutative in Hom(LQ).
By the definition (8.10) of B(k), there exists an element

β0
e (k) = 1LQ(k) = 1LQ ∈ B(k), for e ∈ {±},

such that

βne (k) · 1LQ = βne (k) = 1LQ · βne (k),

for all (e, n) ∈ N
±
0 .
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i.e., the noncommutative semigroup B(k) of (8.10) is a monoid containing its (·)-
identity 1LQ . Therefore, B(k) is a sub-monoid ofHom(LQ). So, the relation (8.14)
is satisfied.

Note that, as we discussed above in examples, if n �= 0 in N0, then the elements
βne (k) are not injective on LQ. It means that βne (k) are not invertible in B(k) as
∗-homomorphisms in Hom(LQ), in general. So, the monoid B(k) is not a group in
Hom(LQ). Thus, the family B(k) is a noncommutative sub-monoid of Hom(LQ),
for all k ∈ Z, equivalently, the relation (8.14) holds. ��

The above theorem illustrates how our new families B(k) of (8.10) are different
from our integer-shift group

B ⊂ Aut(LQ) ⊂ Hom(LQ)

as embedded sub-structures of the homomorphism semigroup Hom(LQ), for k ∈
Z. In fact,

(
B(k) \ {1LQ}

) ⊂ (
Hom(LQ) \ Aut(LQ)

)
, (8.14′)

set-theoretically, for all k ∈ Z.

Definition 8.1 Let B(k) be a noncommutative sub-monoid (8.10) of the homomor-
phism semigroup Hom(LQ), for k ∈ Z. Then we call B(k), the k-(sub-)monoid of
Hom(LQ), for all k ∈ Z.

Define now a sub-monoid B(Z) of Hom(LQ) generated by {B(k)}k∈Z, i.e.,

B(Z)
def=

〈
∪
k∈ZB(k)

〉
, (8.15)

where B(k) are the k-monoids (8.14) satisfying (8.14′), for all k ∈ Z, and 〈X〉
mean the sub-monoids generated by subsetsX ofHom(LQ). i.e., the monoid B(Z)
of (8.15) is the minimal sub-monoid of Hom(LQ) with its identity 1LQ, containing
all k-monoids {B(k)}k∈Z, i.e.,

B(Z) = ∩

⎧⎪⎪⎨
⎪⎪⎩
M ⊆ Hom(LQ)

∣∣∣∣∣∣∣∣

M is a sub-monoid of LQ,
and

M ⊇
(
∪
k∈ZB(k)

)
⎫⎪⎪⎬
⎪⎪⎭
.

Thus, for any βn1
e1 (k1) ∈ B(k1), and βn2

e2 (k2) ∈ B(k2),

βn1
e1
(k1)β

n2
e2
(k2) ∈ B(Z), (8.16)

in Hom(LQ), for all (el, nl) ∈ N
±
0 , and kl ∈ Z, for all l = 1, 2.
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If k1 = k = k2 in Z, then

βn1
e1
(k1)β

n2
e2
(k2) = βn1

e1
(k)βn2

e2
(k),

dictated by (8.12) in B(k) ⊂ B(Z); while if k1 �= k2 in Z, then βn1
e1 (k1)β

n2
e2 (k2) is

simply an element of B(Z) contained in Hom(LQ).
For example,

(
β2+(−2)β1−(−2)

)(
U3

1U
2−2U4U

2
1

)

= β2+(−2)
(
U3

1U
2−2−1U4U

2
1

)

= β2+(−2)
(
U3

1U
2−3U4U

2
1

)

= U3
1U

2−3U4U
2
1

= β1−(−2)
(
U3

1U
2−2U4U

2
1

)
,

and
(
β2+(−2)β3−(1)

)(
U3

1U
2−2U4U

2
1

)

= β2+(−2)
(
U3

1−3U
2−2U4U

2
1−3

)

= β2+(−2)
(
U3
−2U

2−2U4U
2−2

)

= β2+(−2)
(
U5−2U4U

2−2

)

= U5−2+2U4U
2−2+2 = U5

0U4U
2
0 ,

etc.

Definition 8.2 Let B(Z) be the sub-monoid (8.15) of the homomorphism semi-
group Hom(LQ) of the semicircular filterization LQ. Then we call it the integer-
shift monoid (acting) on LQ.

As we have seen, even though B(Z) is induced by B, the integer-shift monoid
B(Z) and the integer-shift group B are totally different algebraic structures in
Hom(LQ) (e.g., see (7.2.26), (8.14) and (8.14)′).

9 Free-Homomorphic Relations on LQ

In this section, based on the results of Sects. 7 and 8, we study free-homomorphic
relations in the semicircular filterization LQ. Recall first that, the main results of
Sect. 7 show that all integer-shifts β ∈ B are free-isomorphisms on LQ, and hence,
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the Banach ∗-probability spaces

{(
β
(
LQ

)
, τ ◦ β) : β ∈ B

}

are free-isomorphic from each other.
So, here, we are interested in sub-structures of LQ, and their free-homomorphic

relations among them in LQ.

9.1 Free-Homomorphisms Among L[J ]’s in LQ

Let J = (j1, . . . ,jN) be an N-tuple of “mutually-distinct” integers j1, . . . , jN ∈
Z, for

N ∈ N
∞
>1

def= (N \ {1}) ∪ {∞}.

For such an integer-sequence J, define the Banach ∗-subalgebra L[J ] of the
semicircular filterization LQ by (8.1). i.e.,

L[J ] def= N
�
n=1

Ljn , with Ljn = C
[{Ujn}], (9.1.1)

where Ljn are the free blocks of LQ, for all n = 1, . . . , N .
As we discussed in Sect. 8, by the structure theorem (6.7) of LQ, the free product

Banach ∗-algebra L[J ] of (9.1.1) is indeed a well-defined Banach ∗-subalgebra of
LQ, understood as a free-probabilistic sub-structure (8.2), i.e.,

L[J ] denote= (
L[J ], τ = τ |L[J ]

)
, (9.1.2)

in LQ = (LQ, τ), as a Banach ∗-probability space.
Now, let

Jl =
(
jl1, jl2, . . . ,jlNl

)
(9.1.3)

be Nl -tuples of mutually-distinct integers for Nl ∈ N
∞
>1, for all l = 1, 2, and let

L[Jl] be the corresponding Banach ∗-probability spaces (9.1.2) in LQ, for l = 1, 2.

Theorem 9.1 Let L[J1] and L[J2] be Banach ∗-subalgebras (9.1.1) of the semi-
circular filterization LQ, where J1 and J2 are in the sense of (9.1.3). Assume that
N1 ≤ N2 in N

∞
>1. Then the Banach ∗-probability space L[J1] of (9.1.2) is free-

homomorphic to the Banach ∗-probability space L[J2] of (9.1.2) in LQ. i.e.,

L[J1]
free-homo⊆ L[J2] in LQ, (9.1.4)

where “
free-homo⊆ ” means “being free-homomorphic to.”
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Proof Let J1 and J2 be in the sense of (9.1.3) under an additional assumption that
N1 ≤ N2 in N

∞
>1. Note that, since J1 and J2 are consisting of mutually distinct

integers, the subsets

[Jl] = {jl1, jl2, . . . , jlNl }

ofZ have their cardinalitiesNl, too, where [Jl]means the set consisting of all entries
of Jl, for all l = 1, 2.

Suppose there exists

{k1, . . . , kN1} ⊆ {1, . . . , N2},

such that

j2k1 = j11e1n1, j2k2 = j12e2n2, . . . , (9.1.5)

and

j2kN1
= j1N1eN1nN1 ,

for some (ei , ni) ∈ N
±
0 , for i = 1, . . . , N1.

Since N1 ≤ N2 in N
∞
>1, one can naturally take the above relation (9.1.5). For

convenience, let

j21 = j11e1n1, j22 = j12e2n2, . . . , (9.1.5′)

and

j2N1 = j1N1eN1nN1 ,

for some (ei , ni) ∈ N
±
0 , for i = 1, . . . , N1.

Take now an element β(J1 : J2) ∈ B(Z),

β(J1 : J2) =
N1
�
l=1
βnlel (jl) ∈ B(Z), (9.1.6)

where B(Z) is the integer-shift monoid (8.15) contained in the homomorphism
semigroup Hom(LQ). And then, define the restriction β(J1 → J2) from L[J1]
into LQ, by

β(J1 → J2)
def= β(J1 : J2) |L[J1] : L[J1] → LQ. (9.1.6′)

Then, by (9.1.6), the restriction β(J1 → J2) of β(J1 : J2), in the sense of (9.1.6′),
is a well-defined ∗-homomorphism from L[J1] into LQ. Furthermore, the range
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ran (β(J1 → J2)) satisfies

ran (β(J1 → J2)) ⊆ L[J2] in LQ, (9.1.7)

by (9.1.5′) (or, by (9.1.5)).
So, by (9.1.6′) and (9.1.7), one can regard β(J1 → J2) as a ∗-homomorphism

from L[J1] to L[J2], i.e.,

β(J1 → J2) : L[J1] ∗-homo−→ L[J2]. (9.1.8)

Therefore

L[J1]
∗-homo⊆ L[J2] in LQ,

by the existence of a ∗-homomorphism β(J1 → J2) of (9.1.8), where “
∗-homo⊆ ”

means “being ∗-homomorphic to.”
Now, let X1 and X2 be free reduced words,

X1 =
K1
�
k=1

U
nk
jk
,X2 =

K2
�
k=2

U
lk
ik
∈ L[J1],

where
(
j1, . . . , jK1

)
,
(
i1, . . . , iK2

)
are alternating tuples in {j11, . . . , j1N1}, for

K1, K2 ∈ N, and suppose

X1 �= X2 in L[J1].

Then

β(J1 → J2) (X1) =
K1
�
k=1

U
nk
jkejk njk

�= K2
�
k=1

U
lk
ikeik nik

= β(J1 → J2)(X2),

by (8.16), (9.1.5)′ and (9.1.6).
i.e., the ∗-homomorphism β(J1 → J2) of (9.1.8) is injective from L[J1] into

L[J2]. (Note that the injectivity happens because J1 and J2 have mutually distinct
entries satisfying (9.1.5)′!)

Also, the injectivity of β(J1 → J2) guarantees that every free reduced word
W ∈ L[J1] with length-N becomes a free reduced word β(J1 → J2)(W) with its
length-N in L[J2], for all N ∈ N.

Moreover, this injective ∗-homomorphism β(J1 → J2) of (9.1.8) satisfies that

τ
(
β(J1 → J2)

(
Un
jkl

))
= τ

(
Un
jkl ekl nkl

)

= ωncn
2
= τ

(
Un
jkl

)
,

(9.1.9)
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in L[J2], for all generatorsUjkl ∈ L[J1], for l = 1, . . . , N1, for all n ∈ N, by (8.6)
and (9.1.5)′.

Therefore, this injective ∗-homomorphism β(J1 → J2) is a free-homomorphism
by (9.1.9), equivalently, the free-homomorphic relation (9.1.4) holds. ��

The following corollary is a direct consequence of (9.1.4).

Corollary 9.1 Let J be an integer-sequence with mutually distinct entries with its
length-N, for N ∈ N

∞
>1, and let L[J ] be the corresponding Banach ∗-probability

space (9.1.2) in the semicircular filterization LQ.

L[J ] free-homo⊆ L[W ], if W is an integer-sequence of mutually distinct

integers with its length-n, such that n ≥ N in N
∞
>1. (9.1.10)

L[J ] free-homo⊆ LQ. (9.1.11)

Proof The proof of (9.1.10) is clear by (9.1.4). The proof of (9.1.11) is done by the
canonical embedding map

�J : L[J ] → LQ,

defined by

�J (T ) = T ∈ LQ, for all T ∈ L[J ].

Definitely, this embedding map�J is an injective ∗-homomorphism from L[J ] into
LQ by (9.1.1). And it satisfies that

τ (�J (T )) = τ (T ) in LQ,

for all T ∈ L[J ]. Therefore, L[J ] is free-homomorphic to LQ. ��

Now, let’s consider the following special case of (9.1.4).

Theorem 9.2 Let Jl = (jl1, . . . , jlN ) be an integer-sequence with N-many
mutually distinct entries for N ∈ N

∞
>1, and let L[Jl] be the Banach ∗-probability

spaces (9.1.2) in the semicircular filterization LQ, for all l = 1, 2. Then L[J1] and
L[J2] are free-isomorphic in LQ. i.e.,

L[J1] free-iso= L[J2] in LQ, (9.1.12)

where “
free-iso= ” means “being free-isomorphic to.”
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Proof Let J1 and J2 be given as above, and suppose

j2l = j1lelnl in Z, (9.1.13)

for some (el, nl) ∈ N
±
0 , for all l = 1, . . . , N, for the fixed N ∈ N

∞
>1.

Then, by (9.1.4),

L[J1]
free-homo⊆ L[J2] in LQ,

with an injective free-homomorphism (9.1.6)′,

β(J1 → J2) =
N

�
k=1

βnkek (j1k),

and

L[J2]
free-homo⊆ L[J1] in LQ,

with an injective free-homomorphism in the sense of (9.1.6)′,

β(J2 → J1) =
N

�
k=1

β
nk−ek (j2k).

Also, by (9.1.13), the morphismsβ(J1 → J2) and β(J2 → J1) are not only injective
but also bijective because they preserves the generators.

Note that, for any free reduced word W = n

�
l=1
U
nl
j1kl
∈ L[J1], we have

(β(J2 → J1)β (J1 → J2)) (W)

= β(J2 → J1) (β(J1 → J2)(W))

= β(J2 → J1)

(
n

�
l=1
U
nl
j2kl

)
= n

�
l=1
U
nl
j1kl
= W,

and hence,

β(J2 → J1)β(J1 → J2) = 1L[J1] on L[J1], (9.1.14)

by the injectivity of β(J1 → J2) and β(J2 → J1), where 1L[Jl] are the identity
maps on L[Jl],

1L[Jl](T ) = T , for all T ∈ L[Jl],

for all l = 1, 2.
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Similar to (9.1.14), one obtains that

β(J1 → J2)β(J2 → J1) = 1L[J2] on L[J2]. (9.1.15)

By (9.1.13), (9.1.14) and (9.1.15), the injective ∗-homomorphism β(J1 → J2) is
not only bijective but also

β(J1 → J2)
−1 = β(J2 → J1) : L[J2] → L[J1],

and

β(J2 → J1)
−1 = β(J1 → J2) : L[J1] → L[J2].

Since both β(J1 → J2) and β(J2 → J1) are free-homomorphisms, these bijective
∗-homomorphisms are free-isomorphisms. Therefore,

L[J1] free-iso= L[J2] in LQ,

i.e., the free-isomorphic relation (9.1.12) holds true. ��

The above theorem shows that, for any same-length integer-sequences J1 and J2
of mutually distinct entries,

L[J1] free-iso= L[J2] in LQ,

by (9.1.12). In particular, one can take a free-isomorphism,

β(J1 → J2) : L[J1] → L[J2],

or

β(J2 → J1) : L[J2] → L[J1],

in the sense of (9.1.6)′.

9.2 Free-Homomorphic Relations of L[J ]’s Where |J | < ∞

In this section, we use same notations and concepts used in previous sections. In
Sect. 9.1, we considered certain free-homomorphic relations in LQ. In particular,
we showed that

L[J1]
free-homo⊆ L[J2] in LQ, (9.2.1)
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by (9.1.4), if integer-sequences J1 and J2 of mutually distinct entries satisfy |J1| ≤
|J2| in N

∞
>1, where |J | mean the lengths of the sequences J ; and

L[J1] free-iso= L[J2] in LQ, (9.2.2)

by (9.1.12), whenever |J1| = |J2| in N
∞
>1.

In this section, we restrict our interests to the cases where given integer-
sequences have finite lengths.

Corollary 9.2 Let J1 = (j11, . . . , j1N1) and J2 = (j21, . . . , j2N2) be integer-
sequences of mutually distinct entries for N1, N2 ∈ N

∞
>1, and assume that j11,

. . . , j1N1, j21, . . . , j2N2 are mutually distinct from each other in Z. Let

J = J1 ∨ J2 =
(
j11, . . . , j1N1, j21, . . . , j2N2

)
,

and let L[J1], L[J2] and L[J ] be in the sense of (9.1.1), or (9.1.2) in LQ.

L[J ] ∗-iso= L[J1] � L[J2] in LQ. (9.2.3)

If W is an integer-sequence of mutually distinct entries satisfying |W |
≥ (N1 +N2) in N

∞
>1, then (9.2.4)

L[Jl]
free-homo⊆ L[J ] free-homo⊆ L[W ] in LQ,

for all l = 1, 2.

If W is an integer-sequence of mutually distinct entries with |W |
= N1 +N2 in N

∞
>1, then (9.2.5)

L[J ] free-iso= L[W ] in LQ.

L[J ] free-homo⊆ LQ. (9.2.6)

Proof The statement (9.2.3) is shown by the very definition (9.1.1), and by the
structure theorem (6.7) of LQ. Here, remark the additional condition that j11, . . . ,
j1N1, j21, . . . , j2N2 are mutually distinct in Z.

In the statement (9.2.4), the free-homomorphic relations are proven by (9.2.1).
The free-isomorphic relation (9.2.5) is shown by (9.2.2).
Finally, the free-homomorphic relation (9.2.6) is proven by (9.1.11).

��
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Now, let J be an N-tuple of mutually distinct “finitely” many integers for N ∈
N>1, and let J (+n) be the (N + n)-tuples of mutually distinct entries in Z, for all
n ∈ N. Then we obtain the following free-homomorphic relation in LQ.

Corollary 9.3 Let J1, . . . , Jk be integer-sequences of mutually distinct entries
satisfying

|J1| = · · · = |Jk| ∈ N>1, for k ∈ N
∞
>1,

and let J (+n)1 , . . . , J
(+n)
k be defined as in the above paragraph, for all n ∈ N. Then

L[J1]
free-homo⊆ L[J (+1)

1 ] free-homo⊆ L[J (+2)
1 ] free-homo⊆ · · ·

free-iso � � �

L[J2]
free-homo⊆ L[J (+1)

2 ] free-homo⊆ L[J (+2)
2 ] free-homo⊆ · · ·

free-iso � � �

...
...

...
...

free-iso � � �

L[Jk]
free-homo⊆ L[J (+1)

k ] free-homo⊆ L[J (+2)
k ] free-homo⊆ · · ·,

(9.2.7)

in LQ.

Moreover, all Banach ∗-probability spaces in (9.2.7) are free-homomorphic to
the semicircular filterization LQ.

Proof The free-homomorphic relation (9.2.7) is proven by (9.2.3), (9.2.4), (9.2.5)
and (9.2.6). And, all Banach ∗-probability spaces in (9.2.7) are free-homomorphic
to LQ, by (9.1.11). ��

9.3 Free-Isomorphic Relation of L[J ]’s Where |J | = ∞

In Sects. 9.1 and 9.2, we studied free-homomorphic relations among

⎧⎪⎪⎨
⎪⎪⎩
L[J ] ⊆ LQ

∣∣∣∣∣∣∣∣

L[J ] are Banach ∗ -probability spaces
in LQ, for integer-sequences J

of mutually distinct entries in Z, where
|J | ∈ N

∞
>1

⎫⎪⎪⎬
⎪⎪⎭
∪ {LQ}.

And the free-homomorphic relations, where |J | <∞, are illustrated in (9.2.7).
In this section, we consider the “converse” of a homomorphic relation,

L[J ] free-homo⊆ LQ, (9.3.1)
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where J = (j1, j2, j3, . . .) is an “infinite” sequence of mutually distinct integers
in Z. Note that, by (9.1.12) and (9.2.2), if J is such an infinite integer-sequence,
then

L[J ] free-iso= L [(0, 1, 2, 3, 4, . . . )] , (9.3.2)

in the semicircular filterization LQ.

By (9.3.2), without loss of generality, we regard L[J ] for all infinite sequences
J of mutually distinct integers, as their free-isomorphic Banach ∗-probability space,
L [(0, 1, 2, . . .)]. i.e., from below,

L[J ] let= L[J∞] = L [(0, 1, 2, 3, . . . )] , (9.3.3)

equivalently,

J
let= J∞ = (0, 1, 2, 3, . . . ) .

Under (9.3.3), let’s consider the converse of (9.3.1). i.e., is LQ free-homomorphic
to L[J∞]? To answer this question, we study the existence of a certain “injective”
∗-homomorphism from LQ “onto” L[J∞], preserving the free-distributional data,
independent from our approaches in Sects. 8, 9.1, and 9.2.

First, define a bijection θ from Z onto N0, by

θ(0) = 0, θ(N) = 2N− 1, (9.3.4)

and

θ (−N) = 2N,

where

Z = (−N) � {0} � (N) , (9.3.4′)

and

N0 = {0} � (2N− 1) � (2N) ,

with

−N = {−n ∈ Z : n ∈ N},
2N− 1 = {2n− 1 ∈ N : n ∈ N},
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and

2N = {2n ∈ N : n ∈ N}.

In other words,

θ(j) =
⎧⎨
⎩

0 if j = 0
2j − 1 if j > 0
−2j if j < 0,

(9.3.4′′)

for all j ∈ Z. For example,

θ(0) = 0, θ(1) = 2 · 1− 1 = 1, θ(−1) = −2(−1) = 2,

θ(2) = 2 · 2− 1 = 3, θ(−2) = −2 · (−2) = 4,

θ(3) = 2 · 3− 1 = 5, and θ(−3) = −2 ((−3)) = 6,

etc.
By the definition (9.3.4), this map θ of (9.3.4′′) is a well-defined bijection from

Z onto N0, by (9.3.4′).
Now, define a bounded “multiplicative” linear transformation

� : LQ → L[J∞],
by a multiplicative linear morphism satisfying

�
(
Uj

) = Uθ(j), (9.3.5)

for all j ∈ Z, where Uj ∈ S in LQ, and θ is the bijection (9.3.4) from Z onto N0.

By the multiplicativity of the morphism � of (9.3.5), we have that

�

(
N

�
l=1
U
nl
jl

)
= N

�
l=1
U
nl
θ(jl)

, (9.3.5′)

for all free reduced words
N

�
l=1
U
nl
jl

of LQ in S, for any n1, . . . , nN , N ∈ N.

For example,

�
(
U2−3U−2U

3
0U

2
1U

4−1U
2
2

)

= U2
θ(−3)Uθ(−2)U

3
θ(0)U

2
θ(1)U

4
θ(−1)U

2
θ(2)

by (9.3.5′)

= U2
6U4U

3
0U

2
1U

4
2U

2
3 ,

by (9.3.4), (9.3.4′′), and (9.3.5).
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Lemma 9.1 Let � : LQ → L[J∞] be the bounded multiplicative linear
transformation (9.3.5) satisfying (9.3.5′). Then it is a well-defined ∗-homomorphism
from LQ onto L[J∞]. i.e.,

the morphism � of (9.3.5) is a ∗ -isomorphism. (9.3.6)

Proof Let � be in the sense of (9.3.5). Then, by the bijectivity of θ in the sense
of (9.3.4) or (9.3.4′), this linear transformation � preserves the free generators
{Uj }j∈Z of LQ onto the free generators {Uj }j∈N0 of L[J∞]. i.e., this morphism
� is bounded and bijective from LQ onto L[J∞]. In particular, the injectivity of �
is guaranteed by the generator-preserving property, and the bijectivity of θ .

Let W = N

�
l=1
U
nl
jl

be an arbitrary free reduced word of the semicircular

filterization LQ in the free semicircular family S of (6.4). Then �(W) forms a
free reduced word in L[J∞], too, by the generator-preserving property of �. So, if
W1 and W2 are free reduced words forming a new free reduced word W1W2 in LQ,

then

�(W1W2) = �(W1)�(W2) in L[J∞].

It implies that

�(T1T2) = �(T1) �(T2) in L[J∞], (9.3.7)

for all T1, T2 ∈ LQ.

Moreover,

�(W∗) = �
(
N

�
l=1
U
nN−l+1
jN−l+1

)
= N

�
l=1
U
nN−l+1

θ(jN−l+1)

=
(
N

�
l=1
U
nl
θ(jl)

)∗
= (�(W))∗ ,

implying that

�(T ∗) = (�(T ))∗ in L[J∞], (9.3.8)

for all T ∈ LQ.

Therefore, this bijective bounded multiplicative linear transformation� forms a
∗-isomorphism from LQ onto L[J∞], by (9.3.7) and (9.3.8).

It is not difficult to check that

�−1 : L[J∞] → LQ
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is the morphism satisfying

�−1 (Uk) = Uθ−1(k),

for all Uk ∈ S, where

θ−1(k) =
⎧⎨
⎩

0 if k = 0
k+1

2 if k ∈ 2N− 1
− k

2 if k ∈ 2N,

for all k ∈ Z.

Note that

��−1 = 1L[J∞], and �−1� = 1LQ.

Therefore, the relation (9.3.6) holds. ��

By (9.3.6), one can take a ∗-isomorphism � of (9.3.5) from the semicircular
filterization LQ onto the Banach ∗-probability space L[J∞] of (9.3.3).

Theorem 9.3 Let J be an integer sequence of mutually distinct entries in Z, with
|J | = ∞ in N

∞
>1. Then

L[J ] free-iso= LQ. (9.3.9)

Proof In (9.3.6), there does exist a ∗-isomorphism � of (9.3.5) from LQ onto
L[J∞], where

J∞ = (0, 1, 2, 3, . . .) .

Therefore,

LQ
∗-iso= L[J∞].

Moreover, if
N

�
l=1
U
nl
jl

is a free reduced word of LQ in S with its length-N, then

�

(
N

�
l=1
U
nl
jl

)
= N

�
l=1
U
nl
θ(jl)
∈ L[J∞]

is a free reduced word of L[J∞] in the generator set {Uj }j∈N0 with the same length-
N, by (9.3.4′′), and (9.3.5). And, one has

τ
(
Un
j

)
= ωncn

2
= τ

(
Un
θ(j)

)
= τ (�(Uj )n) , ∀n ∈ N,
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for all Uj ∈ S, implying that

τ (�(T )) = τ (T ) in L[J∞], for all T ∈ LQ.

Thus, the ∗-isomorphism� is a free-isomorphism, i.e.,

LQ
free-iso= L[J∞]. (9.3.10)

By (9.1.12), if |J | = ∞ = |J∞| in N
∞
>1, then

L[J ] free-iso= L[J∞] in LQ.

Therefore,

LQ
free-iso= L[J∞] free-iso= L[J ],

whenever |J | = ∞ in N
∞
>1, by (9.1.12) and (9.3.10).

It proves the statement (9.3.9). ��

The proof of the free-isomorphic relation (9.3.9) is summarized by that, for any
integer sequences J of mutually distinct “infinitely” many entries,

L[J ] free-iso=
(9.1.12)

L [(0, 1, 2, 3, . . . )]
free-iso=
(9.3.10)

LQ,

by the free-isomorphism � of (9.3.5). By (9.3.9), one can obtain the following
corollary.

Corollary 9.4 Let J be an integer sequence of mutually distinct infinitely many
entries, i.e., |J | = ∞ ∈ N

∞
>1. Suppose J (+n) is an integer sequence obtained by

adding mutually distinct n-many integers to the sequence J , where all such n-many
integers are mutually distinct from the entries of J, for n ∈ N. Then

L[J ] free-iso= LQ
free-iso= L[J (+n)], (9.3.11)

in the semicircular filterization LQ.

Proof Since
∣∣J (+n)∣∣ = ∞+ n = ∞ in N

∞
>1, for all n ∈ N, we have

L[J (+n)] free-iso= LQ,

by (9.3.9). Therefore, free-isomorphic relation (9.3.11) holds. ��

By (9.3.9) and (9.3.11), we obtain the following corollary similar to (9.2.7).
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Corollary 9.5 Let J1, . . . , Jk be integer sequences of mutually distinct “infinitely”
many entries in Z, for any k ∈ N

∞
>1, and let J (+n)l be integer sequences obtained

by adding mutually distinct n-more integers to the integer sequences Jl, which are
distinct from the entries of Jl, for all l = 1, . . . , k, for all n ∈ N, then

L[J1] free-iso= L[J (+1)
1 ] free-iso= L[J (+2)

1 ] free-iso= · · ·
free-iso � � �

L[J2] free-iso= L[J (+1)
2 ] free-iso= L[J (+2)

2 ] free-iso= · · ·
free-iso � � �

...
...

...
...

free-iso � � �

L[Jk] free-iso= L[J (+1)
k ] free-iso= L[J (+2)

k ] free-iso= · · ·.

(9.3.12)

Moreover, all Banach ∗-probability spaces in (9.3.12) are free-isomorphic to the
semicircular filterization LQ.

Proof The proof of the free-isomorphic relations in (9.3.12) are done by (9.3.9)
and (9.3.11). ��

9.4 Summary and Discussion

The main results of Sects. 9.1–9.3 show certain free-homomorphic relations in the
semicircular filterization LQ up to semicircular free generators of S, as follows; (i)
if J1, . . . , Jk are “finite” integer sequences with |J1| = . . . = |Jk| ∈ N>1, for
k ∈ N

∞
>1, then

L[J1]
free-homo⊆ L[J (+1)

1 ] free-homo⊆ L[J (+2)
1 ] free-homo⊆ · · ·

free-iso � � �

L[J2]
free-homo⊆ L[J (+1)

2 ] free-homo⊆ L[J (+2)
2 ] free-homo⊆ · · ·

free-iso � � �

...
...

...
...

free-iso � � �

L[Jk]
free-homo⊆ L[J (+1)

k ] free-homo⊆ L[J (+2)
k ] free-homo⊆ · · ·,

(9.4.1)

and all Banach ∗-probability spaces in (9.4.1) are free-homomorphic to LQ,

by (9.2.7), and (ii) if J are the integer sequences of mutually distinct “infinitely”
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many entries in Z, then

L[J ] free-iso= LQ, (9.4.2)

by (9.3.9) and (9.3.11), and hence, the equivalence diagram (9.3.12) is obtained.
Let

J = (−j, j) , with j ∈ N ⊂ Z, (9.4.3)

and

J0 = (−j, 0, j) .

By the condition that j is taken from N in Z, the pair J consists of distinct integers
−j and j, and the triple J0 consists of mutually distinct integers −j, 0 and j in Z.
For such integer sequences J and J0 of (9.4.3), one has the corresponding Banach
∗-probability spaces,

L[J ] and L[J0],

as free-probabilistic sub-structures of LQ.
By (9.4.1), we directly obtain that

L[J ] free-homo⊆ L[J0] in LQ. (9.4.4)

How about the converse of (9.4.4)? In other words, is L[J0] free-homomorphic to
L[J ] in LQ?

Even though |J | = 2 �= 3 = |J0| , can we find at least one injective ∗-
homomorphism from L[J0] to L[J ]? If we can, can it be a free-homomorphism?
As expected, it is not easy to answer this question.

Remark 9.1 Let FN be the free group with N-generators for N ∈ N
∞
>1, and let

L(FN) be the free group factor, which is the group von Neumann algebra generated
by FN equipped with its canonical trace under the unitary regular representation of
FN . The famous main result of [19] shows that either the statement (9.4.5), or the
statement (9.4.6) holds, where

L(Fn) ∼= L(F∞), for all n ∈ N
∞
>1, (9.4.5)

L(Fn1 ) � L(Fn2 ), if and only if n1 �= n2 in N
∞
>1, (9.4.6)

where “∼=” means “beingW∗-isomorphic.” Under the authors’ knowledge, no proof,
showing which one holds true, is known yet.

Here, we have the similar difficulties. i.e., we are not sure

L [J ]
∗-iso= L [J0] inLQ,
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or

L [J ]
∗-iso�= L [J0] inLQ,

where J and J0 are in the sense of (9.4.3).
The only relations clear now are that

L [J ]
∗-homo⊆ L [J0] in LQ,

because

L[J ] free-homo⊆ L[J0] in LQ,

by (9.4.1) and (9.4.4). i.e., one can find a free-homomorphism β(J → J0) in the
integer-shift monoid B(Z).

Thus it seems natural to check the existence of well-defined (injective) ∗-
homomorphisms from L[J0] to L[J ], to answer our question, like in Sect. 9.3.

Note that

L[J ] Banach-sp= C⊕
(
∞⊕
n=1

(
⊕

(ji1 ,...,jin )∈Alt({−j,j}n)

(
n⊗
l=1

L
o
jil

)))
, (9.4.7)

and

L[J0] Banach-sp= C⊕
(
∞⊕
n=1

(
⊕

(ki1 ,...,kin )∈Alt({−j,0,j}n)

(
n⊗
l=1

L
o
kil

)))
,

where

L
o
j

def= Lj �
(
C · U0

j

)
= Lj � C,

for all j ∈ Z, as Banach spaces, where “
Banach-sp= ” means “being Banach-space-

isomorphic to,” and where “�” means the “Banach-space orthogonal complement”
in terms of the Banach-space direct product ⊕, and where ⊗ is the Banach-space
tensor product (e.g., [21, 25]).

One can understand the vectors of

n⊗
l=1

L
o
jil

of L[J ],

and those of

n⊗
l=1

L
o
kil

of L[J0]
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in (9.4.7) are the scalar products of free reduced words with their lengths-n in the
free semicircular family {U−j , Uj }, respectively, those in the free semicircular
family {U−j , U0, Uj }.

The Banach-space expression (9.4.7) can be re-expressed by

L[J ] Banach-sp= C⊕
(
L
o−j ⊕ L

o
j

)
⊕

((
L
o−j ⊗ L

o
j

)
⊕

(
L
o
j ⊗ L

o−j
))

⊕
(
(Loj ⊗ L

o
−j ⊗ L

o
j )⊕

(
L
o
−j ⊗ L

o
j ⊗ L

o
−j

))
⊕ · · ·, (9.4.8)

and

L[J0] Banach-sp= C⊕
(
L
o
−j ⊕ L

o
0 ⊕ L

o
j

)

⊕
((

L
o−j ⊗ L

o
0

)
⊕

(
L
o
0 ⊗ L

o−j
)
⊕

(
L
o
0 ⊗ L

o
j

)
⊕

(
L
o
j ⊗ L

o
0

)

⊕
(
L
o
−j ⊗ L

o
j

)
⊕

(
L
o
j ⊗ L

o
−j

))
⊕ · · ·.

The above Banach-space expression (9.4.7) illustrates that, to obtain a suitable
(injective) ∗-homomorphism (and hence, a possible free-homomorphism) from
L[J0] to L[J ], one has to assign the elements of Lo0, and the vectors of the direct
summands of L[J0], containing their tensor factor Lo0, wisely. See (9.4.8).

Problem 9.1 L[J0]
∗-homo⊆ L[J ], injectively?

Problem 9.2 L[J0]
free-homo⊆ L[J ]?

In the long run, can we answer the following question?

Problem 9.3 L[J ] free-iso= L[J0] in LQ?

Conjecture L[J0] is not free-homomorphic to L[J ].
Even though it is possible that L[J0] is ∗-isomorphic to L[J ], as Banach

∗-algebras, the Banach ∗-probability spaces L[J0] and L[J ] may not be free-
isomorphic.

References

1. D. Alpay, P. E. T. Jorgensen, and G. Salomon, On Free Stochastic Processes and Their
Derivatives, Stochastic Process. Appl., 124, no. 10, (2014) 3392–3411.

2. D. Alpay, P. E. T. Jorgensen, and D. Levanony, On the Equivalence of Probability Spaces, J.
Theoret. Probab., 30, no. 3, (2017) 813–841.



Free-Homomorphic Relations 285

3. D. Alpay, and P. E. T. Jorgensen, Spectral Theory for Gaussian Processes: Reproducing
Kernels, Boundaries, and L2-Wavelet Generators with Fractional Scales, Numer. Funct. Anal.
Optim., 36, no. 10, (2015) 1239–1285.

4. D. Alpay, P. E. T. Jorgensen, and D. Levanony, A Class of Gaussian Processes with Fractional
Spectral Measures, J. Funct. Anal., 261, no. 2, (2011) 507–541.

5. M. Ahsanullah, Some Inferences on Semicircular Distribution, J. Stat. Theo. Appl., 15, no. 3,
(2016) 207–213.

6. H. Bercovici, and D. Voiculescu, Superconvergence to the Central Limit and Failure of the
Cramer Theorem for Free Random Variables, Probab. Theo. Related Fields, 103, no. 2, (1995)
215–222.

7. M. Bozejko, W. Ejsmont, and T. Hasebe, Noncommutative Probability of Type D, Internat. J.
Math., 28, no. 2, (2017) 1750010, 30.

8. M. Bozheuiko, E. V. Litvinov, and I. V. Rodionova, An Extended Anyon Fock Space and
Non-commutative Meixner-Type Orthogonal Polynomials in the Infinite-Dimensional Case,
Uspekhi Math. Nauk., 70, no. 5, (2015) 75–120.

9. I. Cho, Free Semicircular Families in Free Product Banach ∗-Algebras Induced by p-Adic
Number Fields over Primes p, Compl. Anal. Oper. Theo., 11, no. 3, (2017) 507–565.

10. I. Cho, Semicircular-Like Laws and the Semicircular Law Induced by Orthogonal Projections,
Compl. Anal. Oper. Theo., 12, (2018) 1657–1695.

11. I. Cho, and P. E. T. Jorgensen, Semicircular Elements Induced by Projections on Separable
Hilbert Spaces, a chapter of Operator Theory: Advances and Applications, 275, ISBN: 978-
030-18483-4, (2019) Published by Birkhauser, Cham, 167–209.

12. I. Cho, and P. E. T. Jorgensen, Semicircular Elements Induced by p-Adic Number Fields,
Opuscula Math., 35, no. 5, (2017) 665–703.

13. A. Connes, Noncommutative Geometry, ISBN: 0-12-185860-X, (1994) Academic Press (San
Diego, CA).

14. T. Gillespie, Prime Number Theorems for Rankin-Selberg L-Functions over Number Fields,
Sci. China Math., 54, no. 1, (2011) 35–46.

15. P. R. Halmos, Hilbert Space Problem Books, Grad. Texts in Math., 19, ISBN: 978-0387906850,
(1982) Published by Springer.

16. B. Meng, and M. Guo, Operator-Valued Semicircular Distribution and its Asymptotically Free
Matrix Models, J. Math. Res. Exposition, 28, no. 4, (2008) 759–768.

17. I. Nourdin, G. Peccati, and R. Speicher, Multi-Dimensional Semicircular Limits on the Free
Wigner Chaos, Progr. Probab., 67, (2013) 211–221.

18. V. Pata, The Central Limit Theorem for Free Additive Convolution, J. Funct. Anal., 140, no. 2,
(1996) 359–380.

19. F. Radulescu, Random Matrices, Amalgamated Free Products and Subfactors of the C∗-
Algebra of a Free Group of Nonsingular Index, Invent. Math., 115, (1994) 347–389.

20. P. Shor, Quantum Information Theory: Results and Open Problems, Geom. Funct. Anal
(GAFA), Special Volume: GAFA2000, (2000) 816–838.

21. R. Speicher, Combinatorial Theory of the Free Product with Amalgamation and Operator-
Valued Free Probability Theory, Amer. Math. Soc. Mem., vol 132, no. 627, (1998).

22. R. Speicher, Free Probability and Random Matrices, Proceedings of the International Congress
of Mathematicians, Seoul 2014, vol. III, Published by Kyung Moon Sa, (2014) 477–501.

23. V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics,
Ser. Soviet & East European Math., vol 1, ISBN: 978-981-02-0880-6, (1994) World Scientific.

24. D. Voiculescu, Free Probability for Pairs of Faces I, Comm. Math. Phy., 332, no. 3, (2014)
955–980.

25. D. Voiculescu, K. J. Dykema, and A. Nica, Free Random Variables, CRM Monograph Series,
vol 1., ISBN: 978-0-8218-1140-5, (1992) Published by Ame. Math. Soc..

26. Y. Yin, Z. Bai, and J. Hu, On the Semicircular Law of Large-Dimensional Random Quaternion
Matrices, J. Theo. Probab., 29, no. 3, (2016) 1100–1120.

27. Y. Yin, and J. Hu, On the Limit of the Spectral Distribution of Large-Dimensional Random
Quaternion Covariance Matrices, Random Mat. Theo. Appl., 6, no. 2, (2017) 1750004, 20.



Self-Adjoint Extensions of a Symmetric
Linear Relation with Finite Defect:
Compressions and Straus Subspaces

Aad Dijksma and Heinz Langer

Dedicated to our colleague and friend Victor Emanuelovich
Katsnelson on the occasion of his 75-th birthday

Abstract Let S be a symmetric relation with finite and equal defect numbers
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extensions Ã according to M.G. Krein’s resolvent formula. By means of a fractional
transformation, analogous results are proved for the Straus extensions of S at a real
point.

Keywords Hilbert space · Symmetric and self-adjoint operators · Linear
relations · Self-adjoint extensions · Compressions · Straus extensions ·
Generalized resolvents · Krein’s resolvent formula · Q-functions · Nevanlinna
functions

Mathematics Subject Classification (2000) 47B25, 47A20, 47A56

A. Dijksma (�)
Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, Faculty of
Science and Engineering, University of Groningen, AG Groningen, The Netherlands
e-mail: a.dijksma@rug.nl

H. Langer
Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna,
Austria
e-mail: heinz.langer@tuwien.ac.at

© Springer Nature Switzerland AG 2020
D. Alpay et al. (eds.), Complex Function Theory, Operator Theory, Schur Analysis
and Systems Theory, Operator Theory: Advances and Applications 280,
https://doi.org/10.1007/978-3-030-44819-6_10

287

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44819-6_10&domain=pdf
mailto:a.dijksma@rug.nl
mailto:heinz.langer@tuwien.ac.at
https://doi.org/10.1007/978-3-030-44819-6_10


288 A. Dijksma and H. Langer

1 Introduction

This note is a continuation of [4, 5]. Given are a symmetric operator or linear relation
S with finite and equal defect numbers d > 0 in some Hilbert space H, and a self-
adjoint extension ÃT of S with exit. The latter means that ÃT acts in some larger
Hilbert space H̃ ⊃ H. Here T denotes a Nevanlinna d×d matrix or relation function
(see Sect. 2.1), which is the parameter for the extension ÃT in Krein’s resolvent
formula (2.15). We study the compression CH(ÃT ) of ÃT to H (see (3.1)) and also
the Straus subspaces SÃT (λ) related to ÃT (see (4.1)); the latter are also called the
Straus extensions of S, see [16, 6].

The compression CH(ÃT ) is a symmetric or self-adjoint extension of S. Among
others, we are interested in its defect, in the dimension of its intersection with A0
(modulo S), and, roughly speaking, in the dimension of the subspace where the
compression does not coincide with the linear span of this intersection and of ÃT .
These numbers are determined by the parameter T . In fact, if T is matrix valued
and admits the integral representation (2.1):

T (z) =
∫
R

(
1

t − z −
t

1+ t2
)

d�(t) + A + zB, z ∈ C \ R,

we define subspaces Lc,L0,Lf and L
∞ of C

d in terms of A,B and � (see
(3.4), (3.6), and (3.7)): their dimensions determine the numbers we are interested
in. We call this result, which takes a central place in the paper, Dimension theorem.

If the parameter T is rational the compression of ÃT is self-adjoint: this follows
immediately from Stenger’s lemma [15]. It was shown in [5] that the parameter
corresponding to this self-adjoint extension in Krein’s formula is T (∞). Here we
show that in general, that means also for a non-rational parameter T , the existence
of T (∞) implies that the corresponding extension AT (∞) in H is a self-adjoint
extension of the compression CH(ÃT ).

V.I. Mogilevskii showed in [14] by the method of boundary triplets, that some
implications for compressions in [5] are in fact equivalences, even if the defect d
is infinite. For the case of finite defect as considered in the present paper these
results follow also from the Dimension theorem below. After a first version of this
paper was submitted we realized that some of our results are close to those in [2,
Subsection 7.4].

The compression of a self-adjoint extension ÃT of a symmetry S can be
considered as a Straus extension SÃT (λ) for λ = ∞. By means of a fractional
linear transformation we show that analogues of the above results do also hold for
the Straus extension SÃT (λ0) at a real point λ0.

A short synopsis is as follows. In Sect. 2 we introduce Nevanlinna d × d

matrix and relation functions and formulate Krein’s resolvent formula. In Sect. 3 we
introduce the compressions CH(ÃT ) and describe them as well as ÃT explicitly
in terms of a model. The subspaces Lc,L0,Lf ,L

∞ are introduced in Sect. 3.3
and the Dimension theorem is proved in Sect. 3.4. There we also formulate in
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Corollaries 3.8–3.13 results of V.I. Mogilevskii [14] for the special case of finite
defect d .

Straus subspaces are introduced in Sect. 4.1. In Sect. 4.2 we show that the
Straus subspace ST (λ) corresponding to the self-adjoint extension ÃT at some
nonreal point λ arises from Krein’s formula for the (constant) parameter T (λ),
see Proposition 4.3. Using a limiting procedure (see Proposition 4.2) we show in
Theorem 4.6 that AT (∞) is a self-adjoint extension of the compression CH(ÃT ).
Finally, by means of a fractional linear transformation, in Sect. 5 we prove analogues
of the results of Sects. 3 and 4 for Straus subspaces at a real point.

We use subspace or closed linear relation notation as in [1, 3]. For Nevanlinna
matrix functions we refer to [9], and for Nevanlinna relation functions to [13].
Finally, we thank Professor Annemarie Luger for useful discussions.

2 Preliminaries

2.1 Nevanlinna Functions

Let d ∈ N. A function T , defined on C \R, is a Nevanlinna d× d matrix function if
T is a d × d matrix function and has one of the following equivalent properties:

(a) T is holomorphic and satisfies

T (z∗) = T (z)∗ and
T (z)− T (z)∗

z− z∗ ≥ 0, z ∈ C \R.

(b) T admits the integral representation

T (z) =
∫
R

(
1

t − z −
t

1+ t2
)

d�(t)+A+ zB, z ∈ C \ R, (2.1)

where A and B are symmetric d × d matrices, B ≥ 0, and � is a d × d matrix
valued measure such that

∫
R

d�(t)

t2 + 1
<∞.

(c) T admits a relation representation, that is, there exist a Hilbert space HT , a self-
adjoint linear relation BT in HT and, after fixing a point z0 ∈ C \ R, a linear
mapping δ : Cd → HT , such that

T (z)=T (z0)
∗+(z−z∗0) δ∗

(
I+(z−z0)(BT −z)−1)δ, z ∈ C \R. (2.2)
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Ad (b): Clearly, for each bounded interval �, �(�) is a non-negative symmetric
d × d matrix. For later reference we set

ker� := ∩{ker�(�) : � bounded real interval}, ran� := C
d�ker�. (2.3)

If the Nevanlinna d×d matrix function T is rational its representation (2.1) becomes

T (z) =
�∑

j=1

Bj
αj − z +A+ zB, z ∈ C \ R, (2.4)

with � ∈ N ∪ {0}, real points α1 < α2 < · · · < α�, and nonzero d × d matrices
Bj ≥ 0, j = 1, 2, . . . , �, a symmetric d × d matrix A, and a d × d matrix B ≥ 0.
Later we use the following result:

lim
y→±∞ y Im

〈
T (iy)x, x

〉 =
∫
R

d〈�(t)x, x〉 (≤ ∞), x ∈ kerB, (2.5)

which implies the following equivalence:

lim
y→+∞ y Im

〈
T (iy)x, x

〉 = ∞ for all x ∈ C
d \ {0}

⇐⇒
⎧⎨
⎩
B > 0 if T is rational,∫
R

d〈�(t)x, x〉 = ∞ for all x ∈ kerB \{0} otherwise.
(2.6)

Ad (c): For z in the resolvent set ρ(BT ), we denote by RT (z) := (BT − z)−1 the
resolvent operator of BT , and set

δz :=
(
I + (z− z0)RT (z)

)
δ, z ∈ C \R. (2.7)

It follows that

δz = (I + (z−w)RT (z))δw, z,w ∈ C \ R,

and

T (z)− T (w)∗
z−w∗ = δ∗wδz, z,w ∈ C \ R, w �= z∗. (2.8)

The relation representation (2.2) will always be chosen minimal, which means that

HT = span {δzx : x ∈ C
d, z ∈ C \R}.
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The triplet (HT , BT , δz0) is sometimes called a model of the function T . The above
relations extend to points z ∈ R into which T can be continued analytically or,
equivalently, which belong to ρ(BT ).

Finally, T will be called a Nevanlinna d × d relation function on C \ R, if there
exists an orthogonal projection Pm in C

d such that T (z) is the linear relation

T (z) = {{Pmx,Tm(z)Pmx+ (I − Pm)x} : x ∈ C
d
}
, z ∈ C \R, (2.9)

where, with dm := dim ranPm and ranPm identified with C
dm (as we shall do

throughout this note), Tm is a Nevanlinna dm × dm matrix function, called the
matrix part of T . We also identify kerPm with C

d∞ , where d∞ := d − dm, and
ranPm ⊕ kerPm with C

d . Relative to these identifications we can write T (z) as the
orthogonal direct sum in C

d × C
d

T (z) = Tm(z)⊕ T∞,

where T∞ := {{0, y} : y ∈ C
d∞} is called the multi-valued part of T .

When T is a Nevanlinna d × d relation function and when we refer to the
equivalent definitions (a), (b) and (c) above and the formulas following these
definitions we mean that there d and T are replaced everywhere by dm and Tm.

2.2 Krein’s Formula

Let S be a closed symmetric linear relation in a Hilbert space H with finite and equal
defect numbers d > 0. Krein’s formula for the generalized resolvents of S, which
we describe below, depends on the choice of a self-adjoint extension A0 of S in H,
a point z0 ∈ C \R, and a bijective mapping γ : Cd → ker(S∗ − z0). Having chosen
A0, z0 and γ , we define a so-called γ -field

γz : Cd → ker(S∗ − z), γz :=
(
I + (z− z0)R0(z)

)
γ, z ∈ ρ(A0),

where R0(z) := (A0 − z)−1 is the resolvent of A0. Evidently, γz is a bijection, and
γz0 = γ . Note that for each z ∈ C \R

S = {{f, g} ∈ A0 : γ ∗z∗(g − zf ) = 0
}

= {{R0(z)f, f + zR0(z)f } : f ∈ H, γ ∗z∗f = 0
}
.

(2.10)

For the given relation S, a self-adjoint extension A0 of S in H and a subspace
L ⊂ C

d we introduce the linear relation

SL :=
{{R0(z)f, f + zR0(z)f } : f ∈ H, γ ∗z∗f ∈ L

}
. (2.11)
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Here the expression on the right-hand side is independent of z ∈ C \ R, and the
mapping L → SL defines a one-to-one correspondence between all subspaces
L ⊂ C

d and all closed symmetric extensions SL of S contained in A0. In particular
we have S{0} = S (see (2.10)) and SCd = A0. Since γ ∗z∗ : ker(S∗ − z∗)→ C

d is a
bijection and ker γ ∗z∗ = ran(S − z),

dim SL/S = dimL. (2.12)

With the γ -field γz there is defined a correspondingQ-functionQ0 by the relation

Q0(z)−Q0(w)
∗

z −w∗ = γ ∗wγz, z,w ∈ ρ(A0), (2.13)

see [12]. It is a d×d matrix function, which is determined by (2.13) up to a constant
symmetric d × d matrix summand. Evidently,

ImQ0(z)/Im z = γ ∗z γz > 0, z ∈ C \ R, (2.14)

and hence Q0 is a Nevanlinna d × d matrix function.
Now let Ã be a self-adjoint extension of S, a relation or an operator, acting in

some Hilbert space H̃ ⊃ H. If H̃ = H then the extension Ã is called canonical.
The compressed resolvent PH(Ã − z)−1

∣∣
H

of Ã is called the generalized resolvent

of S, corresponding to the extension Ã. The set of all generalized resolvents of
S can be described as follows (see [11, Theorem 5.1], [13, Theorem 3.2] or [2,
Theorem 6.2]):

There is a bijective correspondence between all generalized resolvents of S and
all Nevanlinna d × d relation functions T given by the formula

PH(Ã− z)−1∣∣
H=(A0− z)−1− γz(Q0(z)+T (z))−1γ ∗z∗, z ∈ ρ(A0)∩ρ(Ã). (2.15)

We call (2.15) Krein’s resolvent formula based on A0. If the relation Ã on the left-
hand side of (2.15) is a minimal extension of S and corresponds to T , then it is
uniquely determined by T up to unitary equivalence with a unitary mapping which
is the identity on H. We then denote Ã by ÃT and recall the following two facts:

(A) The parameter T is independent of z if and only if ÃT is a canonical extension
of S.

(B) The parameter T is a Nevanlinna d×d matrix function if and only if ÃT ∩A0 =
S.

For item (A) see [13, Theorem 3.2]; item (B) has been generalized as follows (see
[10, Section 3] and [5, Proposition 3.4]):

(C) The parameter T in Krein’s formula (2.15) is a Nevanlinna d × d relation
function of the form (2.9) if and only if ÃT ∩ A0 = SkerPm .
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By (2.12),

dim SkerPm/S = d∞ (2.16)

and SkerPm has equal defect numbers dm = d − d∞. If T is a relation function of
the form (2.9) the last summand on the right-hand side of Krein’s formula (2.15) is
equal to

γz(Q0(z)+ T (z))−1γ ∗z∗ = γzPm(PmQ0(z)Pm + Tm(z))−1γ ∗z∗Pm. (2.17)

With the above mentioned identifications, the inverse on the right-hand side of (2.17)
is the inverse of an invertible dm × dm matrix, see [13]. The mappings γzPm, which
are bijections from C

dm onto ker(S∗kerPm
−z), form a γ -field, and the dm×dm matrix

PmQ0(z)Pm defines a corresponding Q-function associated with the symmetry
SkerPm and its canonical self-adjoint extension A0.

3 The Dimension Theorem for Compressions

3.1 Compressions

Let S be a closed symmetric linear relation in a Hilbert space H with equal defect
numbers d ∈ N. Denote by Ã any self-adjoint extension of S in a Hilbert space H̃
which contains H as a subspace. We shall assume that Ã is minimal which means
that for some w ∈ C \ R

span
{
(I + (z−w)(Ã− z)−1)h : h ∈ H, z ∈ C \ R} = H̃.

Let P̃H be the orthogonal projection in H̃ onto H. The compression CH(Ã) of Ã
to H is defined by the equation

CH(Ã) := P̃HÃ|H =
{{f̃ , P̃Hg̃} : {f̃ , g̃} ∈ Ã, f̃ ∈ H

}
. (3.1)

We denote by P̃∞ the orthogonal projection in H̃ onto Ã(0).

Proposition 3.1 Let S be a closed symmetric linear relation in H with equal defect
numbers d ∈ N. Let Ã be a self-adjoint extension of S in some Hilbert space H̃ ⊃ H.
Then :

(i) CH(Ã) is a closed symmetric extension of S in H with equal defect numbers
d − dim(CH(Ã)/S).

(ii) P̃H
(
Ã(0)

) = CH(Ã)(0), and if Ã is minimal, then CH(Ã) is an operator if and
only if Ã is an operator.

(iii) If Ã is minimal, then P̃∞H = Ã(0).
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Proof (i) From S ⊂ Ã ∩ H2 it follows that S ⊂ P̃HÃ|H = CH(Ã). If {f, g} ∈
CH(Ã), then {f, g̃} ∈ Ã = Ã∗ for some g̃ ∈ H̃ with P̃Hg̃ = g and

Im(g, f )H = Im(g̃, f )H̃ = 0.

Hence CH(Ã) is a symmetric extension of S and S ⊂ CH(Ã) ⊂ CH(Ã)
∗ ⊂ S∗.

Since dim S∗/S = 2d <∞, CH(Ã) is closed.
(ii) The equality follows directly from the definition of a compression. It implies

that if Ã is an operator, then CH(Ã) is an operator. Conversely, assume that CH(Ã)

is an operator. Then P̃H(Ã(0)) = {0}. Using that (Ã − z)−1Ã(0) = {0} for all
z ∈ ρ(Ã) we find that for all h ∈ H and z,w ∈ ρ(Ã)

(Ã(0), (I + (z−w)(Ã− z)−1)h)H̃ = {0}.

This and the minimality of Ã imply that Ã(0) = {0}, that is Ã is an operator.
(iii) Assume Ã is minimal. We first show that dim Ã(0)/S(0) ≤ 2d by proving

that the inequality dim Ã(0)/S(0) > 2d leads to a contradiction. This inequality
implies that for some k > 2d there exist elements g̃1, . . . , g̃k in Ã(0) which are
linearly independent modulo S(0). Set gj = P̃Hg̃j , j = 1, . . . , k. Then

{0, g1}, . . . , {0, gk} ∈ S∗

and hence, since dim S∗/S = 2d , there exist complex numbers τj , not all zero, such
that

∑k
j=1 τj {0, gj } ∈ S, that is

∑k
j=1 τjgj ∈ S(0). Hence

k∑
j=1

τj g̃j −
k∑

j=1

τjgj ∈ Ã(0) ∩ (H̃�H)

and consequently for all h ∈ H and z,w ∈ ρ(Ã)
( k∑
j=1

τj g̃j −
k∑

j=1

τjgj , (I + (z−w)(Ã− z)−1)h

)
H̃

= 0.

The minimality of Ã implies that

k∑
j=1

τj g̃j =
k∑

j=1

τjgj ∈ S(0),

and hence all τj ’s are zero. The contradiction with not all τj ’s are zero proves that
dim Ã(0)/S(0) ≤ 2d . From this and the inclusion S(0) ⊂ P̃∞H ⊂ Ã(0) we infer
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that the linear set P̃∞H is closed. We show that it is dense in Ã(0) and hence it is
equal to Ã(0). Assume f̃ ∈ Ã(0) � P̃∞H. Then f̃ = P̃∞f̃ and for all h ∈ H and
z,w ∈ ρ(Ã)

(
f̃ , (I + (z−w)(Ã− z)−1)h

)
H̃
= 0.

The minimality of Ã implies that f̃ = 0, that is P̃∞H is dense in Ã(0). ��

3.2 The Self-Adjoint Extensions and Their Compressions

In the following we shall use explicit representations of the self-adjoint extensions
ÃT of the symmetry S. The starting point is a generalization of [5, Theorem 2.4]
to the situation that S is a linear relation. We formulate this result in the following
proposition.

Proposition 3.2 Let S be a closed symmetric relation in the Hilbert space H with
equal defect numbers d ∈ N. Let A0 be a canonical self-adjoint extension of S and
denote by γz and Q0(z) a γ -field and a corresponding Q-function associated with
S and A0. Let T be a Nevanlinna d × d matrix function with model (HT , BT , δz0),
see (2.2). Then the operator function R̃T :

R̃T (z) :=
(
R0(z)− γz

(
Q0(z)+ T (z)

)−1
γ ∗z∗ −γz

(
Q0(z)+ T (z)

)−1
δ∗z∗

−δz
(
Q0(z)+ T (z)

)−1
γ ∗z∗ RT (z)− δz

(
Q0(z)+ T (z)

)−1
δ∗z∗

)

=
(
R0(z) 0

0 RT (z)

)
−

(
γz

δz

) (
Q0(z)+ T (z)

)−1 (
γ ∗z∗ δ∗z∗

)
, z ∈ C \ R,

whose values are bounded operators in H ⊕ HT , is the resolvent (Ã − z)−1 of a
self-adjoint relation Ã in the Hilbert space H ⊕ HT ; Ã is a minimal self-adjoint
extension of S.

The proof is the same as for [5, Theorem 2.4] where it is assumed that S is
densely defined. But here S need not be densely defined, and hence Ã need not be
an operator, but nevertheless it is a minimal extension of S. Since P̃HR̃T (z)

∣∣
H
=

P̃H(Ã − z)−1
∣∣
H

is equal to the right-hand side of (2.15), Ã corresponds to the

parameter T , that is Ã = ÃT . We write the formula for ÃT with resolvent R̃T
in full detail:
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ÃT =
{{(

R0(z)f − γz(Q0(z)+ T (z))−1(γ ∗z∗f + δ∗z∗g)
RT (z)g − δz(Q0(z)+ T (z))−1(γ ∗z∗f + δ∗z∗g)

)
,

(
f

g

)
+ z

(
R0(z)f − γz(Q0(z)+T (z))−1(γ ∗z∗f+δ∗z∗g)
RT (z)g − δz(Q0(z)+T (z))−1(γ ∗z∗f+δ∗z∗g)

)}
:f∈H, g∈HT

}
.

Here the right-hand side is independent of z ∈ C \ R; in the following we often fix
a point z ∈ C \ R. The formula for ÃT implies that the restriction of ÃT to H and
the graph restriction of ÃT to H2 are given by

ÃT
∣∣
H
=

{{(
R0(z)f − γz(Q0(z)+ T (z))−1(γ ∗z∗f + δ∗z∗g)

0

)
,

(
f

g

)
+z

(
R0(z)f−γz(Q0(z)+T (z))−1(γ ∗z∗f+δ∗z∗g)

0

)}
:

f ∈H, g∈HT , RT (z)g = δz(Q0(z)+T (z))−1 (γ ∗z∗f +δ∗z∗g)
}
,

and

ÃT ∩ H2 =
{{

R0(z)f − γz(Q0(z)+ T (z))−1γ ∗z∗f,

f+z(R0(z)f−γz(Q0(z)+T (z))−1γ ∗z∗f )
}
:

f ∈H, δz(Q0(z)+T (z))−1γ ∗z∗f = 0

}
.

(3.2)

The compression is given by

CH(ÃT ) =
{{
R0(z)f − γz(Q0(z)+T (z))−1 (γ ∗z∗f+δ∗z∗g) ,
f + z(R0(z)f − γz(Q0(z)+T (z))−1(γ ∗z∗f+δ∗z∗g)

)} :
f ∈H, g∈HT , RT (z)g = δz(Q0(z)+T (z))−1(γ ∗z∗f+δ∗z∗g)

}
,

and hence

CH(ÃT ) ∩ A0 =
{{
R0(z)f, f + zR0(z)f

} : f ∈ H, γ ∗z∗f ∈ δ∗z∗BT (0)
}

= Sδ∗
z∗BT (0).

(3.3)

For the first equality in (3.3) we used that g ∈ BT (0) if and only if RT (z)g = 0 for
any (and every) z ∈ C \ R; for the second equality see (2.11).
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3.3 Decomposition of Cd

For a Nevanlinna d × d matrix function T , we introduce a decomposition of the
space Cd , which will play an essential role in what follows. In the next three lemmas
we assume that T has the integral representation (2.1) and the relation representation
(2.2).

First we define the subspace Lc ⊂ C
d with ker� as in (2.3) by

Lc := (kerB) ∩ (ker�). (3.4)

Lemma 3.3 For every z ∈ C \R

Lc = ker ImT (z) = ker δz = {x ∈ C
d : T (z)x = Ax}. (3.5)

Since ImT (z)/ Im z ≥ 0, the lemma implies that

Lc = {0} ⇐⇒ ImT (z)/ Im z > 0.

Proof Since � is non-negative and B ≥ 0 the first equality in (3.5) follows from
the relation

ImT (z)/ Im z =
∫
R

d�(t)

|t − z|2 + B, z ∈ C \ R.

The second equality is a consequence of the following implications for x ∈ C
d :

ImT (z)x = 0
(2.8)3⇒ δ∗z δzx = 0 3⇒ (δzx, δzx)HT = 0 3⇒ δzx = 0

(2.2)3⇒
T (z)x = T (z0)

∗x is independent of z 3⇒ T (z)x = T (z∗)x = T (z)∗x

3⇒ ImT (z)x = 0.

The definition of Lc and the integral representation of T imply the last equality
in (3.5). ��

The orthogonal complement of Lc in C
d is given by

L
⊥
c = span {ranB, ran�},

where ran� is defined in (2.3). In L
⊥
c we consider two subspaces which are

orthogonal to each other:

Lr := ranB, Lf :=
{

x ∈ C
d : x ∈ (kerB) ∩ L

⊥
c ,

∫
R

d〈�(t)x, x〉 <∞
}
. (3.6)
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Lemma 3.4 The mapping δ∗z : BT (0)→ Lr is a bijection for every z ∈ C \ R.

Proof This follows from [5, Lemma 2.5(ii)], which states that δ∗ is a bijection, and
from the relation (2.7) and the equality RT (z)BT (0) = {0}, z ∈ C\R, which imply
that δ∗z = δ∗ on BT (0). ��

Finally, we define the remaining subspace L∞ in L
⊥
c by the relation

L
⊥
c = Lr ⊕ Lf ⊕ L

∞. (3.7)

It follows that

x ∈ L
∞, x �= 0 3⇒ x ∈ kerB,

∫
R

d〈�(t)x, x〉 = ∞. (3.8)

Lemma 3.5 For x ∈ kerB
∫
R

d〈�(t)x, x〉 = ∞ ⇐⇒ δzx /∈ domBT .

Proof Let x ∈ kerB. Then the lemma follows from the equivalence (see (2.1))

∫
R

d〈�(t)x, x〉 = ∞ ⇐⇒ lim
y↑∞ y Im

〈
T (iy)x, x

〉 = ∞

and [13, Theorem 2.4 (2)], according to which

lim
y↑∞ y Im

〈
T (iy)x, x

〉 =∞⇐⇒ δzx /∈ domBT .

��

Thus we obtain the following orthogonal decomposition of Cd :

C
d = Lc ⊕ Lr ⊕ Lf ⊕ L

∞. (3.9)

We denote the dimensions of the subspaces on the right-hand side of (3.9) by dc, dr ,
df , and d∞, respectively. Clearly,

d = dc + dr + df + d∞. (3.10)

Remark 3.6 If T (z) is a rational Nevanlinna d × d matrix function with represen-
tation (2.4), then

Lc = (kerB) ∩ ( ∩�j=1 kerBj
)
, L

⊥
c = span{ranB, ranB1, . . . , ranB�}
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and

Lr = ranB, Lf = (kerB) ∩ L
⊥
c , L

∞ = {0}.

The last equality follows from the two preceding equalities and (3.7) as they imply

Lf = L
⊥
r ∩ L

⊥
c = Lf ⊕ L

∞.

3.4 The Dimension Theorem

In the following theorem we suppose that the parameter T is a Nevanlinna d × d
matrix function. The first equality is well-known and is listed for completeness. The
extension of the theorem to a relation function T is described in Remark 3.15.

Theorem 3.7 Suppose that the parameter T is a Nevanlinna d×d matrix function.
Then the following relations hold :

(i) dim
((
ÃT ∩ A0

)/
S
)
= 0,

(ii) dim
((
ÃT ∩ H2

)/
S
)
= dc,

(iii) dim
((
CH(ÃT ) ∩ A0

)/
S
)
= dr ,

(iv) dim
(
CH(ÃT )

/(
ÃT ∩ H2 + CH(ÃT ) ∩A0

)) = df ,

(v) dim
(
CH(ÃT )

/
S
)
= dc + dr + df .

Proof Item (i) or, equivalently, S = ÃT ∩A0, holds because of the assumption that
the parameter T is a matrix function, see (B) in Sect. 2.2.

To prove the remaining equalities we introduce three (possibly empty) sets {ui :
i = 1, . . . , dc}, {vj : j = 1, . . . , dr } and {wk : k = 1, . . . , df } of elements
in H2. We use without recalling that the mappings γz : Cd → ker(S∗ − z) and
γ ∗z∗|ker(S∗−z∗) : ker(S∗ − z∗)→ C

d are bijections and ker γ ∗z∗ = ran(S − z). Further,
we fix a point z ∈ C \ R, and denote by +̇ the direct sum in H2.

If dc > 0, for i = 1, . . . , dc set

ui :=
{
R0(z)f

′
i − γz(· · · )−1γ ∗z∗f ′i , f ′i + z(R0(z)f

′
i − γz(· · · )−1γ ∗z∗f ′i )

}

where (· · · )−1 stands for (Q0(z) + T (z))−1 and the elements f ′i , i = 1, . . . , dc,
span a dc-dimensional subspace of ker(S∗ − z∗) such that (see Lemma 3.3)

(Q0(z)+ T (z))−1γ ∗z∗f ′i ∈ ker δz = Lc.
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According to (3.2), the ui’s belong to ÃT ∩ H2. Since the f ′i ’s are linearly
independent, so are the ui ’s. We prove (ii) by showing that

ÃT ∩ H2 = S+̇ span{u1, . . . ,udc}. (3.11)

To show that it is a direct sum let u belong to the intersection of the sets on the
right-hand side. Then for some f ′ ∈ ker(S∗ − z∗)

u = {
R0(z)f

′ − γz(· · · )−1γ ∗z∗f ′, f ′ + z(R0(z)f
′ − γz(· · · )−1γ ∗z∗f ′)

} ∈ S.
This implies that

{
f ′, R0(z)f

′ − γz(· · · )−1γ ∗z∗f ′} ∈ (S − z)−1 ⊂ R0(z).

Since also {f ′, R0(z)f
′} ∈ R0(z) and R0(z) is an operator, γz(· · · )−1γ ∗z∗f ′ = 0.

Hence f ′ = 0 and therefore u = {0, 0}. This shows that the sum on the right-hand
side of (3.11) is direct. Clearly this sum is contained in ÃT ∩ H2. We prove the
reverse inclusion. Let u ∈ ÃT ∩ H2. By (3.2), there is an f ∈ H with

(Q0(z)+ T (z))−1γ ∗z∗f ∈ ker δz = Lc (3.12)

such that

u = {
R0(z)f − γz(· · · )−1γ ∗z∗f, f + z(R0(z)f − γz(· · · )−1γ ∗z∗f )

}
.

Decompose f into the orthogonal sum f = f0 + f ′ with f0 ∈ ran(S − z) and
f ′ ∈ ker(S∗ − z∗). Then γ ∗z∗f0 = 0 and, by (3.12), f ′ = ∑

αif
′
i for some αi ∈ C.

By (2.10), {R0(z)f0, f0 + zR0(z)f0} ∈ S. Hence

u = {R0(z)f0, f0 + zR0(z)f0} +
∑

αiui ∈ S + span{u1, . . . ,udc },

and the reverse inclusion holds. This completes the proof of (3.11).
As to (iii) note that, by (3.3) and Lemma 3.4, CH(ÃT ) ∩ A0 = SLr . Hence (iii)

follows from (2.12). If dr > 0 set

vj :=
{
R0(z)fj , fj + zR0(z)fj

}
, j = 1, . . . , dr ,

where the fj ’s span a dr -dimensional subspace of ker(S∗ − z∗) such that (see
Lemma 3.4)

γ ∗z∗fj ∈ δ∗z∗BT (0) = ranB = Lr ,
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or, equivalently, there exist (unique) gj ’s in BT (0) such that

δ∗z∗gj + γ ∗z∗fj = 0.

By (3.3), the vj ’s belong to CH(ÃT ) ∩ A0 and are linearly independent, and the
decomposition

CH(ÃT ) ∩ A0 = S+̇ span{v1, . . . , vdr } (3.13)

can be proved in a way similar to the proof of (3.11).
If df > 0, let x1, . . . , xdf be a basis for Lf . Since

∫
R

d〈�(t)xk, xk〉 < ∞,
according to Lemma 3.5 it holds that δzxk ∈ domBT , and hence there exist elements
ĝk ∈ HT such that

RT (z)ĝk = δzxk.
Choose elements f̂1, . . . , f̂df in ker(S∗ − z∗) such that

(Q0(z)+ T (z))−1(δ∗z∗ ĝk + γ ∗z∗ f̂k) = xk, k = 1, . . . , df .

For k = 1, . . . , df define

wk :=
{
R0(z)f̂k − γzxk, f̂k + z(R0(z)f̂k − γzxk)

}
. (3.14)

By (3.1), the wk’s belong to CH(ÃT ). They are linearly independent. For, if for
some τk’s inC we have

∑
τkwk = 0, then

∑
τk(R0(z)f̂k−γzxk) = 0 and

∑
τkf̂k =

0, which implies γz
∑
τkxk = 0, whence

∑
τkxk = 0, and thus τk = 0 for all k.

We claim:

CH(ÃT )=S+̇ span{u1,. . . ,udc }+̇ span{v1,. . . ,vdr }+̇ span{w1,. . . ,wdf }. (3.15)

The claim implies (v) and also (iv), because of (3.11) and (3.13).
To prove that the sum on the right-hand side of (3.15) is direct, consider an

element {f, g} ∈ S and complex numbers αi, i = 1, . . . , dc, βj , j = 1, . . . , dr ,
τk, k = 1, . . . , df , such that

{f, g} +
dc∑
i=1

αiui +
dr∑
j=1

βjvj +
df∑
k=1

τkwk = {0, 0}.

Then we have two equalities:

dc∑
i=1

αi(R0(z)f
′
i −γz(· · · )−1γ ∗z∗f ′i )+

dr∑
j=1

βjR0(z)fj+
df∑
k=1

τk(R0(z)f̂k−γzxk) = −f
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and

dc∑
i=1

αif
′
i +

dr∑
j=1

βjfj +
df∑
k=1

τkf̂k = −(g − zf ).

From {g − zf, f } ∈ (S − z)−1 ⊂ R0(z) and by applying R0(z) to both sides of the
second equality we obtain

dc∑
i=1

αiR0(z)f
′
i +

dr∑
j=1

βjR0(z)fj +
df∑
k=1

τkR0(z)f̂k = −f.

Combining this with the first equality we get

(Q0(z)+ T (z))−1γ ∗z∗
dc∑
i=1

αif
′
i = −

df∑
k=1

τkxk ∈ Lc ∩ Lf = {0}.

It follows that the αi’s and the τk’s are zero. Hence

dr∑
j=1

βjfj = −(g − zf ) ∈ ran(S − z) ∩ ker(S∗ − z∗) = {0},

which implies that the βj ’s are zero. Finally we see that {f, g} = {0, 0}. This proves
that the sum on the right-hand side of (3.15) is direct. Clearly this sum is contained
in CH(ÃT ), and it remains to prove the reverse inclusion.

Consider an element {x, y} ∈ CH(ÃT ). Then there exist elements h ∈ H and
k ∈ HT satisfying

RT (z)k = δz(Q0(z)+ T (z))−1(δ∗z∗k + γ ∗z∗h)

such that

x = R0(z)h− γz(Q0(z)+ T (z))−1(δ∗z∗k + γ ∗z∗h) and y = h+ zx.

We decompose k as

k = g + ĝ, g ∈ BT (0), ĝ ∈ BT (0)
⊥,

and h as h = h0 + h1 with h0 ∈ ran(S − z) and h1 ∈ ker(S∗ − z∗) decomposed as

h1 = f + f̂ + f ′,
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where f ∈ ker(S∗ − z∗) is chosen such that γ ∗z∗f + δ∗z∗g = 0, f ′ := Pz(h1 − f )
and f̂ := (I − Pz)(h1 − f ); here Pz denotes the projection in ker(S∗ − z∗) onto
ker(S∗ − z∗) ∩ ker

(
δz(Q0(z)+ T (z))−1γ ∗z∗

)
. Hence (Q0(z)+ T (z))−1γ ∗z∗f ′ ∈ Lc,

RT (z)ĝ = δzx with x = (Q0(z)+ T (z))−1(γ ∗z∗ f̂ + δ∗z∗ ĝ) ∈ Lf

and

{x, y} = {R0(z)h0, h0 + zR0(z)h0} + u+ v+ w

with u, v,w ∈ CH(ÃT ) given by

u = {R0(z)f
′ − γz(· · · )−1γ ∗z∗f ′, f ′ + z(R0(z)f

′ − γz(· · · )−1γ ∗z∗f ′)},
v = {R0(z)f, f + R0(z)f },
w = {R0(z)f̂ − γzx, f̂ + z(R0(z)f̂ − γzx)}.

By (2.10) and since γ ∗z∗h0 = 0, we have {R0(z)h0, h0 + zR0(z)h0} ∈ S. Clearly,
u ∈ span{ui}, v ∈ span{vj } and w ∈ span{wk}. Hence {x, y} belongs to the right-
hand side of (3.15). This completes the proof of (3.15). ��

In the following Corollaries 3.8–3.13 it is always assumed that the parameter T
is a Nevanlinna d × d matrix function.

Corollary 3.8 The compression CH(ÃT ) has equal defect numbers d∞. If T is
rational, then CH(ÃT ) is self-adjoint.

Proof The first statement follows from Proposition 3.1(i), (3.10) and
Theorem 3.7(v). The last statement follows from Stenger’s lemma (see [15]), but
also from the fact that if T is rational, then, by Remark 3.6, L∞ = {0}, that is
d∞ = 0. ��

Corollary 3.9 ([14, Theorem 3.9]) The following statements are equivalent :
(a) lim

y→+∞ y Im
〈
T (iy)x, x

〉 =∞ for all x ∈ C
d \ {0}.

(b) CH(ÃT ) ⊂ A0.

Proof We show that (a) and (b) are equivalent to (c): dr + d∞ = d . First we prove
that (a) and (c) are equivalent for the case that T is rational. Then, by Remark 3.6,
d∞ = 0. By (2.1), (a) holds if and only if B > 0. Since B ≥ 0, this holds if and
only if dr = dim ranB = d . This implies that (a) and (c) are equivalent. Now we
consider the case that T is non-rational. By (3.10), (c) is equivalent to dc = 0 and
df = 0. Assume (c). Then L

⊥
c = C

d and Lf = {0} imply

∫
R

d〈�(t)x, x〉 = ∞ for all x ∈ kerB \ {0}.
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Hence (a) follows from (2.1). Assume (a). By Lemma 3.3, the kernel ker ImT (z) is
independent of z ∈ C \ R. Hence (a) implies that ker ImT (z) = {0}, and so, again
by Lemma 3.3, dc = 0. From L

⊥
c = C

d and (2.1) we now obtain

Lf =
{

x ∈ C
d : x ∈ kerB,

∫
R

d〈�x, x〉 <∞
}
= {0}.

Hence (a) implies (c), and (a) and (c) are equivalent.
We show that (c) is equivalent to (b). Assume (c), that is the equalities

dc = df = 0. By Theorem 3.7(ii) and (iv), dc = 0 implies ÃT ∩ H2 = S and
df = 0 implies

CH(ÃT ) = ÃT ∩H2 + CH(ÃT ) ∩ A0.

From this and S ⊂ A0 it follows that CH(ÃT ) ⊂ A0, that is (b) holds. Before
proving that (b) implies dc = df = 0 we first show that

span{w1, . . . ,wdf } ∩A0 = {0}, (3.16)

where wk is given by (3.14). Assume w belongs to the intersection. Then there exist
τk’s in C and u ∈ H such that

w =
∑

τkwk = {R0(z)u, u+ zR0(z)u},

that is

{
R0(z)u = R0(z)

∑
τkf̂k − γz∑ τkxk,

u+ zR0(z)u =∑
τkf̂k + z(R0(z)

∑
τkf̂k − γz∑ τkxk).

It successively follows that u = ∑
τkf̂k , γz

∑
τkxk = 0 and

∑
τkxk = 0. Since

the xk’s are linearly independent, the τk’s are zero, hence w = 0. This proves (3.16).
Now assume (b). Then

ÃT ∩ H2 ⊂ CH(ÃT ) ⊂ A0

and hence

S ⊂ ÃT ∩ H2 ⊂ ÃT ∩ A0 = S.

This proves that ÃT ∩H2 = S, that is dc = 0. The inclusion in (b) and (3.15) imply
that span{w1, . . . ,wdf } ⊂ A0, whence, by (3.16), df = 0. ��

Corollary 3.10 ([14, Corollary 3.10]) The following statements are equivalent :
(a) B > 0.
(b) CH(ÃT ) = A0.
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Proof We show that (a) and (b) are equivalent to (c): dr = d . The equality in (c)
holds if and only if d = dimLr = dim ranB. Since B ≥ 0, (c) is equivalent to
(a). That (c) is equivalent to (b) follows from (3.10), Corollary 3.8, Corollary 3.9,
A0 = A∗0 and the following equivalences

dr = d ⇐⇒ d∞ = 0, dc + df = 0
⇐⇒ CH(ÃT ) is self-adjoint, CH(ÃT ) ⊂ A0

⇐⇒ CH(ÃT ) = A0.

��

Corollary 3.11 ([2, Theorem 7.13], [14, Corollary 3.11]) The following state-
ments are equivalent :
(a) B = 0 and lim

y→+∞ y Im
〈
T (iy)x, x

〉 = ∞ for all x ∈ C
d \ {0}.

(b) CH(ÃT ) = S.

Proof We show that (a) and (b) are equivalent to (c): d∞ = d . Assume (c).
By (3.10), dr = dc = df = 0. From dr = 0 it follows that B = 0, the first
equality in (a). Hence kerB = C

d , and since dc = 0 implies that also L
⊥
c = C

d we
obtain

Lf = {x ∈ C
d :

∫
R

d〈�(t)x, x〉 <∞}. (3.17)

The second equality in (a) now follows from df = 0 and (2.5). Thus (c) implies
(a). Assume (a). Then dr = 0. As shown in the proof of Corollary 3.9 the second
equality in (a) implies dc = 0. Thus Lf is given by (3.17). By (2.5), df = 0. Thus
(c) holds, and (a) and (c) are equivalent. It follows from Theorem 3.7(v) that (c) and
(b) are equivalent. ��

Corollary 3.12 ([14, Proposition 3.14]) If lim
y→+∞ y Im

〈
T (iy)x, x

〉
< ∞ for all

x ∈ kerB, then CH(ÃT ) is self-adjoint.

Proof The assumption and (2.5) imply

∫
R

d〈�(t)x, x〉 <∞ for all x ∈ kerB,

and so, by (3.8), L∞ = {0}, that is d∞ = 0 and the compression is self-adjoint. ��

Corollary 3.13 ([14, Proposition 3.16]) The following statements are equivalent :
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(a) lim
y→+∞ y Im

〈
T (iy)x, x

〉
<∞ for all x ∈ C

d .

(b) CH(ÃT ) is self-adjoint and CH(ÃT ) ∩ A0 = S.

Proof We show that (a) and (b) are equivalent to (c): dc + df = d . By (3.10), (c)
holds if and only if d∞ = 0 and dr = 0. By Corollary 3.8 and Theorem 3.7(iii),
these equalities are equivalent to (b). These equalities also imply B = 0, because of
the definition of dr , and Lf = L

⊥
c , because of (3.7). Hence the following inequality

holds:
∫
R

d〈�(t)x, x〉 <∞ for all x ∈ L
⊥
c .

Since Lc ⊂ ker�, this inequality holds for all x ∈ L
⊥
c ⊕ Lc = C

d . Thus, by (2.5),
(c) implies (a). Assume (a). Then B = 0, and, by (2.5) and the definition of the
space Lf , Lf = L

⊥
c . Hence Cd = Lc ⊕ Lf , that is (c) holds. ��

Remark 3.14 V.I. Mogilevskii (correspondence) proposed to introduce with the
parameter T also the subspaces

T1 :=
{

x ∈ C
d : lim

y→∞ y Im〈T (iy)x, x〉 <∞
}
, (3.18)

T2 :=
{

x ∈ C
d : lim

y→∞
1

y
T (iy)x = 0

}
. (3.19)

of Cd . Then the following relations hold:

T1 = Lc ⊕ Lf , T2 = L
⊥
r ,

and, by (3.9), T2 = T1⊕L
∞. According to Corollary 3.8, the defect numbers of the

compression CH(ÃT ) are now equal to dimT2 − dimT1, whereas, by Theorem 3.7
(iii), the defect numbers of the symmetric extension CH(Ã)∩A0 of S equal dimT2.

Remark 3.15 Now suppose that T is multi-valued, that is T is a Nevanlinna d × d
relation function of the form (2.9) with integral and relation representations (2.1)
and (2.2). Recall that this means that in these representations we replace d and
T by dm and Tm. Similarly, the decomposition (3.9) of the space C

d should now
be interpreted as the decomposition of ranPm identified with C

dm and so (3.10)
becomes dm = dc + dr + df + d∞, that is

d = d∞ + dc + dr + df + d∞.

With this understanding, the formulas (i), (ii), (iii) and (v) of Theorem 3.7 hold
if only on the left-hand sides S is replaced by its symmetric extension SkerPm or,
equivalently (see (2.16)), if only the numbers on right-hand sides are raised by d∞.
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The equality (iv) in Theorem 3.7 remains correct as it stands. The conclusions in
Corollary 3.8 also remain unaltered if T is a Nevanlinna d × d relation function.
The equivalent statements in Corollaries 3.9–3.13 remain correct if d , T and S are
replaced by dm, Tm and SkerPm . Of course, if the equalities in the last items of these
corollaries remain as they are (that is with d on the right-hand side) then d∞ = 0
and the relation function T is in fact a matrix function.

4 A Special Self-Adjoint Extension of the Compression

4.1 Straus Extensions

Let S be a closed symmetric linear relation in the Hilbert space H with finite and
equal defect numbers d > 0, and let Ã be a self-adjoint extension of S in some
Hilbert space H̃ ⊃ H. If λ ∈ C, the Straus extension SÃ(λ) of S or Straus subspace
associated with Ã is the linear relation

SÃ(λ) :=
{{P̃Hf̃ , P̃Hg̃} : {f̃ , g̃} ∈ Ã, g̃ − λf̃ ∈ H

}
. (4.1)

Here P̃H denotes the orthogonal projection in H̃ onto H.
In the following proposition we collect some well-known properties of the linear

relation SÃ(λ).

Proposition 4.1 If λ ∈ C, then:

(i) S ⊂ Ã ∩ H2 ⊂ SÃ(λ) ⊂
{{P̃Hf̃ , P̃Hg̃} : {f̃ , g̃} ∈ Ã},

(ii) SÃ(λ
∗) ⊂ SÃ(λ)∗ with equality if λ ∈ ρ(Ã),

(iii) if λ ∈ C
∓ then ±SÃ(λ) is maximal dissipative,

(iv) if λ �∈ σp(Ã), the point spectrum of Ã, then

SÃ(λ) =
{
{P̃H(Ã− λ)−1h, P̃H(I + λ(Ã− λ)−1)h} : h ∈ ran(Ã− λ) ∩ H

}
. (4.2)

Proof The claims (i) and (ii) follow easily from the definition of SÃ(λ). To prove
(iii) consider {f̃ , g̃} ∈ Ã with g̃ − λf̃ ∈ H. Then

(P̃Hg̃, P̃Hf̃ )H = (P̃H(g̃ − λf̃ ), P̃Hf̃ )H + λ‖P̃Hf̃ ‖2H
= (g̃ − λf̃ , f̃ )H̃ + λ‖P̃Hf̃ ‖2H
= (g̃, f̃ )H̃ − λ‖(I − P̃H)f̃ ‖2H̃.

Since Ã is self-adjoint, Im (g̃, f̃ )H̃ = 0. Hence

±Im (P̃Hg̃, P̃Hf̃ )H = ∓(Imλ)‖(I − P̃H)f̃ ‖2H̃ ≥ 0, λ ∈ C
∓.
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This proves that ±SÃ(λ) is dissipative for all λ ∈ C
∓. It is maximal dissipative for

these λ’s because for all z ∈ C \ R the operator (SÃ(z)− z)−1 = P̃H(Ã− z)−1|H
is bounded on all of H, that is C

− ∩ ρ(±SÃ(λ)) �= ∅ and consequently
C
− ⊂ ρ(±SÃ(λ)) for all λ ∈ C

∓.
To prove (iv), let λ �∈ σp(Ã). Then (Ã − λ)−1 is an operator on ran(Ã − λ).

Consider h ∈ ran(Ã− λ) ∩ H and set

f̃ = (Ã− λ)−1h, g̃ = (I + λ(Ã− λ)−1)h (4.3)

Then {f̃ , g̃} ∈ Ã and g̃ − λf̃ = h ∈ H. Hence

{P̃H(Ã− λ)−1h, P̃H(I + λ(Ã− λ)−1)h} = {P̃Hf̃ , P̃Hg̃} ∈ SÃ(λ).

Conversely, consider {f, g} ∈ SÃ(λ). Then there exists {f̃ , g̃} ∈ Ã with g̃−λf̃ ∈ H
such that

{f, g} = {P̃Hf̃ , P̃Hg̃}.

Set h = g̃ − λf̃ . Then h ∈ ran(Ã− λ) ∩H and (4.3) holds. Hence

{f, g} = {P̃H(Ã− λ)−1h, P̃H(I + λ(Ã− λ)−1)h}

belongs to the set on the right-hand side of (4.2). ��

Proposition 4.2 Let z ∈ C
+ and let A be a canonical self-adjoint extension and

Ã be a minimal self-adjoint extension of S with exit. If the resolvent operators
(SÃ(iλ)− z)−1 converge in norm to the resolvent operator (A− z)−1 as λ→+∞,
then CH(Ã) ⊂ A.

Proof Choose a sequence of numbers λn > 0 converging to ∞ as n → ∞. The
assumption implies that if {un, vn} ∈ H2 converges to {u, v} ∈ H2 as n → ∞ and
vn = (SÃ(iλn)− z)−1un, then v = (A− z)−1u. We apply this implication twice.

(a) Consider f ∈ H and set

un := P̃H
(
I + (iλn − z)(Ã− iλn)−1

)
f, vn := P̃H(Ã− iλn)−1f.

Then, by (4.2), vn = (SÃ(iλn) − z)−1un and, as n → ∞, {un, vn} converges to
{P̃HP̃∞f, 0} in H2, where P̃∞ stands for the orthogonal projection in H̃ onto Ã(0).
It follows that

(A− z)−1P̃HP̃∞f = 0,
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that is P̃HP̃∞f ∈ A(0). Since f ∈ H is arbitrary, observing Proposition 3.1(iii), we
have shown that

P̃HÃ(0) = P̃HP̃∞H ⊂ A(0). (4.4)

(b) Choose {g, h} ∈ (CH(Ã) − z)−1, that is {h, g + zh} ∈ CH(Ã). Then there
exists an element k̃ ∈ H̃ such that P̃Hk̃ = g + zh and {h, k̃} ∈ Ã, and hence
(Ã− z)−1(̃k − zh) = h. Set

un := −iλnP̃H
(
I + (iλn − z)(Ã− iλn)−1)h

= −iλnP̃H
(
h+ (iλn − z)(Ã− iλn)−1(Ã− z)−1(̃k − zh))

= −iλnP̃H
(
h+ (Ã− iλn)−1(̃k − zh)− (Ã− z)−1(̃k − zh))

= −iλnP̃H
(
Ã− iλn)−1(̃k − zh)

and

vn := −iλnP̃H(Ã− iλn)−1h

= −iλnP̃H
(Ã− iλn)−1 − (Ã− z)−1

iλn − z (̃k − zh).

Then, again by (4.2), vn = (ST (iλn)− z)−1un. Observing that, as n→∞,

un→ u := P̃H(I − P̃∞)(̃k − zh) = g − P̃HP̃∞(̃k − zh)

and

vn → v := P̃H(Ã− z)−1(̃k − zh) = h

we have

(A− z)−1g = (A− z)−1(g − P̃HP̃∞(̃k − zh)) = h.
Here we used that, by (4.4), P̃HP̃∞(̃k − zh) ∈ P̃HÃ(0) ⊂ A(0). Thus {g, h} ∈
(A−z)−1. Hence (CH(Ã)−z)−1 ⊂ (A−z)−1 and this implies the asserted inclusion
in the proposition. ��
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4.2 Straus Extensions and Krein’s Resolvent Formula

In the following, the self-adjoint extension Ã of S is often the minimal self-adjoint
extension which corresponds to the parameter T in Krein’s formula and which we
denote by ÃT . In this situation, instead of SÃT (λ) we write ST (λ).

Proposition 4.3 If T is a Nevanlinna d× d relation function, then for λ, z ∈ C \R
such that Im λ · Im z > 0 we have

(ST (λ)− z)−1 = (A0 − z)−1 − γz(Q0(z)+ T (λ))−1γ ∗z∗ . (4.5)

Proof Assume λ, z ∈ C \ R and Imλ · Im z > 0. Then λ ∈ ρ(ÃT ) ∩ ρ(A0) and
z ∈ ρ(ST (λ)) ∩ ρ(A0) and, by Proposition 4.1 (iv),

(ST (λ)− z)−1 = {{P̃H(I + (λ− z)(ÃT − λ)−1)h, P̃H(ÃT − λ)−1h} :
h ∈ ran(ÃT − λ) ∩ H

}
. (4.6)

For h ∈ ran(ÃT − λ) ∩ H, which equals H because λ ∈ ρ(ÃT ), we set

k = P̃H
(
I + (λ− z)(ÃT − λ)−1)h.

Then, if h varies over all of H, k varies over all of ran(ST (λ) − z), which equals
H because z ∈ ρ(ST (λ)). Indeed, if {f̃ , g̃} ∈ ÃT and h = g̃ − λf̃ ∈ H, then
{P̃Hf̃ , P̃Hg̃} ∈ ST (λ), and

k = P̃H(I + (λ− z)(ÃT − λ)−1)h = P̃Hg̃ − zP̃Hf̃ ∈ ran(ST (λ)− z) = H.

Conversely, if k ∈ H = ran(ST (λ)− z), then k = g − zf for some {f, g} ∈ ST (λ).
There exists {f̃ , g̃} ∈ ÃT such that P̃Hf̃ = f , P̃Hg̃ = g and g̃− λf̃ ∈ H. If we set
h = g̃ − λf̃ , then h ∈ H and (ÃT − λ)−1h = f̃ . It follows that

k = P̃H(g̃ − λf̃ )+ (λ− z)P̃Hf̃ = P̃H(I + (λ− z)(ÃT − λ)−1)h.
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We determine ((A0 − z)−1 − γz(Q0(z) + T (λ))−1γ ∗z∗)k. Using Krein’s resolvent
formula for P̃H(ÃT − λ)−1h, we find

(
(A0 − z)−1 − γz(Q0(z)+ T (λ))−1γ ∗z∗

)
k

= (
(A0 − z)−1 − γz(Q0(z)+ T (λ))−1γ ∗z∗

)(
h+ (λ− z)P̃H(ÃT − λ)−1h

)

= (A0 − z)−1h− γz(Q0(z)+ T (λ))−1γ ∗z∗h

+ (λ− z)((A0 − z)−1 − γz(Q0(z)+ T (λ))−1γ ∗z∗
)×

× (
(A0 − λ)−1 − γλ(Q0(λ)+ T (λ))−1γ ∗λ∗

)
h

= (A0 − z)−1h− γz(Q0(z)+ T (λ))−1γ ∗z∗h+ I− II− III+ IV, (4.7)

where

I := (λ− z)(A0− z)−1(A0−λ)−1h = (A0−λ)−1h− (A0− z)−1h by the resolvent
formula,

II := (λ−z)(A0−z)−1γλ(Q0(λ)+T (λ))−1γ ∗λ∗h = (γλ−γz)(Q0(λ)+T (λ))−1γ ∗λ∗h
by the relation (z− λ)(A0 − z)−1γλ = γz − γλ,

III := (λ−z)γz(Q0(z)+T (λ))−1γ ∗z∗(A0−λ)−1h = γz(Q0(z)+T (λ))−1(γ ∗λ∗−γ ∗z∗)h
by taking adjoints of both sides of the equality (λ− z)(A0 − λ)−1γz = γλ − γz,

IV := (λ− z)γz(Q0(z)+ T (λ))−1γ ∗z∗γλ(Q0(λ)+ T (λ))−1γ ∗λ∗h
= γz(Q0(z)+ T (λ))−1γ ∗λ∗h− γz(Q0(λ)+ T (λ))−1γ ∗λ∗h

by the relation (λ − z)γ ∗z∗γλ = Q0(λ) −Q0(z) = (Q0(λ) + T (λ)) − (Q0(z) +
T (λ)).

Inserting these expressions into (4.7) and using Krein’s resolvent formula we obtain

(
(A0 − z)−1 − γz(Q0(z)+ T (λ))−1γ ∗z∗

)
k

= (
(A0 − λ)−1 − γλ(Q0(λ)+ T (λ))−1γ ∗λ∗

)
h

= P̃H(ÃT − λ)−1h.

Hence, by (4.6),

(ST (λ)− z)−1 = {{k, ((A0 − z)−1 − γz(Q0(z)+ T (λ))−1γ ∗z∗ )k} : k ∈ H
}
. ��

The following corollary of Proposition 4.3 can be proved as [5, Proposition 3.4
(ii)]. For the definition of SL see (2.11).

Corollary 4.4 If T in Proposition 4.3 is given by (2.9), then ST (λ) ∩A0 = SkerPm
for all λ ∈ C \ R.
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4.3 Assumption: T (∞) Exists

In this subsection we consider the compression to H of a self-adjoint extension ÃT
under the assumption that for the Nevanlinna parameter T the following limits exist
in resolvent sense and are equal:

lim
y→+∞ T (iy) = lim

y→−∞ T (iy) =: T (∞). (4.8)

By this we mean that the limit of the d × d matrix (T (iy)+ i)−1 for y → +∞ and
the limit of the d × d matrix (T (iy)− i)−1 as y →−∞ exist and are equal to

lim
y→+∞(T (iy)+i)−1 = (T (∞)+i)−1 and lim

y→−∞(T (iy)−i)−1 = (T (∞)−i)−1.

Since T (iy)∗ = T (−iy), T (∞) in (4.8) is a self-adjoint relation in C
d .

If T is of the form (2.9) then relative to the decompositionCd = ranPm⊕kerPm,
identified with C

d = C
dm ⊕ C

d∞ as in Remark 3.15,

(T (z)± i)−1 =
[
(Tm(z)± i)−1 0

0 0

]
:
[
C
dm

C
d∞

]
→

[
C
dm

C
d∞

]
, z ∈ C±, (4.9)

and hence (4.8) holds if and only if it holds with T replaced by Tm, and then (4.9)
holds with z replaced by∞.

A sufficient condition which implies (4.8) is given in the following proposition.
In view of the preceding observation we can suppose that T is a matrix function. In
the following P0 is the orthogonal projection in C

d onto kerB.

Proposition 4.5 Let T be a Nevanlinna d × d matrix function with integral
representation (2.1). If

lim
y→+∞ y Im〈T (iy)x, x〉 <∞ for all x ∈ kerB,

then (4.8) holds where T (∞) is the self-adjoint relation :

T (∞) = {{P0x,T0 P0x+ (I − P0)x : x ∈ C
d
}

(4.10)

in which T0 is the symmetric (d − dr)× (d − dr) matrix

T0 = P0

(
−

∫
R

t

t2 + 1
d�(t)+A

)
P0.

Proof Note that by (2.5)

∫
R

d〈�(t)x, x〉 <∞ for all x ∈ kerB,
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hence

lim
y→±∞ T (iy)x =Mx, x ∈ kerB; M := −

∫
R

t

t2 + 1
d�(t)+A

and T0 is well defined. Decompose T (z) relative to the decompositionCd = kerB⊕
ranB:

T (z) =
[
T11(z) T12(z)

T12(z
∗)∗ T22(z)

]
:
[

kerB
ranB

]
→

[
kerB
ranB

]
,

where T11 and T22 are Nevanlinna matrix functions of size (d − dr)× (d − dr) and
dr × dr and T12 is a (d − dr)× dr matrix function. Then

T12(−iy)∗ = (I − P0)T (iy)P0 → (I − P0)MP0 as y → ±∞,

and hence T12(iy) and T12(−iy)∗ are bounded in norm for large values of |y|. From

1

iy
T22(iy) = 1

iy
(I − P0)T (iy)(I − P0)→ B(I − P0) as y →±∞,

we obtain that

lim
y→±∞(T22(iy)± i)−1 = 0.

Since for z ∈ C
± the square matrices (T11(z) ± i) and (T22(z) ± i) are invertible,

the Frobenius-Schur factorization (see for example [17, Proposition 1.6.2]) implies
that

(T (z)± i)−1

=
[

I 0

−(T22 ± i)−1T12(z
∗)∗ I

][
R(z)−1 0

0 (T22(z)± i)−1

][
I −T12(z)(T22 ± i)−1

0 I

]
,

where

R(z) := (T11(z)± i)− T12(z)(T22(z)± i)−1T12(z
∗)∗

is an invertible (d − dr)× (d − dr) matrix function and

lim
y→±∞R(iy) = lim

y→±∞(P0T (iy)P0 ± i) = T0 ± i.



314 A. Dijksma and H. Langer

Now if we set z = iy and let y →±∞, then the right-hand side of the factorization
formula converges to

[
(T0 ± i)−1 0

0 0

]
= (T (∞)± i)−1,

which implies (4.10). ��

Theorem 4.6 If T is a Nevanlinna d × d relation function satisfying (4.8), then
the canonical self-adjoint extension AT (∞) of S is a self-adjoint extension of the
compression CH(ÃT ) :

CH(ÃT ) ⊂ AT (∞).

Proof Choose z ∈ C
+ and a sequence of numbers λn > 0 converging to ∞ as

n → ∞. Set U(iλn) := I − 2i(T (iλn) + i)−1. Then U(iλn) is a contractive d × d
matrix which converges to the unitary matrix U(∞) := I − 2i(T (∞)+ i)−1. With
Q0(z) as in Krein’s formula and using that for square matrices X , Y and Z of the
same size, which need not be invertible, we have the linear relation equality

(
X + ZY−1)−1 = Y(XY + Z)−1

we obtain that

(Q0(z)+T (iλn))−1 = (
Q0(z)− i+ 2i(I − U(iλn))−1)−1

= (I − U(iλn))
(
(Q0(z)− i)(I − U(iλn))+ 2i

)−1

= (I − U(iλn))
(
(Q0(z)+ i)− (Q0(z)− i)U(iλn)

)−1

= (I − U(iλn))
(
I − (Q0(z)+ i)−1(Q0(z)− i)U(iλn)

)−1
(Q0(z)+ i)−1.

Note that the inverses on the left-hand side and the right-hand side of this chain of
equalities are all matrices. By (2.14) the matrix (Q0(z)+ i)−1(Q0(z)− i) is a strict
contraction and hence as n→∞

(Q0(z)+T (iλn))−1

−→ (I − U(∞)(I − (Q0(z)+ i)−1(Q0(z)− i)U(∞))−1
(Q0(z)+ i)−1

= (Q0(z)+ T (∞))−1.

By (4.5) and Krein’s formula for AT (∞), the resolvent operators (ST (iλn) − z)−1

converge in norm to the resolvent operator (AT (∞) − z)−1. It remains to apply
Proposition 4.2. ��
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Corollary 4.7 In Corollary 3.8 if T is rational and in Corollary 3.12 and Corol-
lary 3.13 we have CH(ÃT ) = AT (∞).

By Remark 3.15 this corollary remains true if T is multi-valued.

Example 4.8 Let S be a symmetry with defect d = 1. An example of a parameter
T such that the compression CH(ÃT ) has defect one (and hence coincides with S)
is given by the function

T (z) =
∫
R

1

t − z
|t|

1+ t2 dt, z ∈ C \R.

Then T (iy) = i
2y ln |y|
y2 − 1

, y �= 0,±1, hence T (∞) = 0, and
∫
R

|t|
1+ t2 dt = ∞,

which yields L∞ = C.

5 Straus Extensions at a Real Point

In this section we consider a closed symmetric relation S with finite and equal defect
numbers d > 0 in a Hilbert space H, a self-adjoint extension ÃT of S in some
Hilbert space H̃, where T is again the parameter in Krein’s formula (2.15) for ÃT
based on the canonical self-adjoint extensionA0 of S. We are interested in the Straus
subspace ST (λ0) for a real point λ0:

ST (λ0) =
{
{P̃Hf̃ , P̃Hg̃} : {f̃ , g̃} ∈ ÃT , g̃ − λ0f̃ ∈ H

}
.

This Straus subspace is a symmetric or self-adjoint extension of S in H. At least
formally, for λ0 =∞ the Straus extension becomes the compression:

ST (∞) =
{
{P̃Hf̃ , P̃Hg̃} : {f̃ , g̃} ∈ ÃT , f̃ ∈ H

}
= CH(ÃT ).

We prove for ST (λ0) analogous results as for compressions in Sects. 3 and 4 by
means of a fractional linear transformation.

5.1 A Fractional Linear Transformation of Linear Relations

For fixed λ0 ∈ R consider the following transformation ϕ of the complex plane:

ẑ := ϕ(z) := 1

λ0 − z , or, equivalently, z = λ0 − 1

ẑ
. (5.1)
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Evidently, λ̂0 = ∞. For a linear relation G in H2 we define

Ĝ := (G)̂ := (λ0 −G)−1.

In particular, the corresponding transformations of S, A0 and ÃT are:

Ŝ = (λ0 − S)−1, Â0 = (λ0 − A0)
−1, (ÃT )̂ = (λ0 − ÃT )

−1.

Then with S also Ŝ is a closed relation in H which is symmetric, because

Ŝ = (λ0 − S)−1 ⊂ (λ0 − S∗)−1 = (λ0 − S)−∗ = Ŝ∗.
and Ŝ(0) = ker(S − λ0). The operator or relation Â0 is a canonical self-adjoint
extension of Ŝ, and (ÃT )̂ is a self-adjoint extension of Ŝ in the Hilbert space H̃.
Then in Krein’s formula for Ŝ, based on Â0, to the extension (ÃT )̂ there corresponds

a parameter, which we denote by

̂
T : (ÃT )̂ = (ÃT )̂

̂
T

; for simplicity we write

(ÃT )̂
̂
T
=:

̂
A

̂
T and, now without reference to the parameters, (Ã )̂ =

̂
A.

Proposition 5.1 Ŝ is a closed symmetric relation with equal defect numbers d . If
in Krein’s resolvent formulas for S and Ŝ, based on A0 and Â0, related γ -fields
and corresponding Q-functions are denoted by γz and

̂
γ ẑ and by Q0 and

̂
Q0,

respectively, they can be chosen such that

̂
γ ẑ :=

1

ẑ
γz : Cd → ker(S∗ − z) = ker(Ŝ∗ − ẑ ),

̂
Q0( ẑ ) = Q0(z), (5.2)

and then the parameters

̂
T and T are connected by the formulâ
T ( ẑ ) = T (z), z ∈ C \R. (5.3)

For the proof of this proposition, in the following lemma we collect some simple
formulas.

Lemma 5.2 For z,w ∈ C \ R we have the following equalities :
(i) ran(Ŝ − ẑ ) = ran(S − z),

(ii) ker(Ŝ∗ − ẑ ) = ker(S∗ − z),
(iii) (Â0 − ẑ )−1 = 1

ẑ 2 (A0 − z)−1 − 1
ẑ
,

(iv) I + ( ẑ− ŵ)(Â0 − ẑ )−1 = ŵ
ẑ

(
I + (z−w)(A0 − z)−1

)
,

(v) P̃H(

̂
A

̂
T − ẑ )−1|H = 1

ẑ 2 P̃H(ÃT − z )−1|H − 1
ẑ
.

Proof To prove these items we observe that for an arbitrary linear relation G in a
Hilbert space H the resolvents of G and Ĝ are related by the formula

(Ĝ− ẑ )−1 = 1

ẑ2 (G− z)−1 − 1

ẑ
. (5.4)
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This readily follows from the equivalences

{f, g} ∈(Ĝ− ẑ )−1 ⇐⇒ {g, f } ∈ Ĝ− ẑ

⇐⇒ {f + ẑg, 1

ẑ
f } ∈ G− z⇐⇒ {f, g} ∈ 1

ẑ2 (G− z)−1 − 1

ẑ
.

Now the equality in (i) follows from the second equivalence applied to G = S. The
equality in (ii) follows from (i) by taking orthogonal complements. Items (iii)-(v)
follow directly from (5.4). ��

Proof of Proposition 5.1 By Lemma 5.2 (ii), Ŝ has equal defect numbers d . With a
γ -field γz and a corresponding Q-function Q0 associated with S and A0 we define
a γ -field

̂
γ ẑ and a corresponding Q-function

̂
Q0 associated with Ŝ and Â0. To this

end we fix z1 ∈ C \ R and set

̂
γ := 1

ẑ1
γz1 : Cd → ker(S∗ − z1) = ker(Ŝ∗ − ẑ1).

Then (observe Lemma 5.2 (iv))
̂
γ ẑ := (I + ( ẑ− ẑ1)(Â0 − ẑ )−1)

̂
γ = ẑ1

ẑ
(I + (z− z1)(A0 − z)−1)

1

ẑ1
γz1 =

1

ẑ
γz

is a γ -field associated with Ŝ and Â0. The corresponding Q-function

̂
Q0 will be

defined such that for ẑ, ŵ ∈ C \ R
̂
Q0( ẑ )−

̂
Q0(ŵ)

∗

ẑ− ŵ∗ = γ̂ ∗̂wγ̂̂z =
1

ẑŵ∗
γ ∗wγz =

1

ẑŵ∗
Q0(z)−Q0(w)

∗

z − w∗ = Q0(z) −Q0(w)
∗

ẑ − ŵ∗ .

We choose

̂
Q0 such that

̂
Q0( ẑ1) = Q0(z1) and thus

̂
Q0( ẑ ) = Q0(z) as in (5.2).

Recall that
̂
A

̂
T in Krein’s formula based on Ŝ and Â0 corresponds to the

parameter

̂
T :

P̃H(

̂
A

̂
T − ẑ )

−1
∣∣
H
= (Â0 − ẑ )−1 −

̂
γ ẑ

(̂
Q0( ẑ )+

̂
T ( ẑ )

)−1 ̂
γ ∗ẑ∗ .

Then, by Lemma 5.2 (iii) and (v),

P̃H

(
1
ẑ2 (ÃT − z)−1 − 1

ẑ

) ∣∣
H
= 1

ẑ2 (A0 − z)−1 − 1
ẑ
− 1

ẑ
γz

(
Q0(z)+

̂
T ( ẑ )

)−1
1
ẑ
γ ∗z∗

and this simplifies to

P̃H(ÃT − z)−1
∣∣
H
= (A0 − z)−1 − γz

(
Q0(z)+

̂
T ( ẑ )

)−1
γ ∗z∗ .
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Comparing this formula with (2.15), we obtain (5.3).
We denote the Straus extension of Ŝ related to

̂
A

̂
T by

̂
S
̂
T (λ):̂

S
̂
T (λ) =

{
{P̃Hf̃ , P̃Hg̃} : {f̃ , g̃} ∈

̂
A

̂
T , g̃ − λf̃ ∈ H

}
, λ ∈ C,

and then, formally,

̂
S
̂
T (∞) = CH(

̂
A

̂
T ).

Proposition 5.3 If λ0 ∈ R,

̂
A

̂
T = (λ0− ÃT )−1 and λ and λ̂ are related as in (5.1),

then

(i)

̂
S
̂
T ( λ̂ ) = (ST (λ))̂

( = (λ0 − ST (λ))−1
)
, λ �= λ0,

(ii) CH(

̂
A

̂
T ) = (ST (λ0))̂

( = (λ0 − ST (λ0))
−1

)
.

Proof To prove (i) we observe that for f̃ , g̃, h̃ ∈ H̃ and with λ, λ̂ related as in (5.1)
we have

h̃ = λ0f̃ − g̃, λ �= λ0 3⇒ f̃ − λ̂h̃ = λ̂(g̃ − λf̃ ).
It follows that for λ ∈ C \ {λ0}
(λ0 − ST (λ))−1 = {{P̃Hf̃ , λ0P̃Hf̃ − P̃Hg̃} : {f̃ , g̃} ∈ ÃT , g̃ − λf̃ ∈ H

}−1

= {{P̃H(λ0f̃ − g̃), P̃Hf̃ } : {f̃ , λ0f̃ − g̃} ∈ λ0 − ÃT , g̃ − λf̃ ∈ H
}

= {{P̃Hh̃, P̃Hf̃ } : {̃h, f̃ } ∈
̂
A

̂
T
, f̃ − λ̂h̃ ∈ H

}

=
̂
S
̂
T
( λ̂ ).

Item (ii) can be proved similarly. ��

5.2 A Transformation of the Parameter

In this subsection we fix λ0 ∈ R, and assume that T and

̂
T are Nevanlinna d × d

matrix functions with integral representations (2.1):

T (z) =
∫
R

(
1

t − z −
t

1+ t2
)

d�(t) + A + zB,
̂
T ( ẑ ) =

∫
R

(
1

t̂ − ẑ −
t̂

1+ t̂ 2

)
d
̂
�(̂t) +

̂
A + ẑ

̂
B, (5.5)

and such that (5.3) holds:

̂
T ( ẑ ) = T (z). Recall that ϕ is the function ϕ(t) =

1

λ0 − t ; for a real interval � we set �̂ := ϕ(�).
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Lemma 5.4 The following relations hold :
(i)

̂
�(�̂) =

∫
�

d�(t)

(t − λ0)2
, � any bounded closed interval such that λ0 /∈ �.

(ii)

̂
�({0}) = B.

(iii)

̂
B = �({λ0}).

Proof The relation

̂
T ( ẑ ) = T (λ0 − 1

ẑ
) reads as

∫
R

(
1

t̂ − ẑ −
t̂

1+ t̂2
)

d
̂
�(̂t) +

̂
A + ẑ

̂
B

=
∫
R

(
1

t − λ0 + 1
ẑ

− t

1+ t2
)

d�(t) + A +
(
λ0 − 1

ẑ

)
B.

(5.6)

Consider a closed interval � ⊂ R \ {λ0}. The right-hand side of (5.6) can be
written as

∫
�

(
1

t − λ0 + 1
ẑ

− 1

t − λ0

)
d�(t)+ · · · ,

where · · · is an expression which is analytic with respect to ẑ in the interior of �̂.
Observing that

1

t − λ0 + 1
ẑ

− 1

t − λ0
= 1

(t − λ0)2(
1

λ0−t − ẑ )
,

(5.6) yields

∫
R

(
1

t̂ − ẑ −
t̂

1+ t̂2
)

d
̂
�(̂t)+

̂
A+ ẑ

̂
B =

∫
�

d�(t)

(t − λ0)2

1
1

λ0−t − ẑ
+ · · · ,

where again · · · is an expression analytic in the interior of �̂with respect to ẑ. Under
the substitution

d
̂
�1(̂t ) := d�(t)

(t − λ0)2
, t̂ = 1

λ0 − t ,

this relation becomes

∫
R

(
1

t̂ − ẑ −
t̂

1+ t̂ 2

)
d

̂
�(̂t)+

̂
A+ ẑ

̂
B =

∫
�̂

d
̂
�1(̂t )

t̂ − ẑ + · · · .
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Now the Stieltjes inversion formula implies

d

̂
�(̂t) = d

̂
�1(̂t ) = d�(t)

(t − λ0)2
, t̂ = 1

λ0 − t ∈ �̂,

and (i) follows.
To prove (ii), we multiply both sides of T (z) =

̂
T ( ẑ ) by 1

z
, set z = iy and

obtain, by for example [9, (5.14) and (5.30)], that

B = lim
y→+∞

1

iy
T (iy) = lim

y→+∞−
i

y

̂
T

(
λ0 + i

y

)
=

̂
�({λ0}).

The equality in (iii) can be proved in the same way. ��

Corollary 5.5 With the notation of Lemma 5.4, for x ∈ C
d, x �= 0, we have

∫
R

d〈�(t)x, x〉
(t − λ0)2

= ∞, x ⊥ ran�({λ0}) ⇐⇒
∫
R

d〈
̂
�(s)x, x〉 = ∞, x ⊥ ran

̂
B.

5.3 A Dimension Theorem

In this subsection we prove a Dimension theorem for ST (λ0) using the fractional
transformation of the previous subsection and Theorem 3.7 for the compression of
ÃT . To this end we decompose the space C

d with respect to T and λ0 as follows
(comp. (3.10)):

C
d = Lc ⊕ Lr (λ0)⊕ Lf (λ0)⊕ L

∞(λ0), (5.7)

where Lc is the subset of Cd on which T (z) is constant, and

Lr (λ0)⊕ Lf (λ0)⊕ L
∞(λ0) = L

⊥
c ,

with

Lr (λ0) := ran�({λ0}),

Lf (λ0) :=
{

x ∈ C
d : x ∈ Lr (λ0)

⊥ ∩ L
⊥
c ,

∫
R

d〈�(t)x, x〉
(t − λ0)2

<∞
}
,

L
∞(λ0) :=

{
x ∈ C

d :x ∈ L
⊥
c ∩ L0(λ0)

⊥ ∩ Lf (λ0)
⊥,
∫
R

d〈�(t)x, x〉
(t − λ0)2

= ∞
}
.
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That is, L∞(λ0) is the maximal subspace in (ran�({λ0})⊥ such that for its nonzero
elements x we have

∫
R

d〈�(t)x,x〉
(t−λ0)2

= ∞. We denote the dimensions of the subspaces

on the right-hand side of (5.7) by dc, dr(λ0), df (λ0) and d∞(λ0).

Remark 5.6 Define the Nevanlinna d × d matrix function

̂
T by

̂
T ( ẑ ) = T (z).

Then the spaces in the decomposition (5.7) are related to the integral representation
of the parameter

̂
T in the same way as the spaces in (3.10) are related to the integral

representation of T . Indeed, by Lemma 3.3 and Lemma 5.4,

Lc = kerT (z) = ker

̂
T ( ẑ ) = (ker

̂
B) ∩ (ker

̂
�),

L
⊥
c = span

{
ran

̂
B, ran

̂
�
}
,

Lr (λ0) = ran

̂
B,

Lf (λ0) =
{

x ∈ C
d : x ∈ (ker

̂
B) ∩ L

⊥
c ,

∫
R

d〈
̂
�(t)x, x〉 <∞

}
,

L
∞(λ0) =

{
x ∈ C

d : x ∈ L
⊥
c ∩ (ker

̂
B) ∩ Lf (λ0)

⊥,
∫
R

d〈
̂
�(t)x, x〉 = ∞

}
.

Theorem 5.7 If the parameter T is a d × d matrix function, then the following
relations hold :

(i) dim
((
ST (λ0) ∩ A0

)/
S
) = dr(λ0),

(ii) dim
(
ST (λ0)

/(
ÃT ∩ H2 + ST (λ0) ∩ A0

)) = df (λ0),
(iii) dim

(
ST (λ0)

/
S
) = dc + dr(λ0)+ df (λ0).

Proof By Remark 5.6, the equalities in the theorem are a direct consequence of
Theorem 3.7 and Proposition 5.3 (ii). As an example we prove (ii):

dim
(
ST (λ0)

/(
ÃT ∩H2 + ST (λ0) ∩ A0

))

= dim
(
(ST (λ0))̂

/(
(ÃT )̂ ∩ H2 + (ST (λ0))̂ ∩ Â0

))

= dim
(
CH(

̂
A

̂
T )

/(̂
A

̂
T ∩ H2 + CH(

̂
A

̂
T ) ∩ Â0

))

= df (λ0),

where the last equality follows from Theorem 3.7 (iv). ��

Now also analogues of Corollaries 3.8–3.13 hold. They follow from Remark 5.6,
their corresponding counterparts in Sect. 3.3 and Proposition 5.3 (ii). In the follow-
ing six corollaries it is assumed that the parameter T is a Nevanlinna d × d matrix
function with integral representation (2.1) and relation representation (2.2) and that
λ0 ∈ R.
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Corollary 5.8 The Straus extension ST (λ0) of S has equal defect numbers d∞(λ0).
If T is rational, then ST (λ0) is self-adjoint.

The last statement is a special case of [7, Theorem 3.3].

Corollary 5.9 The following statements are equivalent :
(a) lim

s→0+
1

s
Im

〈
T (λ0 + is)x, x

〉 = ∞ for all x ∈ C
d \ {0}.

(b) ST (λ0) ⊂ A0.
(c) dr(λ0)+ d∞(λ0) = d .

Corollary 5.10 The following statements are equivalent :
(a) �({λ0}) > 0.
(b) ST (λ0) = A0.
(c) dr(λ0) = d .

Corollary 5.11 The following statements are equivalent :
(a) �({λ0}) = 0 and lim

s→0+
1

s
Im

〈
T (λ0 + is)x, x

〉 =∞ for all x ∈ C
d \ {0}.

(b) ST (λ0) = S.
(c) d∞(λ0) = d .

Corollary 5.12 If lim
s→0+

1

s
Im

〈
T (λ0 + is)x, x

〉
< ∞ for all x ∈ ker�({λ0}), then

ST (λ0) is self-adjoint.

Corollary 5.13 The following statements are equivalent :
(a) lim

s→0+
1

s
Im

〈
T (λ0 + is)x, x

〉
<∞ for all x ∈ C

d .

(b) ST (λ0) is self-adjoint and ST (λ0) ∩ A0 = S.
(c) dc + df (λ0) = d .

Example 5.14 As examples for the case d = 1 we mention the scalar Nevanlinna
functions T1(z) = √z, positive on (0,∞), and T2(z) = log z, real on (0,∞),
considered in [8, p. 27]. It follows from the formulas given there that the measures
in the integral representations of these functions have no point masses. We find that

lim
s→0+

1

s
ImT1(λ0 + is) =

⎧⎨
⎩

1
2 if λ0 > 0,
1
2

√
2 if λ0 = 0,

∞ if λ0 < 0.

Hence, by Corollary 5.11, d∞(λ0) = 1 for λ0 < 0 and, by Corollary 5.13, ST1(λ0)

is self-adjoint for λ0 ≥ 0. Similarly, from

lim
s→0+

1

s
Im T2(λ0 + is) =

{
1
λ0

if λ0 > 0,

∞ if λ0 ≤ 0
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we infer that d∞(λ0) = 1 for λ0 ≤ 0 and ST2(λ0) is self-adjoint for λ0 > 0.

Remark 5.15 If T is a Nevanlinna d × d relation function then the corollaries need
to be adapted in a similar way as in Remark 3.15.

5.4 Assumption: T (λ0) Exists

In analogy to Sect. 4.3, we finally consider the Straus extension of ST at a real point
λ0 determined by a self-adjoint extension ÃT under the assumption that for the
parameter T the following limits exist in resolvent sense and are equal:

lim
s→0+ T (λ0 + is) = lim

s→0−T (λ0 + is) =: T (λ0), (5.8)

that is

lim
s→0+

(
T (λ0+is)+i

)−1 =
(
T (λ0)+i

)−1
, lim

s→0−

(
T (λ0+is)−i

)−1 =
(
T (λ0)−i

)−1
.

Then T (λ0) in (5.8) is a self-adjoint relation in C
d .

A sufficient condition for the limits in (5.8) to exist and to be equal is given by the
following analogue of Proposition 4.5. We denote by Pλ0 the orthogonal projection
in C

d onto ker�({λ0}).
Proposition 5.16 Let T be a Nevanlinna d × d matrix function with integral
representation (2.1). If

lim
s→0+

1

s
Im

〈
T (λ0 + is)x, x

〉
<∞ for all x ∈ ker�({λ0}),

then (5.8) holds where T (λ0) is the self-adjoint relation :

T (λ0) =
{
{Pλ0x,Tλ0Pλ0x+ (I − Pλ0)x} : x ∈ C

d
}

(5.9)

in which Tλ0 is the symmetric (d − dr(λ0))× (d − dr(λ0)) matrix

Tλ0 = Pλ0

(∫
R

(
1

t − λ0
− t

t2 + 1

)
d�(t)+A+ λ0B

)
Pλ0 .

Proof Define the Nevanlinna d×d matrix function

̂
T by the relation

̂
T (̂z) = T (z).

Assume it has the integral representation (5.5). Then

̂
T satisfies the assumption of

Proposition 4.5 and hence (4.8) holds. This implies (5.8) with T (λ0) =
̂
T (∞). The

equality (5.9) follows from (4.10), and

ran(I − Pλ0) = T (λ0)(0) =
̂
T (∞)(0) = ran

̂
B = ran�({λ0}),
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that is ranPλ0 = ker�({λ0}). The last equality follows from Lemma 5.4 (ii). The
assumption in the proposition implies that

∫
R

d〈�(t)x, x〉
(t − λ0)2

<∞ for all x ∈ ker�({λ0}),

and hence the matrix part of T (λ0) is given by

Tλ0 = lim
s→0+Pλ0T (λ0 + is)Pλ0

= Pλ0

(∫
R

(
1

t − λ0
− t

t2 + 1

)
d�(t)+A+ λ0B

)
Pλ0 .

��

Theorem 5.17 If the Nevanlinna d × d relation function T satisfies (5.8), then
the canonical self-adjoint extension AT (λ0) of S corresponding to T (λ0) in Krein’s
formula (2.15) is a self-adjoint extension of the Straus extension ST (λ0) of S :

ST (λ0) ⊂ AT (λ0).

Proof Choose z ∈ C
+ and let Q0(z) be the Q-function in Krein’s formula. By the

same reasoning as in the proof of Theorem 4.6

lim
s→0+

(
Q0(z)+ T (λ0 + is)

)−1 =
(
Q0(z)+ T (λ0)

)−1
.

From (4.5) and Krein’s formula for AT (λ0) we obtain that as s → 0+
(
ST (λ0 + is)− z

)−1 →
(
AT (λ0) − z

)−1
,

and hence, by Proposition 5.3 (i) and (5.4),

(̂
S
̂
T

(
i

s

)
− ẑ

)−1

=
(
(ST (λ0 + is))̂ − ẑ

)−1 →
(
(AT (λ0))̂ − ẑ

)−1
,

both limits are in operator norm. By Proposition 5.3 (ii) and Proposition 4.2

(ST (λ0))̂ =
̂
S
̂
T (∞) = CH(

̂
A

̂
T ) ⊂ (AT (λ0))̂,

whence ST (λ0) ⊂ AT (λ0). ��

Corollary 5.18 In Corollary 5.8 if T is rational and in Corollary 5.12 and
Corollary 5.13 we have ST (λ0) = AT (λ0).

By Remark 5.15 this corollary remains true if T is multi-valued.
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Abstract Conditions for the complete indeterminacy of the matricial Hamburger
moment problem will be studied. These conditions are formulated in terms of series
built on the basis of matrix-valued polynomials of first and second kind.
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Symmetric operators · Deficiency numbers · Deficiency vectors
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1 Introduction

Let integers m,n ≥ 1 be given. The symbol Cm×n stands for the set of all complex
matrices with m rows and n columns. For each matrix A ∈ C

m×n, we denote
by A∗ ∈ C

n×m its adjoint matrix. The unit matrix of order m we denote by Im,
whereas the zero matrix with m rows and n columns is denoted by Om×n. For
simplicity, sometimes we omit the indices associated with the matrices Im and
Om×n if these indices are clear from the context. The linear matrix space C

m×1

will be denoted by C
m. The elements of Cm are called m-dimensional vectors and

will be written as x = col(x1, . . . , xm). The zero vector belonging to C
m will be
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denoted by Om. For an arbitrary square matrix A ∈ C
m×m, we denote its kernel

{x ∈ C
m : Ax = Om} by kerA. The scalar product in C

m is defined by the formula
(x, y) =∑m

j=1 x̄j yj . A matrixA ∈ C
m×m is called Hermitian if (x,Ay) = (Ax, y)

for all x, y ∈ C
m. The set of all Hermitian matrices is denoted by C

m×m
H . A

Hermitian matrixA ∈ C
m×m
H is called non-negative Hermitian if (x,Ax) ≥ 0 for all

x ∈ C
m. The set of all non-negative Hermitian matrices will be denoted by C

m×m≥ .
A matrix A ∈ C

m×m≥ is called positive Hermitian if (x,Ax) > 0 for all non-zero
vectors x ∈ C

m. The set of all positive Hermitian matrices will be denoted by C
m×m
> .

If A,B ∈ C
m×m
H , then we write A > B (resp. A ≥ B) if A − B ∈ C

m×m
> (resp.

A−B ∈ C
m×m
> ). If some matrix A is invertible, then for the matrix (A−1)∗ we also

write A−∗. If f (z) is some matrix-valued function (MF), then the function
(
f (z)

)∗
will shortly be written as f ∗(z). If the MF f (z) is invertible, then we write

(
f (z)

)−1

and
((
f (z)

)−1)∗
for short in the form f−1(z) and f−∗(z), respectively. The open

half-planes will be denoted by

C+ = {z ∈ C : Im z > 0}, C− = {z ∈ C : Im z < 0}.

The symbol B stands for the σ -algebra of the Borelian subsets of the real axis R. A
mapping σ : B −→ C

m×m is called non-negative Hermitian measure if

σ
( ∞⋃
j=1

Aj

)
=
∞∑
j=1

σ(Aj )

is satisfied for each sequence of pairwise disjoint Borelian subsets of R. In this paper
we will use integrals with respect to non-negative Hermitian measure and the basic
properties of these integrals (see, e.g. [1, 2]).

Let an infinite sequence (sl)∞l=0 of matrices from C
m×m be given. Now we

introduce several block matrices:

Hj =
(
sl+k

)j
l, k=0, Kj =

(
sl+k+1

)j
l, k=0, j ≥ 0, (1.1)

yj,k =
⎛
⎜⎝
sj
...

sk

⎞
⎟⎠ , zj,k =

(
sj . . . sk

)
, 0 ≤ j ≤ k,

u0 = Om×m, uj =
(
Om×m
−y0,j−1

)
, j > 0,

vj =
(

Im

Omj×m

)
, Vj =

(
Omj×m
Im

)
, j ≥ 0, (1.2)
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T0 = Om×m, Tj =
(
Om×mj Om×m
Imj Omj×m

)
, j > 0,

Rj (z) =
(
I(j+1)m − zTj

)−1 =

⎛
⎜⎜⎜⎜⎝

Im Om×m . . . Om×m
zIm Im

. . . Om×m
...

. . .
. . . Om×m

zj Im . . . zIm Im

⎞
⎟⎟⎟⎟⎠ , j ≥ 0.

The last identity is obvious for j = 0. For j > 0 we have

⎛
⎜⎜⎜⎜⎝

Im Om×m . . . Om×m
−zIm Im

. . . Om×m
...

. . .
. . . Om×m

Om . . . −zIm Im

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

Im Om×m . . . Om×m
zIm Im

. . . Om×m
...

. . .
. . . Om×m

zj Im . . . zIm Im

⎞
⎟⎟⎟⎟⎠ = I

The blocks (of size m × m) of the matrices (1.1) depend only on the sum of the
numbers of its rows and the number of its columns. Such matrices are called block
Hankel matrices.

A sequence

(
sl
)∞
l=0 ⊂ C

m×m (1.3)

is called R-positive (see, e.g. [3, Ch. I, Sect. 1.1]) if for all j ≥ 0 the block Hankel
matrices Hj are positive Hermitian. Let for an R-positive sequence (1.3) the block
Hankel matrices Hj > O be constructed. For j > 0 we have

Hj =
(
Hj−1 yj,2j−1

zj,2j−1 s2j

)

=
(

I O

zj,2j−1H
−1
j−1 I

)(
Hj−1 O

O Ĥj

)(
I H−1

j−1yj,2j−1

O I

)
. (1.4)

Here

Ĥj =
{
H0 j = 0
s2j − zj,2j−1H

−1
j−1yj,2j−1 j > 0.

(1.5)

The inequality Hj > O implies that the product of the three matrices in (1.4) is
non-singular. For this reason, each of the three matricial factors on the right side
of (1.4) is non-singular, too, and in particular,

Ĥj > Om×m, j ≥ 0. (1.6)
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Forming the inverse matrices in (1.4), we obtain

H−1
j =

(
I −H−1

j−1yj,2j−1

O I

)(
H−1
j−1 O

O Ĥ−1
j

)(
I O

−zj,2j−1H
−1
j−1 I

)
. (1.7)

From this and the second identity in (1.2) it follows

V ∗j H
−1
j = Ĥ−1

j

(
−zj,2j−1H

−1
j−1 I

)
, V ∗j H

−1
j Vj = Ĥ−1

j . (1.8)

We associate the matricial Hamburger moment problem with the R-positive
matrix sequence (1.3). This means, we want to describe all non-negative Hermitian
m×m measures σ such that

sl =
∫
R

t lσ (dt), l ≥ 0. (1.9)

The set of all solutions of problem (1.9) is denoted by M. Under the required
assumptions it is ensured that M �= ∅. In the case m = 1 the Hamburger moment
problem (1.9) is called the classical moment problem.

Remark 1.1 Note that the sequence (sl)∞l=0 fromC
m×m admits a representation (1.9)

with some non-negative Hermitian measure σ if and only if all block Hankel
matricesHj =

(
sl+k

)j
l, k=0 ≥ O, j ≥ 0 are non-negative Hermitian (see, e.g. [4])

We consider matrix-valued polynomials of the type

Pj (t) =
j∑
l=0

Flt
l , t ∈ C, Fl ∈ C

m×m.

The matrix Fj �= Om×m is called leading coefficient of the matrix polynomial P
and the number j is called the degree of the matrix polynomial.

We summarize several known facts about the matricial Hamburger moment
problem (see [4–9]). Outgoing from the R-positive matrix sequence (1.3), we form
two sequences of matrix-valued polynomials

Pj (z) = Ĥ
1
2
j Vj

∗H−1
j Rj (z)vj , j ≥ 0, (1.10)

Qj(z) = −Ĥ
1
2
j V
∗
j H
−1
j Rj (z)uj , j ≥ 0. (1.11)

From this and the first formula in (1.8), it follows for j ≥ 1 then

P0 = H−
1
2

0 , Pj (z) = Ĥ−
1
2

j

(
−zj,2j−1H

−1
j−1 I

)
Rj (z)vj ,

Q0 = Om×m, Qj (z) = −Ĥ−
1
2

j

(
−zj,2j−1H

−1
j−1 I

)
Rj (z)uj .
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It is obvious that the coefficients of the considered matrix polynomials are square
matrices of order m. The matrix polynomials Pj are orthonormal with respect to
each measure σ ∈M what means that

∫
R

Pj (t)σ (dt)Pk
∗(t) = δjkIm, δjk =

{
1, j = k
0, j �= k , (1.12)

whereas the matrix polynomials Qj satisfy with respect to each measure σ ∈ M
the integral representation

Qj(z) =
∫
R

Pj (t)− Pj (z)
t − z σ(dt) (1.13)

and, thus are matrix polynomials of second kind (see, e.g., [10, 11]).
From orthonormality conditions (1.12) it follows that the matrix polynomials

(Pj )
∞
j=0 satisfy the following initial conditions and recurrence formulas

P0(z) ≡ H−
1
2

0 , zP0(z) = B0P0(z)+ A0P1(z), (1.14)

zPj (z) = A∗j−1Pj−1(z)+ BjPj (z)+ AjPj+1(z), j ≥ 1, (1.15)

where the matrices Aj and Bj are given by the formulas

Aj = Ĥ−
1
2

j Ĥ
1
2
j+1, Bj = Ĥ

1
2
j V
∗
j H
−1
j KjH

−1
j Vj Ĥ

1
2
j (1.16)

and fulfil the conditions

detAj �= 0, Bj ∈ C
m×m
H .

From (1.11), (1.13), and (1.15) it follows that the matrix polynomials (Qj )
∞
j=0

satisfy the following initial conditions and recurrence formulas

Q0(z) ≡ O, Q1(z) ≡ Ĥ−1/2
1 s0, (1.17)

zQj (z) = A∗j−1Qj−1(z)+ BjQj(z)+ AjQj+1(z), j ≥ 1. (1.18)

Taking into account that P0(z) ≡ H
−1/2
0 , the relations (1.14) and (1.15) can be

formally written in the form

z

⎛
⎜⎜⎜⎝

P0(z)

P1(z)

P2(z)
...

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

B0 A0 O O . . .

A∗0 B1 A1 O . . .

O A∗1 B2 A2 . . .
...

...
. . .

. . .
. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

P0(z)

P1(z)

P2(z)
...

⎞
⎟⎟⎟⎠ , (1.19)
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whereas using Q0(z) ≡ O the relations (1.17) and (1.18) can be formally written in
the form

z

⎛
⎜⎜⎜⎝

Q0(z)

Q1(z)

Q2(z)
...

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

I

O

O
...

⎞
⎟⎟⎟⎠ s

1/2
0 =

⎛
⎜⎜⎜⎝

B0 A0 O O . . .

A∗0 B1 A1 O . . .

O A∗1 B2 A2 . . .
...

...
. . .

. . .
. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

Q0(z)

Q1(z)

Q2(z)
...

⎞
⎟⎟⎟⎠ . (1.20)

We consider the infinite block Jacobi matrix

J =

⎛
⎜⎜⎜⎝

B0 A0 O O . . .

A∗0 B1 A1 O . . .

O A∗1 B2 A2 . . .
...

...
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ (1.21)

the blocks of which are matrices from C
m×m. We denote by �2(Cm) the Hilbert

space of all infinite column vectors

u = col (u0, u1, u2, . . . ),

∞∑
j=0

u∗juj < +∞, uj ∈ C
m,

with scalar product (u, v) =∑∞
j=0 u

∗
j vj . The symbol �2

0(C
m) stands for the closed

linear subspace of �2(Cm) consisting of all finite vectors. With the aid of the block
Jacobi matrix J we define a symmetric linear operator L0 : �2

0(C
m) −→ �2

0(C
m) via

the formula

L0u = Ju, ∀u ∈ �2
0(C

m).

The closure of this symmetric operator is denoted by L.
The deficiency space of the operator L in the non-real point z is given by

K(z) = {
u ∈ �2(Cm) | L∗u = zu}, z ∈ C \ R. (1.22)

The numbers

m+ = dimK(z), z ∈ C+, m− = dimK(z), z ∈ C− (1.23)

do not depend on the concrete choice of the point z belonging to the upper or lower
half plane, respectively. They are called the deficiency numbers of the operator L.
It is well-known that a closed symmetric operator is Hermitian (i.e., L = L∗) if
and only if m+ = m− = 0. The deficiency numbers of the operator L satisfy the
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inequalities

0 ≤ m+ ≤ m, 0 ≤ m− ≤ m.

The deficiency number m+ is maximal if and only if the deficiency number m−
is maximal (see [12]).

If the deficiency numbers are not maximal, then they can independently of each
other obtain arbitrary values ranging from 0 to m− 1 (see [13, 14]).

Definition 1.2 The matricial Hamburger moment problem (1.9) is called

• completely indeterminate if the deficiency numbers of the operator L are
maximal, i.e., m+ = m− = m.

• completely determinate if the deficiency numbers of the operator L are minimal,
i.e., m+ = m− = 0, and the operator L is Hermitian.

• semi-determinate if the deficiency numbers of the operator L satisfy the condi-
tions 0 ≤ m+ ≤ m− 1, 0 ≤ m− ≤ m− 1 and m2+ +m2− �= 0.

We consider infinite matricial column vectors of the type

V = col (V0, V1, V2, . . . ), Vj ∈ C
m×m.

We denote by �2(Cm×m) the set of all infinite matricial columns V for which the
matricial series

∑∞
j=0 V

∗
j Vj converges.

Using the polynomials (1.10) and (1.11), we construct the infinite matricial
columns

π(z) = col (P0(z), P1(z), P2(z), . . .), (1.24)

ξ(z) = col (Q0(z),Q1(z),Q2(z), . . .), (1.25)

dπ

dz
(z) = col

(dP0

dz
(z),

dP1

dz
(z),

dP2

dz
(z), . . .

)
,

dξ

dz
(z) = col

(dQ0

dz
(z),

dQ1

dz
(z),

dQ2

dz
(z), . . .

)
.

Further, for each vector φ ∈ C
m we consider the infinite column vector

π(z)φ = col (P0(z)φ, P1(z)φ, P2(z)φ, . . .), Pj (z)φ ∈ C
m, j ≥ 0.

Analogously, the infinite column vectors

ξ(z)φ,
dπ

dz
(z)φ,

dξ

dz
(z)φ

are defined.
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The following theorem is the main result of this paper

Theorem 1.3 Let an R-positive sequence (1.3) and the associated matricial Ham-
burger moment problem (1.9) be given. Further, let the matrix polynomials Pj and
Qj be defined by the formulas (1.10) and (1.11), respectively. Then the following
statements (1)–(5) are equivalent:

(1) The matricial Hamburger moment problem (1.9) is completely indeterminate.
(2) For some point z0 ∈ C \ R the infinite matricial column π(z0) belongs to

�2(Cm×m).
(3) For some point z0 ∈ C \ R the infinite matricial column ξ(z0) belongs to

�2(Cm×m).
(4) For some x0 ∈ R both infinite matricial columns π(x0) and ξ(x0) belong to

�2(Cm×m).
(5) For all z ∈ C both infinite matricial columns π(z) and ξ(z) belong to

�2(Cm×m).

Furthermore, the following statements hold true:

(6) If for some x0 ∈ R and some non-null vector φ ∈ C
m both infinite column

vectors

π(x0)φ,
dπ

dx
(x0)φ (1.26)

belong to the Hilbert space �2(Cm), then the matricial Hamburger moment
problem (1.9) is not completely determinate.

(7) If for some x0 ∈ R and some non-null vector φ ∈ C
m both infinite column

vectors

ξ(x0)φ,
dξ

dx
(x0)φ (1.27)

belong to the Hilbert space �2(Cm), then the matricial Hamburger moment
problem (1.9) is not completely determinate.

Remark 1.4 In the case m = 1 of the classical Hamburger moment problem
all statements of Theorem 1.3 were proved in [15, Theorem 3]. In this paper,
corresponding results are proved for the matricial case m > 1. Our strategy is based
on the application of methods originating in the theory of J -contractive analytic
matrix functions by V. P. Potapov (see, e.g., [16–23]). What concerns a modern
presentation of these methods we refer to the monograph [24].

It should be mentioned that in the classical scalar case it was proved in [15,
Theorem 3] that even all conditions (1)–(7) listed in Theorem 1.3 are equivalent.
However, in the matricial case the situation is different. What concerns the scalar
case as well as the matricial case we are able to derive in the situation of statements
(6) and (7) of Theorem 1.3 that the operator L is not Hermitian. From this it
follows in the scalar case the equivalence of all statements (1)–(7) in Theorem 1.3.
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In the case m > 1 the matricial Hamburger moment problem can turn out to be
completely indeterminate or semi-determinate. Thus, the statements (6) and (7) are
not equivalent to the statements (1)–(5) in Theorem 1.3.

Remark 1.5 For m = 1 and the choice x0 = 0 the statement (4) in Theorem 1.3
is just the Hamburger criterion for indeterminacy of the classical moment problem
(see, e.g., [3]).

2 Proofs of Auxiliary Results for the Main Theorem 1.3

Let L be the closed symmetric operator associated with the block Jacobi
matrix (1.21) and let L∗ be its adjoint operator. The domain of the adjoint operator
L∗ consists of those vectors from �2(Cm), which after multiplication by the block
Jacobi matrix J are in �2(Cm). In this way, the action of the operator L∗ applied to
some vector u belonging to its domain is given by left multiplication Ju of u by the
block Jacobi matrix J (see, e.g., [3, 5, 7]). These observations enable us to write the
definition (1.22) of the deficiency subspaces in the form

K(z) = {
u ∈ �2(Cm) | Ju = zu}, z ∈ C \ R. (2.1)

The infinite column vector u = col (u0, u1, u2, . . .), uj ∈ C
m, (not necessarily

belonging to �2(Cm)) is called formal deficiency vector of the block Jacobi matrix
J in the point z ∈ C \R if Ju = zu. The set

F(z) = {
u | Ju = zu}, z ∈ C \ R (2.2)

of all formal deficiency vectors of the block Jacobi matrix J in the point z ∈ C \ R
forms a linear space.

A formal deficiency vector u of the block Jacobi matrix J is a deficiency vector
of the corresponding operator L if it belongs to �2(Cm). For this reason, it holds the
inclusion K(z) ⊂ F(z). The space F(z) is called the formal deficiency space of the
block Jacobi matrix J in the non-real point z, whereas the space K(z) is called the
deficiency space of the corresponding operator L in the non-real point z.

From (1.19) it follows that for each φ ∈ C
m and each z ∈ C \ R the infinite

column vector

π(z)φ = col (P0(z)φ, P1(z)φ, P2(z)φ, . . .)

belongs to the formal deficiency space F(z) of the block Jacobi matrix J. It can be
easily seen that the mapping

φ ∈ C
m ↔ π(z)φ = col (P0(z)φ, P1(z)φ, P2(z)φ, . . .) ∈ F(z) (2.3)

is an isomorphism between the spaces Cm and F(z).
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A formal deficiency vector π(z)φ = col (P0(z)φ, P1(z)φ, P2(z)φ, . . .) of the
block Jacobi matrix J in a non-real point z is a deficiency vector of the corresponding
operator L if it belongs to the space �2(Cm), i.e., if the series

∞∑
j=0

φ∗P ∗j (z)Pj (z)φ < +∞. (2.4)

converges. We denote by L(z) the set of all vectors φ ∈ C
m, which satisfy the

condition (2.4):

L(z) =
{
φ ∈ C

m
∣∣∣ π(z)φ ∈ �2(Cm)

}
. (2.5)

Clearly, L(z) is a subspace of Cm and the formula

φ ∈ L(z)↔ π(z)φ = col (P0(z)φ, P1(z)φ, P2(z)φ, . . .) ∈ D(z) (2.6)

is an isomorphism between the linear spaces L(z) and D(z). From this it follows
that the deficiency numbers can be computed via the formulas

m+ = dimL(z), z ∈ C+, m− = dimL(z), z ∈ C−.

Lemma 2.1 If the deficiency numberm+ andm− of the operator L associated with
the block Jacobi matrix J are equal to m, then the series

∞∑
j=0

P ∗j (z)Pj (z) (2.7)

converges for all z ∈ C \ R. If the series (2.7) converges for some z ∈ C \ R, then
both deficiency numbers are equal to m.

Proof Assume thatm+ = m− = m. Then all formal deficiency vectors of the block
Jacobi matrix J in all non-real points z are deficiency vectors of the corresponding
operator L. Hence, for each φ ∈ C

m and each non-real z the series
∑∞

j=0 φ
∗P ∗j (z) ·

Pj (z)φ converges. From this it follows the convergence of the series (2.7) for all
z ∈ C \ R.

Let the series (2.7) converge for some z0 ∈ C \R. Then for all φ ∈ C
m the series∑∞

j=0 φ
∗P ∗j (z0) · Pj (z0)φ converges. For this reason, L(z0) = C

m and one of the
deficiency numbers is equal to m. Hence, both deficiency numbers are equal to m
and L(z) = C

m for all non-real z. Consequently, the series (2.7) converges for all
z ∈ C \ R. Lemma 2.1 is proved. ��
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Lemma 2.2 Let the sequences (Aj )∞j=0 and (Bj )∞j=0 of matrices from C
m×m be

such that the series

∞∑
j=0

A∗jAj ,
∞∑
j=0

B∗j Bj (2.8)

converge. Then for all matrices C,D,E,F ∈ C
m×m the series

∞∑
j=0

(
CAjD + EBjF

)∗(
CAjD + EBjF

)
. (2.9)

converges.

The proof of this Lemma is obvious.
To each measure σ , which is a solution of the matricial Hamburger moment

problem (1.9), we associate the MF

w(z) =
∫
R

σ(dt)

t − z , σ ∈M. (2.10)

MF w is defined and holomorphic in the upper half plane C+ and in the lower
half plane C−. The set of all MF of the form (2.10) will be denoted by the symbol
F and it is called the set of MF’s associated with the matricial Hamburger moment
problem (1.9). The Stieltjes inversion formula establishes a bijective correspondence
between F and M.

It is known (see [9]) that for all z ∈ C\R and for all integers l ≥ 0 the associated
MF w(z) satisfies V. P. Potapov’s Fundamental Matrix Inequality (FMI)

(
Hl Rl(z)(vlw(z)− ul)(

Rl(z)(vlw(z)− ul)
)∗
(w(z)−w∗(z))/(z− z̄)

)
≥ O. (2.11)

Lemma 2.3 Let an R-positive matrix sequence (1.3) with corresponding matricial
Hamburger moment problem (1.9) be given. Further, let MF w be associated with
the matricial Hamburger moment problem (1.9) and let the sequences (Pj )∞j=0
and (Qj )

∞
j=0 of matrix polynomials be constructed via formulas (1.10) and (1.11),

respectively. Then:

1. For all z ∈ C \ R, the series

∞∑
j=0

(
Pj (z)w(z)−Qj(z)

)∗
(Pj (z)w(z)−Qj(z)) (2.12)

converges.
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2. If for some fixed z0 ∈ C \ R one of the series

∞∑
j=0

P ∗j (z0)Pj (z0),

∞∑
j=0

Q∗j (z0)Qj (z0). (2.13)

converges (resp. diverges), then for all z ∈ C \ R the two series (2.13) converge
(resp. diverge).

Proof

1. We multiply FMI (2.11) from right by the matrix

(
I −H−1

l Rl(z)(vlw(z)− ul)
O I

)
,

and from left with its adjoint matrix. In this way, we obtain

w(z)−w∗(z)
z− z̄ − (

Rl(z)(vlw(z)−ul)
)∗
H−1
l Rl(z)(vlw(z)−ul) ≥ O. (2.14)

From (1.7), (1.10) and (1.11) it follows (note that l > 0)

(
Rl(z)(vlw(z)− ul)

)∗
H−1
l Rl(z)(vlw(z)− ul)

=(Rl(z)(vlw(z)− ul))∗
(
H−1
l−1O

O O

)
Rl(z)(vlw(z)− ul)

+ (
Rl(z)(vlw(z)− ul)

)∗
H−1
l VlĤ

−1/2
l Ĥ

−1/2
l V ∗l H

−1
l Rl(z)(vlw(z)− ul)

=(Rl(z)(vlw(z)− ul))∗
(
H−1
l−1O

O O

)
Rl(z)(vlw(z)− ul)

+
(
Ĥ
−1/2
l V ∗l H

−1
l Rl(z)vlw(z)− Ĥ−1/2

l V ∗l H
−1
l Rl(z)ul

)∗

×
(
Ĥ
−1/2
l V ∗l H

−1
l Rl(z)vlw(z)− Ĥ−1/2

l V ∗l H
−1
l Rl(z)ul

)

=(Rl−1(z)(vl−1w(z)− ul−1)
)∗
H−1
l−1Rl−1(z)(vl−1w(z)− ul−1)

+ (
Pl(z)w(z)−Ql(z)

)∗
(Pl(z)w(z)−Ql(z)).

An obvious induction over l leads to the identity

(
Rl(z)(vlw(z)− ul)

)∗
H−1
l Rl(z)(vlw(z)− ul)

=
l∑

j=0

(
Pj (z)w(z)−Qj(z)

)∗
(Pj (z)w(z)−Qj(z)), l ≥ 0.
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Now (2.14) can be written in the form

l∑
j=0

(
Pj (z)w(z)−Qj(z)

)∗
(Pj (z)w(z)−Qj(z)) ≤ w(z)−w∗(z)

z− z̄ .

This inequality holds for all non-real z ∈ C and all integers l ≥ 0. This implies
the first assertion of the Lemma.

2. Let for some z0 ∈ C \ R the first of the series in (2.13) converge. In view of
Lemma 2.1, this series converges for all z ∈ C \ R. Hence, for all z ∈ C \ R the
series

∞∑
j=0

P ∗j (z)Pj (z),
∞∑
j=0

(
Pj (z)w(z)+Qj(z)

)∗(
Pj (z)w(z)+Qj(z)

)
.

converge. Combining this with Lemma 2.2, it follows that it converges for all
z ∈ C \ R the series

∞∑
j=0

(
Pj (z)w(z)+Qj(z)− Pj (z)w(z)

)∗
(Pj (z)w(z)+Qj(z)− Pj (z)w(z)),

which coincides with the series
∑∞

j=0Q
∗
j (z)Qj (z). Analogously, it can be shown

that the convergence for some z0 ∈ C\R of the second of the two series in (2.13)
implies the convergence of both series (2.13) in all non-real points z.

Lemma 2.3 is proved. ��

Let the orthonormal matrix polynomials Pl of the first kind be defined by formu-
las (1.10), let the matrix polynomials Ql of the second kind be defined by (1.11),
and let Al be the matrix coefficients occurring in the recurrence formulas (1.14)–
(1.15). It is known (see, e.g., [2, 7]), for all integers l ≥ 0, all z ∈ C and all x ∈ R it
holds the Ostrogradskii-Liouville formulas

Pl(z)Q
∗
l (z̄)−Ql(z)P

∗
l (z̄) = O, (2.15)

Pl(z)Q
∗
l+1(z̄)−Ql(z)P

∗
l+1(z̄) = A−∗l , (2.16)

the Christoffel-Darboux formulas

(z − x)
l∑

j=0

P ∗j (z̄)Pj (x) = P ∗l+1(z̄)A
∗
l Pl(x)− P ∗l (z̄)AlPl+1(x), (2.17)

(z − x)
l∑

j=0

Q∗j (z̄)Qj (x) = Q∗l+1(z̄)A
∗
l Ql(x)−Q∗l (z̄)AlQl+1(x) (2.18)
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and the Green formulas

− I + (z− x)
l∑

j=0

P ∗j (z̄)Qj (x) = P ∗l+1(z̄)A
∗
l Ql(x)− P ∗l (z̄)AlQl+1(x),

(2.19)

I + (z− x)
l∑

j=0

Q∗j (z̄)Pj (x) = Q∗l+1(z̄)A
∗
l Pl(x)−Q∗l (z̄)AlPl+1(x). (2.20)

Let

J =
(
Om −iIm
iIm Om

)
.

Then obviously

J ∗ = J , J 2 = I2m.

If x0 ∈ R, then we denote by Px0 the class of all entire MF U : C → C
2m×2m,

which satisfy the conditions

J − U(z)JU∗(z) =
⎧⎨
⎩
≤ O2m, z ∈ C+
= O2m, z ∈ R

≥ O2m, z ∈ C−
. (2.21)

and

U(x0) = I2m. (2.22)

The basic property of the class Px0 is its multiplicativity. More precisely, if
U1(z), U2(z) ∈ Px0 , thenU1(z)·U2(z) ∈ Px0 , too. Let the MFU belong to the class
Px0 . Then from (2.21) it follows that for all x ∈ R it holds J − U(x)JU∗(x) =
O2m×2m. Hence, in view of the holomorphicity of U it follows that for all z ∈ C the
formula J − U(z)JU∗(z̄) = O2m×2m holds. From this it follows the invertibility
of MF U for all z ∈ C and the formula (“principle of symmetry”)

U−1(z) = JU∗(z̄)J , U ∈ Px0 . (2.23)

We consider the matrix-valued Blaschke-Potapov factors

bj (z) = I2m − i(z− x0)Ej (x0), z ∈ C, j ≥ 0, (2.24)
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where x0 ∈ R and

Ej(x0) =
(
P ∗j (x0)

−Q∗j (x0)

) (
Pj (x0) −Qj(x0)

)
J . (2.25)

Lemma 2.4 Let the matrix-valued Blaschke-Potapov factor bj (z) be given by
formulas (2.24) and (2.25). Then:

1. The matrices Ej(x0) satisfy

Ej(x0)J ≥ O,
(
Ej(x0)

)2 = O; (2.26)

2. bj (z) ∈ Px0 .

Proof

1. We have

Ej(x0)J =
(
P ∗j (x0)

−Q∗j (x0)

) (
Pj (x0) ,−Qj(x0)

) ≥ O.

Furthermore,

Ej(x0)Ej (x0)

=
(
P ∗j (x0)

−Q∗j (x0)

)(
Pj (x0) −Qj(x0)

)
J

(
P ∗j (x0)

−Q∗j (x0)

)(
Pj (x0) ,−Qj(x0)

)
J

= i
(
P ∗j (x0)

−Q∗j (x0)

)(
Pj (x0)Q

∗
j (x0),−Qj(x0)P

∗
j (x0)

)
(Pj (x0) ,−Qj(x0))J = O.

Here, the last equality follows from the Ostrograskii-Liouville formula (2.15).
2. Using formulas (2.26), we get

J−bj (z)J b∗j (z) = J −
(
I2m − i(z− x0)Ej (x0)

)
J
(
I2m + i(z̄− x0)Ej (x0)

∗)

= i(z− x0)Ej (x0)J − i(z̄− x0)JEj(x0)
∗ + |z− x0|2Ej(x0)JEj(x0)

∗

= i(z− x0)Ej (x0)J − i(z̄− x0)Ej (x0)J + |z− x0|2Ej(x0)Ej (x0)J

= i(z− z̄)Ej (x0)J .
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Hence,

J − bj (z)J b∗j (z) = i(z− z̄)Ej (x0)J =
⎧⎨
⎩
≤ O2m, z ∈ C+
= O2m, z ∈ R

≥ O2m, z ∈ C−
. (2.27)

Combining this with the obvious relation bj (x0) = I2m, we get bj (z) ∈ Px0 .

Lemma 2.4 is proved. ��

We consider a sequence of products of matrix-valued Blaschke-Potapov factors

Ul(z) = b0(z)·b1(z)·. . .·bl(z) =
−→
l∏

j=0

(
I2m − i(z− x0)Ej (x0)

)
, l ≥ 0. (2.28)

The MF Ul belongs to the class Px0 because all matrix-valued Blaschke-Potapov
factors bj (z) belong to the class Px0 .

In the sequel we use the concept of J -modulus, which goes back to V. P. Potapov
[16, 26] (see also [19, Section 1.4], [24, Section 2.13]). Let U be a non-singular
J -contractive matrix. Then (see, e.g., [19, Proposition 1.4.1]) the eigenvalues of
the matrix G := JU∗J are positive. Hence, there exists a unique matrix R with
positive eigenvalues such that R2 = G. This matrix G is called the J -modulus
of U . The J -modulus of a J -Hermitian and J -contractive matrix with positive
eigenvalues coincides with itself (see [19, Theorem 1.4.2]).

A matrixR is the J -modulus of some non-singular and J -contractive matrixU if
and only if R is a J -Hermitian and J -contractive matrix with positive eigenvalues
(see [19, Theorem 1.4.3]).

Theorem 2.5 ([26, Theorem 5.2], [24, Theorem 2.65 (a)]) Let E ∈ C
2m×2m be

such that EJ ≥ O2m×2m. Then the matrix R := expE is the J -modulus of itself.

This result leads to the following notion.

Definition 2.6 Let the matrix E ∈ C
2m×2m be such that EJ ≥ O2m×2m. Then the

matrix R = exp(E) is called a J -modulus.

Lemma 2.7 Let the matrix-valued Blaschke-Potapov factor bj be given by the
formulas (2.24) and (2.25). Then:

1. It holds

bj (z) = exp
(
− i(z− x0)Ej (x0)

)
. (2.29)
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2. For each y > 0 it holds

bj (x0 + iy) = exp
(
yEj(x0)

)
, yEj(x0)J ≥ O2m, (2.30)

i.e., bj (x0 + iy) is a J -modulus.

The proof of this Lemma follows quickly from (2.26) and Definition 2.6.
Now the product (2.28) of matrix-valued Blaschke-Potapov factors can be written

in the form

Ul(z) = exp
(
− i(z− x0)E0(x0))

)
× exp

(
− i(z− x0)E1(x0))

)
× . . .

× exp
(
− i(z− x0)El(x0)

)
=
−→
l∏

j=0

exp
(
− i(z− x0)Ej (x0)

)
, l ≥ 0.

(2.31)

Infinite products of matrices will play an important role in our further considerations.
The following two theorems on the convergence of infinite products of matrices are
proved in [16] (see also [18]).

Theorem 2.8 Let the infinite sequence of matrices (Aj )∞j=0 from C
m×m be such

that the series
∑∞

j=0 Aj converges. Then the infinite matrix product
−→∏∞

j=0exp
(
Aj

)
converges.

The converse statement is not true. The following result on the convergence of an
infinite product of J -modulus matrices, which is due to V. P. Potapov plays a key
role.

Theorem 2.9 Let (Ej )∞j=0 be an infinite sequence of matrices from C
2m×2m such

that EjJ ≥ O2m×2m, j ≥ 0, and such that there exists a constant C > 0 such that
for all l ≥ 0 with the setting

Ul =
−→
l∏

j=0

exp
(
Ej

)
, l ≥ 0 (2.32)

the inequalities

‖J − UlJU∗l ‖ ≤ C, ‖J − U−∗l JU−1
l ‖ ≤ C (2.33)

are satisfied. Then the series
∑∞

j=0 Ej and consequently also the infinite matrix

product
−→∏∞

j=0exp
(
Ej

)
converges.
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Lemma 2.10 Let the matrices Ul, l ≥ 0 be defined by the formulas (2.31). For all
z ∈ C then

Ul(z) = I2m − i(z− x0)

l∑
j=0

(
P ∗j (z̄)Pj (x0) −P ∗j (z̄)Qj (x0)

−Q∗j (z̄)Pj (x0) Q∗j (z̄)Qj (x0)

)
J (2.34)

and the formulas

J − Ul(z)JU∗l (z) = i(z− z̄)
l∑

j=0

(
P ∗j (z̄)Pj (z̄) −P ∗j (z̄)Qj (z̄)

−Q∗j (z̄)Pj (z̄) Q∗j (z̄)Qj (z̄)

)
, (2.35)

J − U−∗l (z)JU−1
l (z) = i(z̄− z)

l∑
j=0

(
Q∗j (z)Qj (z) Q

∗
j (z)Pj (z)

P ∗j (z)Qj (z) P
∗
j (z)Pj (z)

)
(2.36)

hold true.

Proof First we show that for all l ≥ 0 we have

Ul(z)

(
P ∗l+1(x0)

−Q∗l+1(x0)

)
=

(
P ∗l+1(z)

−Q∗l+1(z)

)
. (2.37)

Indeed,

Ul(z)

(
P ∗l+1(x0)

−Q∗l+1(x0)

)

=
(
Im − (z− x0)

∑l
j=0 Pj (z̄)

∗Qj(x0) −(z− x0)
∑l

j=0 Pj (z̄)
∗Pj (x0)

(z− x0)
∑l

j=0 Qj(z̄)
∗Qj(x0) Im + (z− x0)

∑l
j=0 Qj(z̄)

∗Pj (x0)

)

×
(

P ∗l+1(x0)

−Q∗l+1(x0)

)

=
(
−P ∗l+1(z̄)A

∗
l Ql(x0)+ P ∗l (z̄)AlQl+1(x0)

+Q∗l+1(z̄)A
∗
l Ql(x0)−Q∗l (z̄)AlQl+1(x0)

−P ∗l+1(z̄)A
∗
l Ql(x0)+ P ∗l (z̄)AlQl+1(x0)

+Q∗l+1(z̄)A
∗
l Ql(x0)−Q∗l (z̄)AlQl+1(x0)

)(
P ∗l+1(x0)

−Q∗l+1(x0)

)

=
(
P ∗l+1(z̄)A

∗
l

(−Ql(x0)P
∗
l+1(x0)+ Pl(x0)Q

∗
l+1(x0)

)
Q∗l+1(z̄)A

∗
l

(
Ql(x0)P

∗
l+1(x0)− Pl(x0)Q

∗
l+1(x0)

)
)
=

(
P ∗l+1(z)

−Q∗l+1(z)

)
.
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In this calculation, the second equality follows from (2.17)–(2.20), the third
equality follows from (2.15), whereas the fourth one follows from (2.16). We prove
formula (2.34) via induction on l. For l = 0 we have

U0(z) = b0(z) = I2m − i(z− x0)
(
P0(z) −Q0(z)

)∗ (
P0(x) −Q0(x)

)
J .

Now suppose that for a fixed l ≥ 0 the identity (2.34) is satisfied for all k ≤ l. Then
using (2.37) we get

Ul(z) · bl+1(z)

= Ul(z) ·
(
I2m − i(z− x0)

(
P ∗l+1(x0)

−Q∗l+1(x0)

)(
Pl+1(x0) −Ql+1(x0)

)
J
)

= Ul(z)− i(z− x0)Ul(z)

(
P ∗l+1(x0)

−Q∗l+1(x0)

)(
Pl+1(x0) −Ql+1(x0)

)
J

= Ul(z)− i(z− x0)

(
P ∗l+1(z̄)

−Q∗l+1(z̄)

) (
Pl+1(x0) −Ql+1(x0)

)
J = Ul+1(z).

Formula (2.34) is proved.
Now we prove formula (2.35) via induction on l. If l = 0 our formula

immediately follows from (2.25) and (2.27). Now suppose that for a fixed l ≥ 0
the identity (2.35) is satisfied for all k ≤ l. Then

J − Ul+1(z)JU∗l+1(z)

= J −
(
Ul(z)− i(z− x0)

(
P ∗l+1(z̄)

−Q∗l+1(z̄)

)(
Pl+1(x0) −Ql+1(x0)

)
J
)

× J
(
Ul(z)− i(z− x0)

(
P ∗l+1(z̄)

−Q∗l+1(z̄)

)(
Pl+1(x0) −Ql+1(x0)

)
J
)∗

= J − Ul(z)JU∗l (z)+ i(z− x0)

(
P ∗l+1(z̄)

−Q∗l+1(z̄)

) (
Pl+1(x0) −Ql+1(x0)

)
U∗l (z)

− i(z̄− x0)Ul(z)

(
P ∗l+1(x0)

−Q∗l+1(x0)

) (
Pl+1(z̄) −Ql+1(z̄)

)

− |z− x0|2
(
P ∗l+1(z̄)

−Q∗l+1(z̄)

) (
Pl+1(x0) −Ql+1(x0)

)

× J
(
P ∗l+1(x0)

−Q∗l+1(x0)

)(
Pl+1(z̄) −Ql+1(z̄)

)
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= i(z− z̄)
l∑

j=0

(
P ∗j (z̄)Pj (z̄) −P ∗j (z̄)Qj (z̄)

−Q∗j (z̄)Pj (z̄) Q∗j (z̄)Qj (z̄)

)

+ i(z− x0)

(
P ∗l+1(z̄)

−Q∗l+1(z̄)

) (
Pl+1(z̄) −Ql+1(z̄)

)− i(z̄− x0)

(
P ∗l+1(z̄)

−Q∗l+1(z̄)

)

× (
Pl+1(z̄) −Ql+1(z̄)

) = i(z− z̄)
l+1∑
j=0

(
P ∗j (z̄)Pj (z̄) −P ∗j (z̄)Qj (z̄)

−Q∗j (z̄)Pj (z̄) Q∗j (z̄)Qj (z̄)

)

In this calculation the third equality follows from (2.37) and (2.15). Formula (2.35)
is proved. Now we prove formula (2.36). Using the principle of symmetry (2.23),
we get

J
(
J −Ul(z̄)JU∗l (z̄)

)
J = J −JUl(z̄)JJJU∗l (z̄)J = J −U−∗l (z)JU−1

l (z).

Consequently,

J − U−∗l (z)JU−1
l (z) = J

(
J − Ul(z̄)JU∗l (z̄)

)
J

= i(z̄− z)J
⎛
⎝ l∑
j=0

(
P ∗j (z)Pj (z) −P ∗j (z)Qj (z)

−Q∗j (z)Pj (z) Q∗j (z)Qj (z)

)⎞
⎠J

= −i(z̄− z)
l∑

j=0

(
Q∗j (z)Qj (z) Q

∗
j (z)Pj (z)

P ∗j (z)Qj (z) P
∗
j (z)Pj (z)

)
.

Lemma 2.10 is proved. ��

Lemma 2.11 Suppose that for some z0 = x0 + iy0, y0 �= 0 one of the series

∞∑
j=0

P ∗j (z0)Pj (z0),

∞∑
j=0

Q∗j (z0)Qj (z0) (2.38)

converges. Then both series

∞∑
j=0

P ∗j (x0)Pj (x0),

∞∑
j=0

Q∗j (x0)Qj (x0) (2.39)
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converge. Furthermore, for all z ∈ C both series

∞∑
j=0

P ∗j (z)Pj (z),
∞∑
j=0

Q∗j (z)Qj (z) (2.40)

converge.

Proof From the assumption and Lemma 2.3 it follows that all of the series

∞∑
j=0

P ∗j (z0)Pj (z0),

∞∑
j=0

Q∗j (z0)Qj (z0), (2.41)

∞∑
j=0

P ∗j (z̄0)Pj (z̄0),

∞∑
j=0

Q∗j (z̄0)Qj (z̄0) (2.42)

converge. In view of Lemma 2.2 the series

∞∑
j=0

P ∗j (z0)Qj (z0),

∞∑
j=0

Q∗j (z0)Pj (z0), (2.43)

∞∑
j=0

P ∗j (z̄0)Qj (z̄0),

∞∑
j=0

Q∗j (z̄0)Pj (z̄0) (2.44)

converge. We consider the sequence of products of matrix-valued Blaschke-Potapov
factors (see (2.31))

Ul(z0) =
−→
l∏

j=0

exp
(
y0Ej(x0)

)
, l ≥ 0.

From the convergence of the series (2.41)–(2.44) it follows that the right sides of
the identities (2.35) and (2.36) converge in the point z0 for l →∞. Hence, the left
sides of these identities also converge for l → +∞. Thus, there exists a constant
C > 0 such that for all l ≥ 0 the inequalities

‖J − Ul(z0)JU∗l (z0)‖ < C, ‖J − U−∗l (z0)JU−1
l (z0)‖ < C

are satisfied. In view of Theorem 2.9 the series

∞∑
j=0

y0Ej(x0) = y0

∞∑
j=0

(
P ∗j (x0)Pj (x0) −P ∗j (x0)Qj (x0)

−Q∗j (x0)Pj (x0) Q∗j (x0)Qj (x0)

)

converges. This implies the convergence of both series (2.39).



348 Yu. M. Dyukarev

Suppose now that for some real x0 both series (2.39) converge. Then Lemma 2.2
implies the convergence of the series

∞∑
j=0

Q∗j (x0)Pj (x0),

∞∑
j=0

P ∗j (x0)Qj (x0).

Thus, the matricial series

∞∑
j=0

Ej(x0) =
∞∑
j=0

(
P ∗j (x0)Pj (x0) −P ∗j (x0)Qj (x0)

−Q∗j (x0)Pj (x0) Q∗j (x0)Qj (x0)

)

converges, too. Consequently, Theorem 2.8 implies the existence of the limit

lim
l→∞Ul(z) =

−→∞∏
j=0

exp
(
− i(z− x0)Ej (x0)

)

of the sequence of products of matrix-valued Blaschke-Potapov factors for all
complex z. Thus, there exists the limit for l → ∞ of the left side of the
equalities (2.35) for all z ∈ C. This implies the convergence of both series

∞∑
j=0

P ∗j (z̄)Pj (z̄),
∞∑
j=0

Q∗j (z̄)Qj (z̄)

for all z ∈ C.
Lemma 2.11 is proved. ��

3 Proof of the Main Theorem

Now we are able to present the proof of Theorem 1.3, which can be considered as
a partial generalization of [15, Theorem 3] to the matrix case. Several steps of B.
Simon’s proof can be more or less adapted directly to the matrix case. However, the
proof of the implication “(3) ⇒ (4)” requires new ideas. Our method to overcome
these difficulties was based on using methods of the J -theory due to V. P. Potapov.
More precisely, Lemma 2.11 (which is a consequence of Theorem 2.9) occupies a
key role in our strategy.

Proof First we show the equivalence of statements (1)–(5) in Theorem 1.3.

(1)⇒(2) Suppose that the moment problem (1.9) is completely indeterminate. In
this case the deficiency numbers of the operator L are maximal, i.e.,m+ =
m− = m. Let z0 ∈ C \ R be fixed. In view of Lemma 2.1 the series
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∑∞
j=0 P

∗
j (z0)Pj (z0) converges and the matricial column π(z0) belongs to

�2(Cm×m).
(2)⇒(3) Suppose that for some z0 ∈ C \ R the matricial column π(z0) belongs

to �2(Cm×m). Then the series
∑∞

j=0 P
∗
j (z0)Pj (z0) converges. In view of

Lemma 2.3 the series
∑∞

j=0 Q
∗
j (z0)Qj (z0) converges and the matricial

column ξ(z0) belongs to �2(Cm×m).
(3)⇒(4) Suppose that for some non-real z0 = x0 + iy0, y0 �= 0 the matricial

column ξ(z0) belongs to �2(Cm×m). In view of Lemma 2.11 the two series

∞∑
j=0

P ∗j (x0)Pj (x0) and
∞∑
j=0

Q∗j (x0)Qj (x0)

converge. Thus, the matricial columns π(x0) and ξ(x0) belong to
�2(Cm×m).

(4)⇒(5) Suppose that for some real x0 the matricial columns π(x0) and ξ(x0)

belong to �2(Cm×m). Then both series

∞∑
j=0

P ∗j (x0)Pj (x0) and
∞∑
j=0

Q∗j (x0)Qj (x0)

converge. In view of Lemma 2.11, for all z ∈ C both series

∞∑
j=0

P ∗j (z)Pj (z)
∞∑
j=0

Q∗j (z)Qj (z)

converge. Hence, for all z ∈ C the matricial columns π(z) and ξ(z) belong
to �2(Cm×m).

(5)⇒(1) Suppose that for all z ∈ C both matricial columns π(z) and ξ(z)

belong to �2(Cm×m). In particular, then for all non-real z the series∑∞
j=0 P

∗
j (z)Pj (z) converge. In view of Lemma 2.1, then the deficiency

numbers of the operator L are maximal, i.e., m+ = m− = m and the
matricial Hamburger moment problem (1.9) is completely indeterminate.

The equivalence of statements (1)–(5) is proved. We prove statements (6) and (7)
analogously as the corresponding statements were proved in [15].

We prove assertion (6). We write the identity (1.19) in the form zπ(z) = Jπ(z).
From this it follows the equality z dπ

dz
(z) + π(z) = J dπ

dz
(z). Suppose that x0 ∈ R

and the non-zero vector φ ∈ C
m are chosen such that both infinite vector columns

from (1.26) belong to �2(Cm×m). Then

x0π(x0)φ = Jπ(x0)φ, π(x0)φ = J
dπ

dx
(x0)φ − x0

dπ

dx
(x0)φ.
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From this and the choice of x0 and φ it follows that π(x0)φ and dπ
dx
(x0)φ belong

to the domain of the adjoint operator L∗. For this reason, the last relations can be
written as

(L∗ − x0I)π(x0)φ = 0, π(x0)φ = (L∗ − x0I)
dπ

dx
(x0)φ.

Here I denotes the identity operator in �2(Cm×m), whereas 0 denotes the null vector
in �2(Cm×m).

Our proof will be done in an indirect way. For this reason, we suppose that
the matricial Hamburger moment problem (1.9) is completely determinate, i.e., the
operator L is Hermitian, which means L = L∗. We have

(
π(x0)φ, π(x0)φ

) =
∞∑
j=0

φ∗P ∗j (x0)Pj (x0)φ ≥ φ∗P ∗0 (x0)P0(x0)φ = φ∗s−1
0 φ > 0.

On the other side,

(
π(x0)φ, π(x0)φ

) = (
π(x0)φ, (L∗ − x0I)

dπ

dx
(x0)φ

)

=
(
(L∗ − x0I)π(x0)φ,

dπ

dx
(x0)φ

)
= 0.

This contradiction proves the statement (6) of Theorem 1.3.
Finally, we prove assertion (7). We write the relation (1.20) in the form zξ(z)+

δ0s
1/2
0 = Jξ(z) where δ0 = col (I,O,O, . . .) ∈ �2(Cm×m). From this it follows the

identity z dξ
dz
(z)+ ξ(z) = J dξ

dz
(z).

Let x0 ∈ R and the non-zero vector φ ∈ C
m be such that both vectors ξ(x0)φ

and dξ
dx
(x0)φ belong to �2(Cm). Then

x0ξ(x0)φ + δ0s
1/2
0 φ = Jξ(x0)φ, ξ(x0)φ = J

dξ

dx
(x0)φ − x0

dξ

dx
(x0)φ.

From this it follows that ξ(x0)φ and dξ
dx
(x0)φ belong to the domain of the adjoint

operator L∗. For this reason, the last relations can be written in operator form as

(L∗ − x0I)ξ(x0)φ = δ0s
1/2
0 φ, ξ(x0)φ = (L∗ − x0I)

dξ

dx
(x0)φ.

Our proof will be again be done in an indirect way. For this reason, we suppose that
the matricial Hamburger moment problem (1.9) is completely determinate, i.e., the
operator L is Hermitian, which means L = L∗. We have

(
ξ(x0)φ, ξ(x0)φ

) =
∞∑
j=0

φ∗Q∗j (x0)Qj (x0)φ ≥ φ∗Q∗1(x0)Q1(x0)φ = φ∗s0Ĥ−1
1 s0φ > 0.
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On the other side,

(
ξ(x0)φ, ξ(x0)φ

) = (
ξ(x0)φ, (L∗ − x0I)

dξ

dx
(x0)φ

)
=

(
(L∗ − x0I)ξ(x0)φ,

dξ

dx
(x0)φ

)

=
(
δ0s

1/2
0 φ,

dξ

dx
(x0)φ

)
= φ∗s1/2

0
dQ0

dx
(x0)φ = 0.

This contradiction proves the assertion (7). Theorem 1.3 is proved. ��

Remark 3.1 Suppose that the matricial Hamburger moment problem (1.9) is com-
pletely indeterminate. In view of Theorem 1.3, for all z ∈ C both matricial columns

π(z) = col (P0(z), P1(z), P2(z), . . .), ξ(z) = col (Q0(z),Q1(z),Q2(z), . . .)

belong to �2(Cm×m). In view of Lemma 2.2, for fixed x0 ∈ R and all z ∈ C the MF

U(z) = I2m − i(z− x0)

∞∑
j=0

(
P ∗j (z̄)Pj (x0) −P ∗j (z̄)Qj (x0)

−Q∗j (z̄)Pj (x0) Q∗j (z̄)Qj (x0)

)
J (3.1)

is correctly defined. Clearly, the MF U is entire. It is called resolvent matrix of
the completely indeterminate matricial Hamburger moment problem (see [9]). In
the classical scalar case of the moment problem the resolvent matrix is also called
Nevanlinna matrix (see, e.g., [3]).

Remark 3.2 From (2.31), (2.34) and (3.1) it follows that the resolvent matrix of the
completely indeterminate matricial Hamburger moment problem (1.9) admits the
representation

U(z) =
−→∞∏
j=0

exp
(
− i(z− x0)Ej (x0)

)
.

This representation enables to estimate the exponential type of the resolvent matrix
(see [9]). Namely, for each ε > 0 there exists a constant Cε > 0 such that for all
z ∈ C the inequality

‖U(z)‖ ≤ Cε exp(ε|z|)

is satisfied.

At the end of the paper it should be mentioned that B. Fritzsche, B. Kirstein and
C. Mädler developed in [25] a Schur analysis approach to develop the matricial
Hamburger moment problem in the most general case.
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On a Blaschke-Type Condition for
Subharmonic Functions with Two Sets
of Singularities on the Boundary

S. Favorov and L. Golinskii

To Victor Katsnelson on occasion of his 75th anniversary

Abstract Given two compact sets,E and F , on the unit circle, we study the class of
subharmonic functions on the unit disk which can grow at the direction of E and F
(sets of singularities) at different rate. The main result concerns the Blaschke-type
condition for the Riesz measure of such functions. The optimal character of this
condition is demonstrated.

Keywords Subharmonic functions · Riesz measure · Harmonic majorant · The
Green’s function · Layer cake representation · Harmonic measure
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1 Introduction

In 1915, around a century ago, a seminal paper (6-pages note!) [2] by W. Blaschke
came out. A condition widely known nowadays as the Blaschke condition for zeros
of bounded analytic functions on the unit disk D

∑
λ∈Z(f)

(1− |λ|) <∞ (1.1)

S. Favorov (�)
Karazin Kharkiv National University, Kharkiv, Ukraine
e-mail: sfavorov@karazin.ua

L. Golinskii
B. Verkin Institute for Low Temperature Physics and Engineering, Kharkiv, Ukraine
e-mail: golinskii@ilt.kharkov.ua

© Springer Nature Switzerland AG 2020
D. Alpay et al. (eds.), Complex Function Theory, Operator Theory, Schur Analysis
and Systems Theory, Operator Theory: Advances and Applications 280,
https://doi.org/10.1007/978-3-030-44819-6_12

355

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44819-6_12&domain=pdf
mailto:sfavorov@karazin.ua
mailto:golinskii@ilt.kharkov.ua
https://doi.org/10.1007/978-3-030-44819-6_12


356 S. Favorov and L. Golinskii

was announced in this gem of Complex Analysis. Around 50 years ago both the
authors learned about the Blaschke condition from VK, being his graduate students.

It is not our intention reviewing a vast literature with various refinements and far
reaching extensions of (1.1), which appeared since then. We mention only that in all
such extensions the majorants of the (unbounded) functions in question were radial,
that is, they depended on the absolute value of the independent variable. In other
words, the function was allowed to grow uniformly near the unit circle T.

We came across functions with non-radial growth for the first time in a result of
Killip and Simon [12, Theorem 2.8], where this bound looked

log |L(z, J )| ≤ C

|z2 − 1|2 , z ∈ D. (1.2)

In the spectral theory setting of this paper the function L (the perturbation
determinant) turned out to belong to the Nevanlinna class, so its zeros satisfied (1.1).

The question arose naturally what one could say about the zeros of a generic
function which can grow at the directions toward some selected compact sets on T

(we refer to these sets as the sets of singularities). For example, in (1.2) this set is
E = {±1}. The study of such functions and their zero sets was initiated in [3, 4] for
analytic functions, and in [6, 7] for subharmonic functions on D. To remain closer
to the main subject of our paper—functions with two sets of singularities on T—we
mention two results from the preceding papers.

Given a compact set F ⊂ T, denote by ρF (w) the Euclidian distance from a point
w ∈ C to the set F . Recall the following quantitative characteristic of F known as
the Ahern–Clark type [1]

α(F ) := sup{α ∈ R : m(
ζ ∈ T : ρF (ζ ) < x

) = O(xα), x →+0}, (1.3)

m(A) is the normalized Lebesgue measure of a set A.
The first aforementioned result is a particular case of [4, Theorem 0.3].

Theorem A Given a compact set F ⊂ T, let an analytic function f on D, |f (0)| =
1, satisfy the growth condition

log |f (z)| ≤ M

(1− |z|)p ρqF (z)
, z ∈ D, M,p, q > 0.

Then for each ε > 0 there is a positive number C = C(F, p, q, ε) so that the
Blaschke-type condition holds for the zero set Z(f ) of f

∑
λ∈Z(f)

(1− |λ|)p+1+ε ρ(q−α(F )+ε)+F (λ) ≤ CM, (x)+ := max(x, 0).

As it was pointed out in [6], the natural setting of the problem in question
is the set of subharmonic functions of special growth. The analogue of the
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Blaschke condition involves then the Riesz measure (generalized Laplacian) of the
corresponding function.

The second result is a particular case n = 2 of [7, Theorem 5].
Let E and F be two arbitrary compact sets on T. We define a class Sp,q(E, F )

of subharmonic on D functions v, which satisfy

v(z) ≤ M

ρ
p
E(z) ρ

q
F (z)

, M,p, q > 0. (1.4)

Theorem B Given two disjoint compact setsE,F ⊂ T, let a subharmonic function
v ∈ Sp,q(E, F ). Then for each ε > 0 the following Blaschke-type condition holds
for the Riesz measure μ of v

∫
D

(1− |λ|) ρ(p−α(E)+ε)+E (λ) ρ
(q−α(F )+ε)+
F (λ) μ(dλ) <∞.

Both the above results actually deal with two sets of singularities, and each case
is extreme in a sense. Precisely, such sets are E = T and F in Theorem A, and the
disjoint setsE and F in Theorem B. The goal of this paper is to study the case of two
generic compact sets which come up as the sets of singularities of a subharmonic
function v subject to some special growth condition.

We impose certain restrictions on E and F in the form of “integrability” of the
products

∥∥ρ−aE ρ−bF
∥∥

1 =
∫
T

m(dζ )

ρaE(ζ )ρ
b
F (ζ )

<∞, a, b ≥ 0. (1.5)

Here is our main result.

Theorem 1.1 Given two compact sets E and F on T subject to (1.5), let a subhar-
monic function v, v(0) ≥ 0, with the Riesz measure μ, belong to Sp,q(E, F ).

(i) If both 0 ≤ a < p and 0 ≤ b < q hold, then for each ε > 0 there is a constant
C = C(p, q, a, b, ε) so that

∫
D

ρ
p−a+ε
E (λ) ρ

q−b+ε
F (λ)(1− |λ|) μ(dλ) ≤ CM ∥∥ρ−aE ρ−bF

∥∥
1. (1.6)

(ii) If 0 ≤ a < p, b ≥ q (0 ≤ b < q , a ≥ p), then for each ε > 0 there is a
constant C = C(p, q, a, ε) (C = C(p, q, b, ε)) so that

∫
D

ρ
p−a+ε
E (λ) (1− |λ|) μ(dλ) ≤ CM ∥∥ρ−aE ρ

−q
F

∥∥
1,

( ∫
D

ρ
q−b+ε
F (λ) (1− |λ|) μ(dλ) ≤ CM ∥∥ρ−pE ρ−bF

∥∥
1.
) (1.7)
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The procedure we suggest for solving the problem under consideration is pursued
in three steps.

Step 1 Given a function v ∈ Sp,q(E, F ), we find a domain � ⊂ D so that v has a
harmonic majorant, i.e., the harmonic function U exists with v ≤ U on �. By the
Green representation, see, e.g., [14, Theorem 4.5.4], which will feature prominently
in what follows,

v(z) = u(z)−
∫
�

G�(z, λ) μ(dλ), z ∈ �. (1.8)

Here u is the least harmonic majorant for v, μ the Riesz measure of v, G� the
Green’s function for �

G�(z, λ) := log
1

|z− λ| − h�(z, λ), z, λ ∈ �,

h� is the solution to the Dirichlet problem on � for the boundary value

h�(z, ξ) = log
1

|z− ξ | , ξ ∈ ∂�.

If � contains the origin, and v(0) ≥ 0, we have from (1.8) with z = 0

∫
�

G�(0, λ) μ(dλ) ≤ u(0) ≤ U(0). (1.9)

Step 2 We apply the lower bound for the Green’s function of the type

G�(0, λ) ≥ c(1− |λ|), λ ∈ �′ ⊂ �

to obtain
∫
�′
(1− |λ|) μ(dλ) ≤ U(0).

Step 3 To go over to the integration over the whole unit disk, we invoke a new two-
dimensional version of the well-known “layer cake representation” (LCR) theorem,
see Proposition 2.8.

In the simplest case when � = D (see Theorem 3.1 below) the Green’s
function is

GD(z, λ) = log

∣∣∣∣1− λ̄z
z− λ

∣∣∣∣ ,
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so we come to the Blaschke condition for μ of the form

∫
D

(1− |λ|) μ(dλ) ≤
∫
D

log
1

|λ| μ(dλ) ≤ U(0) (1.10)

in one step.
We proceed as follows. In Sect. 2 we gather a collection of auxiliary facts on the

harmonic measure and majorants, the bounds from below for the Green’s function
and LCR theorems. The main result is proved in Sect. 3. We also demonstrate its
optimal character in Theorem 3.7.

The case of more general conditions on a function v and its associated measure
was considered in the papers [10, 11], but these conditions (as well as conclusions)
do not look as clear as ours.

2 Preliminaries

2.1 Bounds for the Harmonic Measure

Let γ = [eiθ1, eiθ2] be a closed arc on the unit circle T. For the harmonic measure
of this arc with respect to the unit disk D the explicit expression is known [9, p. 26]

ω(λ, γ ;D) = 2α − (θ2 − θ1)

2π
, λ ∈ D,

where α is the angle subtended at λ by the arc γ .
Let ζ ′ ∈ T, and 0 < t < 1. We put

γ = γt (ζ ′) := {ζ ∈ T : |ζ − ζ ′| ≤ t},
� = �t (ζ ′) := {z ∈ D : |z− ζ ′| = t}. (2.1)

It is clear, that ω is constant on �. An elementary geometry provides the formula

ω(λ, γt (ζ
′);D) = 1

2
− 1

π
arcsin

t

2
, λ ∈ �t (ζ ′).

So, there is a uniform bound from below for the harmonic measure of γ on �

ω(λ, γt (ζ
′);D) ≥ 1

3
, λ ∈ �t (ζ ′). (2.2)

To proceed further, given a compact set K ⊂ T, denote by

ρ(w) = ρK(w) := dist(w,K), w ∈ C,
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the Euclidian distance from w to K . Consider the sets on the unit circle

Kt := {ζ ∈ T : ρK(ζ ) ≤ t}, K ′t := {ζ ∈ T : ρK(ζ ) ≥ t} = T\Kt , (2.3)

and the set in D

�t (K) := {z ∈ D : ρK(z) = t}. (2.4)

Note that Kt and K ′t are finite unions of disjoint closed arcs.
For each λ ∈ �t (K) there is ζ ′ ∈ K , such that |λ − ζ ′| = ρK(λ) = t , so

λ ∈ �t(ζ ′). If follows from relation (2.2) that

ω(λ, γt (ζ
′);D) ≥ 1

3
, λ ∈ �t (K).

But, by definition, Kt ⊃ γt (ζ
′) for each ζ ′ ∈ K , so monotonicity of the harmonic

measure yields

ω(λ,Kt ;D) ≥ ω(λ, γt (ζ ′);D).

Proposition 2.1 Given a compact set K ⊂ T, let Kt be its closed neighbor-
hood (2.3). Then

ω(λ,Kt ;D) ≥ 1

3
, λ ∈ �t (K). (2.5)

Let us now turn to the upper bounds for the harmonic measure of Kt . For a
compact set K on T and 0 < t < 1, the open set

Dt(K) := {w ∈ D : ρK(w) > t} (2.6)

can be disconnected even for simple K . We denote by �t(K) the connected
component of Dt(K) that contains the origin. Clearly, �t(K) = ∅ for t ≥ 1.

In view of connectedness, it is easy to verify that �t(K) ⊃ �τ (K) for τ > t . It
is also important that

∂�t(K) ⊂ ∂Dt (K) = �t(K) ∪K ′t . (2.7)

The following result will be helpful later on.

Proposition 2.2 Given a compact set K ⊂ T, and s > 0, one has

{w ∈ D : ρK(w) > s} ⊂ �s/2(K). (2.8)
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Proof Clearly,

{w ∈ D : ρK(w) > s} ⊂
{
w ∈ D : ρK(w) > s

2

}
,

and we wish to show that the set on the left side is actually a subset of the connected
component of the set on the right side that contains the origin. The argument relies
on a simple inequality, which we apply repeatedly throughout the paper

ρK(z) ≤ 2ρK(rz), z ∈ D, 0 ≤ r ≤ 1. (2.9)

Indeed, by the triangle inequality ρK(z) ≤ ρK(rz)+ |rz− z|, and so

ρK(z) ≤ ρK(rz)+ (1− |rz|) ≤ 2ρK(rz),

as claimed.
It follows from (2.9) that ρK(rz) > s/2 for all 0 ≤ r ≤ 1 as soon as ρK(z) > s.

In other words, the whole closed interval

[0, z] ⊂ {w ∈ D : ρK(w) > s/2} ,

and so z ∈ �s/2(K), as needed. ��

Proposition 2.3 Given a number l ∈ (0, 1), put k := 2πl−1+1. Then the following
inequality holds for t < k−1

ω(λ,Kt ;D) ≤ l

t
(1− |λ|), λ ∈ �kt(K). (2.10)

Proof If 1 − |λ| > tl−1, inequality (2.10) obviously holds. So we assume in what
follows that

1− |λ| ≤ t

l
, |λ| ≥ 1− t

l
> 1− 1

kl
= kl − 1

kl
. (2.11)

For λ = |λ|eıθ ∈ �kt(K), and ζ = eiϕ ∈ Kt , the Poisson integral representation
for the harmonic measure reads

ω(λ,Kt ;D) =
∫

Kt

1− |λ|2
|ζ − λ|2 m(dζ ) =

(1− |λ|2)
2π

∫

eiϕ∈Kt

dϕ

(1− |λ|)2 + 4|λ| sin2 ϕ−θ
2

.

Take ζ1 ∈ K such that ρK(eiθ ) = |eiθ − ζ1|. Then, in view of (2.10),

ρK(e
iθ ) = |eiθ − ζ1| = |λ− ζ1 + eiθ − λ|
≥ ρK(λ)− (1− |λ|) > kt − (1− |λ|).

(2.12)
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Take ζ2 ∈ K such that ρK(eiϕ) = |eiϕ − ζ2| ≤ t , so, by (2.12),

|θ − ϕ| ≥ ∣∣eiθ − eiϕ∣∣ = ∣∣eiθ − ζ2 + ζ2 − eiϕ
∣∣

≥ ρK(eiθ )− t > (k − 1)t − (1− |λ|).

Hence (2.11) implies

π ≥ |θ − ϕ| ≥ (k − 1)t − t

l
= k1t, k1 := k − 1− 1

l
= 2π − 1

l
.

Going back to the Poisson integral, we see that

ω(λ,Kt ;D) ≤ 1− |λ|
4π |λ|

∫

k1t≤|ϕ−θ |≤π

dϕ

sin2 ϕ−θ
2

≤ π(1− |λ|)
4|λ|

∫

k1t≤|ϕ−θ |≤π

dϕ

(ϕ − θ)2 ,

or, in view of (2.11),

ω(λ,Kt ;D) ≤ π(1− |λ|)
2

kl

kl − 1

∫ π

k1t

dx

x2
≤ π(1− |λ|)

2t

kl

kl − 1

l

2π − 1
.

An elementary calculation shows that for l ∈ (0, 1)

π

2(2π − 1)

kl

kl − 1
= π

2(2π − 1)

l + 2π

l + 2π − 1
< 1,

and (2.10) follows. ��

2.2 Lower Bounds for Green’s Functions

Under a Green’s function of the domain �t(K) with singularity z we mean a
nonnegative function of the form

Gt(z, λ) = G�t(K)(z, λ) := log
1

|z− λ| − ht (z, λ), z, λ ∈ �t(K), (2.13)

where ht is the solution to the Dirichlet problem on �t(K) for the boundary value

ht (z, ξ) = log
1

|z− ξ | , ξ ∈ ∂�t(K). (2.14)

Such function exists and is unique, as the boundary ∂�t(K) is a non-polar set, see,
e.g., [14]. The problem we address here is to obtain a lower bound for Gt(0, ·) in a
smaller domain �τ(K) with an appropriate τ > t .
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Proposition 2.4 The Green’s function Gt(0, ·) for the domain �t(K) with singu-
larity at the origin and 0 < t < (24π + 1)−1 admits the lower bound

Gt(0, λ) ≥ 1− |λ|
2

, λ ∈ �(24π+1)t(K). (2.15)

Proof Since

1− |ξ | ≤ ρK(ξ) = t, |ξ | ≥ 1− t > 1

2
, ξ ∈ �t (K),

one has

ht (0, ξ) = log
1

|ξ | ≤ log
1

1− t ≤ 2t, ξ ∈ ∂�t(K) ∩ �t (K).

Next, ht (0, ξ) = 0 for ξ ∈ ∂�t(K) ∩K ′t , so, by Proposition 2.1 and the Maximum
Principle,

ht (0, λ) ≤ 6tω(λ,Kt ;D), λ ∈ �t(K).

Now, the upper bound (2.10) with l = 1/12 and k = 24π + 1 yields

ht (0, λ) ≤ 1− |λ|
2

, λ ∈ �(24π+1)t(K),

and so

Gt(0, λ) ≥ log
1

|λ| −
1− |λ|

2
≥ 1− |λ|

2
, λ ∈ �(24π+1)t(K),

as needed. ��

So far we have been dealing with one compact set K . Keeping in mind the main
topic of the paper, consider the intersection

Dt,s(E, F ) := {w ∈ D : ρE(w) > t, ρF (w) > s} = Dt(E) ∩Ds(F ),

where E and F are compact sets on the unit circle, 0 < t, s < 1. Denote by�t,s the
connected component of this open set (or, that is the same, the connected component
of �t(E) ∩ �s(F )) so that 0 ∈ �t,s . Clearly, �t,s = ∅ for max{t, s} ≥ 1. It is not
hard to check that

∂�t,s ⊂ W1 ∪W2 ∪W3, W3 := E′t ∩ F ′s ,
W1 := {w ∈ D : ρE(w) = t, ρF (w) ≥ s},
W2 := {w ∈ D : ρE(w) ≥ t, ρF (w) = s}.

(2.16)
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In particular,

∂�t,s ⊂ �t (E) ∪ �s(F ) ∪ (E′t ∩ F ′s ). (2.17)

The inclusion

Dt,s(E, F ) ⊂ �t/2,s/2 (2.18)

can be verified in exactly the same way as (2.8) in Proposition 2.2.
We complete with the lower bound for the Green’s function Gt,s := G�t,s .

Proposition 2.5 The Green’s function Gt,s(0, ·) for the domain �t,s with singular-
ity at the origin and 0 < t, s < (48π + 1)−1 admits the lower bound

Gt,s(0, λ) ≥ 1− |λ|
2

, λ ∈ �(48π+1)t,(48π+1)s. (2.19)

Proof We follow the argument from the proof of Proposition 2.4. Write

Gt,s(0, λ) = log
1

|λ| − h(λ), h(ζ ) = log
1

|ζ | , ζ ∈ ∂�t,s,

so h(ζ ) = 0 for ζ ∈ ∂�t,s ∩ T. Since

|ζ | ≥ 1− t > 1/2, ζ ∈ �t(E), |ζ | ≥ 1− s > 1/2, ζ ∈ �s(F ),
we have

log
1

|ζ | ≤ 2(1− |ζ |) ≤ 2t, ζ ∈ �t (E),

log
1

|ζ | ≤ 2(1− |ζ |) ≤ 2s, ζ ∈ �s(F ).
(2.20)

In view of (2.17), (2.20) and Proposition 2.1, it follows from the Maximum Principle
that

h(λ) ≤ 6tω(λ,Et ;D)+ 6sω(λ, Fs ;D), λ ∈ �t,s.
We apply the upper bound for the harmonic measure (2.10)

tω(λ,Et ;D)+ sω(λ, Fs ;D) ≤ 2l(1− |λ|), λ ∈ �t,s,
so for l = 1/24, k = 48π + 1 we come to

h(λ) ≤ 1− |λ|
2
≤ 1

2
log

1

|λ| ⇒ Gt,s(0, λ) ≥ 1

2
log

1

|λ| ≥
1− |λ|

2
,

as claimed. ��
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2.3 Harmonic Majorant

The result below concerns particular subharmonic functions and their harmonic
majorants.

Proposition 2.6 Given two compact sets E and F on the unit circle, and a, b ≥ 0,
assume that ρ−aE ρ−bF ∈ L1(T). Then the function

va,b(z) := 1

ρaE(z) ρ
b
F (z)

, z ∈ D, (2.21)

is subharmonic and admits the harmonic majorant

va,b(z) ≤ Pa,b(z) :=
∫
T

1− |z|2
|ζ − z|2

m(dζ )

ρaE(ζ ) ρ
b
F (ζ )

. (2.22)

Proof The case a = b = 0 is trivial, so let a + b > 0. By [14, Theorem 2.4.7], the
function

va,b(z) = sup
ξ∈E, η∈F

|(z− ξ)−a(z− η)−b|

is subharmonic. The inequality (2.9) implies

va,b(rζ ) ≤ 2a+bva,b(ζ ), ζ ∈ T, 0 ≤ r ≤ 1. (2.23)

The standard Maximum Principle states that

va,b(rz) ≤
∫
T

1− |z|2
|ζ − z|2 va,b(rζ )m(dζ ), z ∈ D, r < 1.

The bound (2.22) is now immediate from the latter inequality as r → 1 − 0 due
to (2.23) and the Lebesgue Dominated convergence theorem. ��

Remark 2.7 As a matter of fact, Pa,b is the least harmonic majorant for va,b, see,
e.g., [8, pp. 36–37].

2.4 Layer Cake Representation

A key ingredient in our argument is the fundamental result in Analysis, known as
the “layer cake representation” (LCR) see, e.g., [13, Theorem 1.13].
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Theorem LCR Let (�, ν) be a measure space, and h ≥ 0 a measurable function
on �. Then for c > 0 the equality holds

∫
�

hc(τ ) ν(dτ) = c
∫ ∞

0
xc−1ν({τ : h(τ) > x}) dx. (2.24)

In what follows we make use of the two-dimensional analogue of this result.

Proposition 2.8 Let f, g ≥ 0 be measurable functions on the measure space
(�, σ), and α, β > 0. Then

I :=
∫
�

f α(τ)gβ(τ ) σ (dτ)

= αβ
∫ ∞

0

∫ ∞
0

xα−1yβ−1σ({τ : f (τ) > x, g(τ ) > y}) dx dy.
(2.25)

Proof We apply the LCR (2.24) twice. Put ν(dτ) := gβσ(dτ), so

I =
∫
�

f α(τ) ν(dτ) = α
∫ ∞

0
xα−1ν({τ : f (τ) > x}) dx.

Write �x := {τ : f (τ) > x}, and apply (2.24) once again

ν(�x) =
∫
�x

gβ(τ ) σ (dτ) = β
∫ ∞

0
yβ−1ν({τ ∈ �x : g(τ) > y}) dy

= β
∫ ∞

0
yβ−1ν({τ ∈ � : f (τ) > x, g(τ ) > y}) dy,

so Fubini’s theorem completes the proof. ��

3 Problem with Two Compact Sets

3.1 Main Results

Let us go back to our main problem concerning the Blaschke-type condition for the
Riesz measure of the subharmonic function which can grow at the direction of two
sets of singularities on the unit circle.

As a warm-up, we prove the following result.

Theorem 3.1 Assume that E and F are two compact sets on T so that (1.5) holds
with a = p, b = q . For each subharmonic function v ∈ Sp,q (E, F ), v(0) ≥ 0, with
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the Riesz measure μ, the Blaschke condition holds

∫
D

(1− |λ|) μ(dλ) ≤ M‖ρ−pE ρ
−q
F ‖1. (3.1)

Proof By Proposition 2.6, v admits the harmonic majorant U = MPp,q with
U(0) = M‖ρ−pE ρ

−q
F ‖1. Relation (1.10) completes the proof. ��

The case when min(p, q) = 0, so we actually have one compact set, was
elaborated in [6].

The main result of the paper, Theorem 1.1, concerns the rest of the values for a
and b, that is, either 0 ≤ a < p or 0 ≤ b < q .

Proof of Theorem 1.1

(i) We proceed in three steps, following the procedure outlined in Introduction.

Step 1. Write the hypothesis (1.4) as

v(z) ≤ va,b(z) M

ρ
p−a
E (z)ρ

q−b
F (z)

, z ∈ D.

In view of (2.16), Proposition 2.6, and the Maximum Principle, we come to
the bound

v(z) ≤ U(z) = Pa,b(z) M

tp−a sq−b
, z ∈ �t,s.

Step 2. Relation (1.9) now reads

∫

�t,s

Gt,s(0, λ) μ(dλ) ≤ u(0) ≤ U(0) = M

tp−a sq−b
∥∥ρ−aE ρ−bF

∥∥
1.

By Proposition 2.5 with κ = 48π + 1, one has

∫

�κt,κs

(1− |λ|) μ(dλ) ≤ 2M

tp−a sq−b
∥∥ρ−aE ρ−bF

∥∥
1.

By (2.18), D2κt,2κs(E, F ) ⊂ �κt,κs , so putting

ξ := 2κt, η := 2κs, 0 ≤ t, s ≤ 1

2κ
,
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we end up with the bound

∫

Dξ,η(E,F )

(1− |λ|) μ(dλ) ≤ 2(2κ)p+q−a−b M

ξp−a ηq−b
∥∥ρ−aE ρ−bF

∥∥
1.

(3.2)

Step 3. The LCR theorem comes into play here. By Proposition 2.8 with

� = D, σ = (1−|λ|)μ, f = ρE, g = ρF , α = p−a+ε, β = q−b+ε,

we see that

∫
D

ραE(λ)ρ
β
F (λ)σ (dλ) = αβ

∫ 2

0

∫ 2

0
ξα−1ηβ−1σ

(
{λ : ρE(λ) > ξ, ρF (λ) > η}

)
dξdη.

But, due to (3.2),

σ
(
{λ : ρE(λ) > ξ, ρF (λ) > η}

)
=

∫

Dξ,η(E,F )

(1− |λ|) μ(dλ)

≤ CM

ξp−a ηq−b
∥∥ρ−aE ρ−bF

∥∥
1,

so, finally,

∫
D

ραE(λ)ρ
β

F (λ)(1 − |λ|) μ(dλ) ≤ αβ CM
∥∥ρ−aE ρ−bF

∥∥
1

∫ 2

0
ξ ε−1dξ

∫ 2

0
ηε−1dη,

and the first statement is proved.
(ii) Assume now that 0 ≤ a < p and b ≥ q . The argument is the same but

simpler, as we appeal to the domain �t(E) and the standard one-dimensional
LCR theorem (2.24). Indeed, as in Step 1, we have

v(z) ≤ U(z) = Pa,b(z) 2b−qM
tp−a

, z ∈ �t(E).

Next, relation (1.9) provides

∫

�t(E)

Gt(0, λ) μ(dλ) ≤ 2b−qM
tp−a

∥∥ρ−aE ρ−bF
∥∥

1,
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so, by Proposition 2.4 with κ = 24π + 1,

∫

�κt (E)

(1− |λ|) μ(dλ) ≤ 2b−q+1M

tp−a
∥∥ρ−aE ρ−bF

∥∥
1.

By (2.8), D2κt (E) ⊂ �κt(E), and so for ξ = 2κt we have

∫

Dξ (E)

(1− |λ|) μ(dλ) ≤ (2κ)p−a 2b−q+1M

ξp−a
∥∥ρ−aE ρ−bF

∥∥
1.

An application of LCR theorem in the form (2.24) with

� = D, ν(dλ) = (1− |λ|) μ(dλ), h = ρE, c = p − a + ε

leads to the first Blaschke-type condition in (1.7). The proof of the second one is
identical. ��

The case a = b = 0 is important, for there are no integrability assumptions
whatsoever.

Corollary 3.2 Given two compact sets E, F on T, let a subharmonic function v,
v(0) ≥ 0, belong to Sp,q(E, F ). Then for each ε > 0 there is a constant C =
C(p, q, ε) so that

∫
D

ρ
p+ε
E (λ) ρ

q+ε
F (λ)(1− |λ|) μ(dλ) ≤ CM. (3.3)

The results of Theorem 1.1 can be extended to the case of n compact sets on the
unit circle with no additional efforts.

Theorem 3.3 Let K1, . . . ,Kn be compact subsets of T, and let v be a subharmonic
function on D with Riesz measure μ such that v(0) ≥ 0 and

v(z) ≤Mρ−p1
K1

(z) · · ·ρ−pnKn
(z), z ∈ D.

Suppose that

ρ
−a1
K1

(ζ ) · · ·ρ−anKn
(ζ ) ∈ L1(T)

for some

a1 < p1, . . . , ak < pk, ak+1 ≥ pk+1, . . . , an ≥ pn, 1 ≤ k ≤ n.
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Then for each ε > 0 there is a constant C = C(p1, . . . , pn, a1, . . . , ak, ε) so that

∫
D

ρ
p1−a1+ε
K1

(λ) · · · ρpk−ak+εKk
(λ)(1 − |λ|) dμ(λ) ≤ CM

∥∥∥
k∏

j=1

ρ
−aj
Kj

n∏
i=k+1

ρ
−pi
Ki

∥∥∥
1
.

In view of further applications, let us mention a special case of subharmonic
functions v = log |f | with f analytic on the unit disk.

Corollary 3.4 Let an analytic function f , |f (0)| ≥ 1, satisfy the growth condition

log |f (z)| ≤ M

ρ
p
E(z) ρ

q
F (z)

, M,p, q > 0, (3.4)

with two compact sets E, F on the unit circle. Assume that the relation (1.5) holds
for some 0 ≤ a < p and 0 ≤ b < q . Then for each ε > 0 there is a constant
C = C(p, q, a, b, ε) so that

∞∑
n=1

(1− |λn|) ρp−a+εE (λn) ρ
q−b+ε
F (λn) ≤ CM

∥∥ρ−aE ρ−bF
∥∥

1,

where {λn}n≥1 are the zeros of f counting multiplicity.

Next, we consider the situation where the integrability assumptions are imposed
on ρE and ρF separately. At the moment the following partial result is available.

Proposition 3.5 Let a subharmonic function v, v(0) ≥ 0, belong to Sp,q(E, F ).
Assume that

∥∥ρ−pE
∥∥

1 =
∫
T

m(dζ )

ρ
p
E(ζ )

<∞, ∥∥ρ−qF
∥∥

1 =
∫
T

m(dζ )

ρ
q
F (ζ )

<∞. (3.5)

Let p′, q ′ be nonnegative constants such that p′ + q ′ > max(p, q). Then there is a
constant C = C(p, q, p′, q ′) so that

∫
D

ρ
p′
E (λ) ρ

q ′
F (λ)(1 − |λ|) μ(dλ) ≤ CM

(∥∥ρ−pE
∥∥

1 +
∥∥ρ−qF

∥∥
1

)
. (3.6)

Proof We focus on two particular cases of Theorem 1.1, namely, a = 0, b = q

and a = p, b = 0. The corresponding conditions (1.5) agree with (3.5). It follows
from (1.7) that

∫
D

(
ρ
p+ε
E (λ)+ ρq+εF (λ)

)
(1− |λ|) μ(dλ) ≤ CM

(∥∥ρ−pE
∥∥

1 +
∥∥ρ−qF

∥∥
1

)
(3.7)
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for arbitrary ε > 0. We choose this parameter from the condition

0 < ε <
p′ + q ′ −max(p, q)

2
. (3.8)

The argument below is quite elementary. Let 0 ≤ x, y ≤ 2. If y ≤ x, we have,
by (3.8),

xp
′
yq
′ = xp′+q ′ ≤ 2p

′+q ′−p−ε xp+ε.

Similarly, for x ≤ y

xp
′
yq
′ = yp′+q ′ ≤ 2p

′+q ′−q−ε yq+ε.

So, for each 0 ≤ x, y ≤ 2 we have

xp
′
yq
′ ≤ C (

xp+ε + yq+ε) , C = 2p
′+q ′−min(p,q)−2ε.

It remains only to put x := ρE(λ), y := ρF (λ) and make use of (3.7). The proof is
complete. ��

Remark 3.6 In some instances the assumption v(0) ≥ 0 looks somewhat restrictive.
If −∞ < v(0) < 0, one can apply the above results to the function v1(z) = v(z)−
v(0), which belongs to the same class Sp,q(E, F ). But now the constantM depends
on v, so we actually have quantitative Blaschke-type conditions. For example,

∫
D

ρ
p−a+ε
E (λ) ρ

q−b+ε
F (λ)(1 − |λ|) μ(dλ) <∞ (3.9)

holds in place of (1.6).
If v(0) = −∞, consider the Poisson integral in the disk |z| < 1/2 with the

boundary value v

h(z) :=
∫
T

1− |2z|2
|ζ − 2z|2 v(ζ/2)m(dζ ).

Since v is upper semicontinuous, we see that limz′→z h(z
′) ≤ v(z) for each z with

|z| = 1/2 . By [14, Theorem 2.4.5] the function

v1(z) =
{

max(v(z), h(z)) for |z| < 1/2,
v(z) for |z| ≥ 1/2
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is subharmonic in D, and the restriction of its Riesz measure μ1 on the set {z ∈ D :
|z| > 1/2} agrees with μ. Therefore,

∫
D

ρ
p−a
E (λ)ρ

q−b
F (λ)(1 − |λ|)

(
μ1(dλ)− μ(dλ)

)
= O(1).

Since v1(0) > −∞, we again get the conclusions of the quantitative type similar
to (3.9).

3.2 Optimality of the Bounds

We complete the paper with the results which demonstrate the optimal character
of the bound (1.6) in Theorem 1.1 and the disjointness of the compact sets in
Theorem B.

Given a compact set K ⊂ T, define the value

δ(K) := sup{τ ≥ 0 : ρ−τK ∈ L1(T)}.

It is clear that 0 ≤ δ(K) ≤ 1. The equality

∫
T

m(dζ )

ρτK(ζ )
= 2−τ + τI (τ,K), τ > 0, I (τ,K) :=

∫ 2

0

m(Kt)

tτ+1
dt (3.10)

follows easily from the LCR theorem (2.24), see [6, formula (15)]. The characteris-
tic I (τ,K) appeared already in [5]. So,

δ(K) = sup{τ ≥ 0 : I (τ,K) <∞}.

By [7, Proposition 1], the equality δ(K) = α(K) holds, α(K) is the Ahern–Clark
type (1.3).

Choose two disjoint compact sets E and F with δ(E) > 0, δ(F ) > 0. By the
definition,

ρ
−δ(E)+ε
E ∈ L1(T), ρ

−δ(F )+ε
F ∈ L1(T), 0 < ε < min(δ(E), δ(F )),

and so (1.5) holds with a = δ(E)− ε, b = δ(F )− ε (E and F are disjoint). On the
other hand,

ρ
−δ(E)−ε
E /∈ L1(T), ρ

−δ(F )−ε
F /∈ L1(T),

and, by (3.10),

I (δ(E)+ ε,E) = I (δ(F ) + ε, F ) = +∞.
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In notation (2.6) we take t , s small enough so that

Dc
t (E) ∩Dc

s (F ) = ∅, Dc
t (K) := D\Dt(K). (3.11)

Let p > δ(E), q > δ(F ), and consider the function

v0(z) = vE(z)+ vF (z) = 1

ρ
p
E(z)

+ 1

ρ
q
F (z)

, v0 ∈ Sp,q(E, F ).

Denote by μE (μF ) the Riesz measure of the subharmonic function vE (vF ). The
result in Theorem 1.1, (i), states that

∫
D

ρ
p−δ(E)+2ε
E (λ) ρ

q−δ(F )+2ε
F (λ) (1− |λ|) μ0(dλ) <∞, μ0 := μE + μF

is the Riesz measure of v0 and ε > 0 is small enough.

Theorem 3.7 For 0 < ε < min(p − δ(E), q − δ(F )) the relation holds

I :=
∫
D

ρ
p−δ(E)−ε
E (λ) ρ

q−δ(F )−ε
F (λ) (1− |λ|) μ0(dλ) = +∞. (3.12)

Proof We bound the integral I from below in a few steps. Clearly,

I ≥
∫

Dc
t (E)

ρ
p−δ(E)−ε
E (λ) ρ

q−δ(F )−ε
F (λ) (1− |λ|) μ0(dλ)

≥
∫

Dc
t (E)

ρ
p−δ(E)−ε
E (λ) ρ

q−δ(F )−ε
F (λ) (1− |λ|) μE(dλ) = I1.

By (3.11), one has ρF (λ) > s as long as λ ∈ Dc
t (E), so

I1 ≥ sq−δ(F )−ε
∫

Dc
t (E)

ρ
p−δ(E)−ε
E (λ) (1− |λ|) μE(dλ). (3.13)

We apply [6, Theorem 2], which claims that now

∫
D

ρ
p−δ(E)−ε
E (λ) (1− |λ|) μE(dλ) =

∫

Dt(E)

ρ
p−δ(E)−ε
E (λ) (1− |λ|) μE(dλ)

+
∫

Dc
t (E)

ρ
p−δ(E)−ε
E (λ) (1− |λ|) μE(dλ) = I2 + I c2 = +∞.
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But I2 < ∞ thanks to the property of the Riesz measure, so I c2 = +∞. The
relation (3.12) follows now from (3.13). ��

Next, take compact sets E = F such that δ(E) = δ(F ) > 0 and

ε = (1/2)δ(F ), p > δ(E), q > δ(F ).

Using (3.10) and the equality α(E) = δ(E), we get I (p + q − ε,E) = ∞. Hence,
by [6, Theorem 2] applied to the set E and the function

ṽ(z) := ρ−(p+q)E (z) = ρ−pE (z)ρ
−q
F (z),

the Riesz measure μ̃ of ṽ satisfies the condition

∫
D

ρ
p−α(E)+ε
E (λ) ρ

q−α(F)+ε
F (λ)(1−|λ|) μ̃(dλ) =

∫
D

ρ
p+q−α(E)
E (λ)(1−|λ|) μ̃(dλ) = ∞.

On the other hand, for the different and disjoint compact sets E and F such that
α(E) = α(F ) > 0, Theorem B implies

∫
D

ρ
p−α(E)+ε
E (λ) ρ

q−α(F )+ε
F (λ)(1− |λ|) μ̃(dλ) <∞.
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Exponential Taylor Domination

Omer Friedland, Gil Goldman, and Yosef Yomdin

Abstract Let f (z) = ∑∞
k=0 akz

k be an analytic function in a disk DR of radius
R > 0, and assume that f is p-valent in DR , i.e. it takes each value c ∈ C at most
p times in DR . We consider its Borel transform

B(f )(z) =
∞∑
k=0

ak

k! z
k,

which is an entire function, and show that, for any R > 1, the valency of the Borel
transformB(f ) inDR is bounded in terms of p,R. We give examples, showing that
our bounds, provide a reasonable envelope for the expected behavior of the valency
of B(f ). These examples also suggest some natural questions, whose expected
answer will strongly sharper our estimates.

We present a short overview of some basic results on multi-valent functions, in
connection with “Taylor domination”, which, for f (z) =∑∞

k=0 akz
k, is a bound of

all its Taylor coefficients ak through the first few of them. Taylor domination is our
main technical tool, so we also discuss shortly some recent results in this direction.

1 Introduction

“Taylor domination” for an analytic function f (z) =∑∞
k=0 akz

k is an explicit bound
of all its Taylor coefficients ak through the first few of them. This property was
classically studied, in particular, in relation with the Bieberbach conjecture, which
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was finally proved in [8]: For a univalent function f we always have |ak| ≤ k|a1|
(see [5, 6, 10, 14] and references therein).

To give an accurate definition, let us assume the radius of convergence of the
Taylor series for f is R̂ (for 0 < R̂ ≤ +∞).

Definition 1.1 ([2]) Let 0 < R < R̂, N ∈ N, and let S(k) be a positive sequence
of a subexponential growth. A function f has an (N,R, S(k))-Taylor domination
property if for any k ≥ N + 1 we have

|ak|Rk ≤ S(k) max
0≤i≤N

|ai|Ri.

For a constant sequence S(k) ≡ C, we simply denote this property by (N,R,C)-
Taylor domination.

The parametersN,R, and S(k) of the Taylor domination are not defined uniquely.
In fact, each nonzero analytic function f has this property, with N being the index
of its first nonzero Taylor coefficient ak (see e.g. [2, Proposition 1.2]). Consequently,
the property of Taylor domination becomes interesting only for specific classes of
analytic functions, for which we can specify the parametersN,R, S(k) in an explicit
and uniform way.

1.1 Some Classical Examples

One of the most important examples is provided by p-valent functions: Here Taylor
domination with explicit parameters is a difficult result of geometric function theory,
which is closely related to the Bieberbach conjecture. Since our main result is in this
direction, we provide below some background (see Sect. 2).

Another striking example, of roughly the same period (1930th) is Bautin’s
discovery (see, [3, 4], and, e.g. [12, 21], and references therein), which is one of the
most important sources of uniform Taylor domination: The Taylor coefficients of the
function in question are polynomials (analytic functions) in a finite number of the
problem’s parameters. Taylor domination in this case is (formally) a consequence
of Hilbert’s finiteness theorem, and of its “quantitative” extensions (Hironaka’s divi-
sion algorithm, see e.g. [12] and references therein). Of course, besides discovering
a general approach, Bautin provided explicit, and highly non-trivial, calculations
for the plane vector fields of degree two, thus obtaining one of the most important
results in the second part of Hilbert’s 16th problem up today: At most three limit
cycles can bifurcate from a center in a quadratic plane vector field.

One more classical result, which we mention, concerns Taylor domination, with
explicit parameters, for rational functions. In a sense, this is a special case of p-
valent functions, but the known results for rational functions are much sharper. Here
Taylor domination is, essentially, equivalent to the important and widely applied
“Turan’s lemma” (see [17, 18], and, e.g. [2], and references therein).
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1.2 Some Recent Developments

Recently, Taylor domination was also investigated in some additional situations:

1. Linear recurrence relations. Functions whose Taylor coefficients satisfy linear
recurrence relations, in particular, of Poincaré-Perron type, possess an explicit
Taylor domination (see [2]).

2. (s, p)-Valent functions. Functions which preserve some valency bounds after
subtracting from them any polynomial of degree s. A complete characterization
of such functions through linear recurrence relations for Taylor coefficients was
obtained in [13].

3. Remez-type inequalities. These inequalities bound |f | on a disk D through the
bound on |f | on a certain subset � of D. In [13] a rather accurate Remez-type
inequality was obtained for (s, p)-valent functions.

4. Bautin-type results. Providing Taylor domination through an explicit description
of the Bautin ideals in certain specific cases. Many important results in this
direction were obtained in the modern analytic theory of ODE’s ([15] and
references therein). Beyond the field of analytic theory of ODE’s, some (initial)
general results were given in [9, 12, 19], while certain specific problems were
treated, via direct calculations, in [20, 21].

5. Efficiently transcendental functions. In [11] we investigate analytic functions
f such that a result of a substitution of f as y into a polynomial P(z, y),
i.e. g(z) = P(z, f (z)) preserves, for any P , Taylor domination with explicit
parameters, depending only on the degree of P . Our main tool is “linear Bautin
ideals”, as in [20]. These results are applied in [11], via the Pila-Wilkie approach,
to bounding the number of rational points on the graph y = f (x).

1.3 The Scope and the Goals of the Paper

As it is clear from the above, the notion of Taylor domination was historically
considered mostly for functions f (z) with a finite radius of convergence. The Borel
transform [7] maps such a function f (z) =∑∞

k=0 akz
k into an entire function

g(z) = B(f )(z) =
∞∑
k=0

ak

k! z
k.

The class of all the images B(f )(z) of functions f (z) having a nonzero radius of
convergence, can be easily described explicitly: It consists of all the entire functions
g(z) = ∑∞

k=0 bkz
k with k!bk growing at most exponentially. There is an integral

expression for the inverse of the Borel transform: f (z) = ∫∞
0 e−t g(tz)dt , which

plays important role in Borel’s summation method for divergent series. We expect
this formula to be important in our line of research, but we do not use it in the
present paper.
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Of course, the main applications of the Borel transform are in summation of
divergent series. However, also its action on regular (but not extendable to the
entire complex plane) functions f was extensively studied. Still, to the best of our
knowledge, the problems of the behavior of the “valency”, and the corresponding
problems of Taylor domination, did not get an adequate attention.

The goal of the present paper is to present some initial results in this direction.
Given a p-valent function f , we estimate the valency of B(f ) on the disks DR ,
for given R > 0 (see Theorem 3.1 below). We also provide some examples, which
outline the degree of the (non)-sharpness of our bounds, and suggest some related
questions.

Finally, let us mention some recent observations from [1], concerning
the moment and Fourier reconstruction of the “spike-train signals” F(x) =∑d

j=1 aj δ(x − xj ). The Fourier transform of F is an exponential polynomial

F(s) = ∑d
j=1 aje

−2πixj s , while its Stieltjes transform S(z) = ∑d
j=1

aj
1−zxj is a

rational function with the poles at xj . It is easy to see that the Taylor coefficient at
zero of F(s) are mk

k! , while the Taylor coefficient at zero of S(z) are mk . Here

mk =
∫
xkF (x)dx

are the consecutive moments of our signal F(x). In particular, F(s) is the Borel
transform of S(z). Specifically, we show in [1], using Taylor domination, that if
F(s) is small on a certain real interval, then all its Taylor coefficients are small.
This fact is crucial for comparing accuracy of Fourier and moment reconstructions
of spike-train signals. We expect that this result of [1] can be generalized to Borel
transforms of general functions, having a Taylor domination property.

2 Some Background on Taylor Domination and Counting
Zeroes

By definition, Taylor domination allows us to compare the behavior of f (z) with
the behavior of the polynomial PN(z) = ∑N

k=0 akz
k . In particular, the number of

zeroes of f , in an appropriate disk, can be easily bounded in this way (see below
for more details). However, the opposite direction (bounding zeros implies Taylor
domination) is a deep and difficult classical results of geometric function theory,
closely related to the Bieberbach conjecture, and going back at least, to Ahlfors.
We state here one prominent classical result in this direction [6]. To formulate it
accurately, we need the following definition (see [14] and references therein).

Definition 2.1 Let f be a regular in a domain � ⊂ C. The function f is called p-
valent in �, if for any c ∈ C the number of solutions in � of the equation f (z) = c
does not exceed p.
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Theorem 2.2 (Biernacki [6]) If f is p-valent in the disk DR of radius R centered
at 0 ∈ C then for any k ≥ p + 1

|ak|Rk ≤ A(p)k2p−1 max
1≤i≤p |ai|R

i,

where A(p) is a constant depending only on p.

In our notations, Theorem 2.2 claims that a function f , which is p-valent in DR ,
has a (p,R,A(p)k2p−1)-Taylor domination property. For univalent functions, i.e.
for p = 1, R = 1, Theorem 2.2 gives |ak| ≤ A(1)k|a1| for any k, while the sharp
bound of the Bieberbach conjecture is |ak| ≤ k|a1|.

Various forms of inverse results to Theorem 2.2 are known (the reference list is
long, and we skip it here). In particular, an explicit, and reasonably accurate, bound
on the number of zeroes of f having a Taylor domination property is given in [16,
Lemma 2.2.3]:

Theorem 2.3 Let f possess an (N,R,C)-Taylor domination. Then, for any R′ <
1
4R, the function f has at most 5N + 5 log(C + 2) zeros in DR′ .

We can replace the bound on the number of zeroes of f by the bound on its
valency, if we exclude a0 in the definition of Taylor domination (or, alternatively, if
we consider the derivative f ′ instead of f ).

Remark 2.4 It is natural to ask whether functions f having a (p,R, k2p−1)-
Taylor domination property (like p-valent functions, according to Biernacki’s
Theorem 2.2), are, at least, Kp-valent, in, say, D 1

2R
. Since Theorem 2.3 concerns

only the case of the constant sequence S(k) ≡ C, it is not sharp enough to answer
this question. Calculating an optimal C and using Theorem 2.3, gives only an order
of p logp bound on the valency of f (compare with the discussion in Sect. 4 below).

3 Main Result

Theorem 3.1 Let f (z) = ∑∞
k=0 akz

k be a p-valent function on the unit disk D1.
Then, for any R > 1, the Borel transform B(f )(z) =∑∞

k=0
ak
k! z

k is q-valent onDR′ ,
where R′ < R, and

q � (1+ logp + logR)p + R,

where � means up to universal constants.

Proof Let us start with the following simple remark, which allows us to eliminate
the parameter R in a Taylor domination, just by a proper scaling of the independent
variable. Indeed, the function f (z) = ∑∞

k=0 akz
k has an (N,R, S(k))-Taylor



382 O. Friedland et al.

domination property if and only if the scaled function

f̂ (z) := f (Rz) =
∞∑
k=0

akR
kzk, (3.1)

defined on the unit disk, has an (N, 1, S(k))-Taylor domination property.
By assumption, the function f is p-valent on the unit disk D1, and therefore, by

Theorem 2.2, for any k ≥ p + 1 we have

|ak| ≤ A(p)k2p−1 max
1≤i≤p |ai |,

where A(p) is a constant depending only on p. Hence, for any R > 1 and for any
k ≥ p + 1, we have

|ak|Rk/k! ≤ A(p)k2p−1 max
1≤i≤p |ai |R

k/k! ≤ A(p)η max
1≤i≤p |ai |, (3.2)

where η = maxk≥p+1
k2p−1Rk

k! .

Now, since, by our assumptions, R ≥ 1, the numbers Ri

i! for 1 ≤ i ≤ p, grow till
i = [R], and then start to decrease, where [R] is the integer part of R. Hence, the
minimum of these numbers is achieved either with the first of them i = 1, i.e. R, or
with the last one i = p, which is Rp

p! . Therefore, we have

max
1≤i≤p

|ai|Ri
i! ≥ ν max

1≤i≤p |ai |,

where ν = min{R, Rp
p! }.

Plugging, the above estimate, in (3.2), we immediately get that, for any k ≥ p+1,

|ak|Rk
k! ≤ A(p)η

ν
max

1≤i≤p
|ai|Ri
i! . (3.3)

By re-scaling the restriction of B(f ) to DR to the unit disk (i.e. the Borel
transform of the re-scaled function in (3.1)), we get

B(f̂ )(z) =
∞∑
k=0

akR
k

k! z
k,

and thus, inequality (3.3) provides a bound on all the Taylor coefficients akR
k

k! of
B(f̂ ) through its first p ones (excluding the constant term), that is, B(f̂ ) has a
(p, 1, A(p)η/ν)-Taylor domination property, which, by the above simple remark,
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also implies that

B(f ) has a
(
p,R, (A(p)η/ν)

)
-Taylor domination property.

Now, we use Theorem 2.3 for the function B(f ) with N = p and C = A(p)η/ν,
which yields the following bound on the valency q of B(f ) in DR′ , for R′ ≤ R:

q ≤ 5N + 5 log(C + 2)

≤ 5p + 5 log(A(p)η/ν + 2). (3.4)

To complete the proof of Theorem 3.1, we need to get an explicit bound on η.
Recall,

η = max
k≥p+1

k2p−1Rk

k! .

We shall bound η by considering two cases:

η = max{η1, η2},

where

η1 := max
p+1≤k≤3p

k2p−1Rk

k! , η2 := max
k≥3p+1

k2p−1Rk

k! .

For η1 we use an immediate estimate

η1 ≤ (3p)2p−1R3p

(p + 1)! ,

just taking the maximal possible numerator, and the minimal possible denominator.
In order to estimate η2, we proceed as follows: We divide the numerator and the

denominator by k2p−1, and write k! as

k! = (k − 2p − 1)!ζ , where ζ =
2p∏
j=1

(1− 2p − 1− j
k

) ≥ 1

32p
.

Consequently we get

η2 = max
k≥3p+1

k2p−1Rk

k! ≤ 32p Rk

(k − 2p − 1)! = 32pR2p−1 Rk−2p−1

(k − 2p − 1)! .

It remains to notice, that the last expression, as a function of k, decreases, starting
with k− 2p− 1 = [R]. Hence, its maximal value is achieved for k = [R] + 2p− 1.
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Using Stirling formula, we have RR

R! ≤ eR, and hence η2 ≤ 32pR2p−1eR . Thus, we
conclude

η ≤ max

{
(3p)2p−1R3p

(p + 1)! , 32pR2p−1eR
}
.

Recall also that ν = min{R, Rp
p! }, and considering (3.4), we conclude

q ≤ 5p + 5 log(A(p)η/ν + 2)

� p + p logp + p logR + R,

which completes the proof. ��

4 Some Examples

In this section we give some examples, illustrating Theorem 3.1. These examples
motivate some natural questions (presumably, open), which we discuss below.

1. As the first example, consider the function f (z) = 1 + z + z2 + · · · = 1
1−z .

This function is univalent in D1, and its Borel transform is ez. The solutions of
the equation ez = c are all the points log c + 2πki, with whatever brunch of log
chosen. Clearly, in the disk DR there are at most R

2π such points, and for some c
this bound is achieved. Therefore, ez in DR is p-valent, with p = R

2π .
2. Let us now consider the case of larger p’s. Let

fp(z) = (zp − 1)(ez − 1) = −
p∑
k=1

zk

k! +
∞∑

k=p+1

[ 1

(k − p)! −
1

k! ]z
k.

Clearly, fp(z) is at least p + R
2π -valent inDR , for any R. Indeed, the roots of the

two factors in fp(z) provide the required number of solution of fp(z) = 0. On
the other side, fp(z) is the Borel transform of

f̃p(z) = −
p∑
k=1

zk +
∞∑

k=p+1

[ k!
(k − p)! − 1]zk.

We see that f̃p(z) has a (p, 1, S(k))-Taylor domination, with S(k) ∼ kp. We
would expect such functions to be p-valent, at least in smaller disks, but with the
tools in our possession we can prove only that f̃p(z) is ∼ p logp-valent in any
disk Dρ, ρ < 1 (just estimate the maximum in k of kpρk and use Theorem 2.3).
We are not aware of “counting zeroes” results, sharp enough to provide Kp-



Exponential Taylor Domination 385

valency of a function, having (p, 1, Ckp)-Taylor domination. Such a result would
be an accurate inversion to the Biernaczki’s one (Theorem 2.2 above). Thus, a
natural question is whether a function, having (p, 1, Ckp)-Taylor domination
is K(C)p-valent in a disk D 1

2
, with the constant K(C) depending only on C?

Compare Remark 2.4 in Sect. 2 above.

3. Finally, consider h(z) = ez
p = ∑∞

l=1
zlp

l! . The entire function h(z) is the Borel
transform of a formal power series

ĥ(z) =
∞∑
l=1

zlp(lp)!
l! ,

which is divergent for any z �= 0. It is easy to see that h(z) is ∼ p · Rp-valent
in the disk DR for any R. Indeed, to solve the equation h(z) = ez

p = c, we put
u = zp, and first solve eu = c, which gives the solutions uk = log c+2πki. Then,

from each uk we get p solutions νk,l = (uk)
1
p . Notice that these solutions are of

absolute value∼ k 1
p for k big, and hence∼ p ·Rp of them are inside the diskDR .

We conclude that h(z) is ∼ p · Rp-valent. This example suggests the following
question: Is it possible to extend the results above to the Borel transforms of
divergent series? This would require extending to some divergent series a notion
of Taylor domination, and we expect such an extension to be productive in many
other questions in this line.

In honor of Victor Katsnelson, Y. Yomdin, VK and A.E. Eremenko
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choices of the parameters such as proper pairs. Our method is based on the Schur
analysis approach worked out in Fritzsche et al. (Linear Algebra Appl 544:30–114,
2018) and uses interrelations to orthogonal q × q matrix polynomials.
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1 A Personal Note

The systematic treatment of matricial versions of the classical Stieltjes moment prob-
lems in combination with related interpolation problems for associated classes of
holomorphic matrix-valued functions started with the pioneering work of V. E. Kat-
snelson in collaboration with his doctorate student Yu. M. Dyukarev in the early
1980s (see [6, 8, 9]).

Their investigations were based on the application of the method of fundamental
matrix inequalities (FMI method) created by V. P. Potapov. V. E. Katsnelson was
the first who extended the FMI method to continuous problems of analysis including
integral representations of matrix-valued non-negative definite kernels (see e. g. [31–
36]). The first and second author strongly benefited over many years from countless
discussions with Viktor Emmanuilovich who essentially influenced the direction
of their mathematical research. The origins of our interest in studying matricial
versions of classical moment problems can be traced back to many inspiring
working meetings with Viktor Emmanuilovich.

We wholeheartedly want to thank Viktor Emmanuilovich for continuous support
over 30 years.

2 Introduction

This paper is a continuation of our investigations on the matricial power moment
problem M[[α,∞); (sj )mj=0,�] which were done in [23]. Moreover, it is intimately
connected to [20, 21] where the related problem M[[α,∞); (sj )mj=0,=] was treated.
Using a Schur analysis technique we found in [23] via Stieltjes transformation a
parametrization of the solution set described by a linear fractional transformation
the generating matrix-valued function of which is a 2q × 2q matrix polynomial built
from the sequence (sj )mj=0 of prescribed power moments. The set of parameters
is a special class of equivalence classes of ordered pairs of q × q matrix-valued
functions which are meromorphic in the domain C \ [α,∞). The set consisting of
these equivalence classes can be interpreted as a projective extension of the Stieltjes
class Sq,[α,∞), which is one of the basic analytic objects in our approach. Amongst
this parameter set there is a particularly interesting subset, namely the equivalence
classes of so-called proper pairs. By this we mean those equivalence classes which
can be represented in a special way by a function belonging to the class Sq,[α,∞).
There arises naturally the question to characterize all solutions which correspond to
equivalence classes of proper pairs. This topic is one of the central themes of this
paper (see Theorem 13.3).

A second main theme is concerned with the construction of two distinguished
molecular solutions of the original moment problem. (A measure is said to be
molecular, if it is concentrated only on a finite set.) These measures, which were
already investigated in our former work (see [10, 11]), are constructed more or
less by algebraic tools (see Definition 6.11). One of the main goals of this paper
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is to demonstrate which important role these molecular solutions occupy in the
whole solution set. For this reason, we look at the [α,∞)-Stieltjes transforms
of these two molecular solutions. More precisely, we fix a point x belonging
to the interval (−∞, α). Then it turns out that the values at x of the [α,∞)-
Stieltjes transforms of all solutions of the moment problem fill a closed matricial
interval the endpoints of which are just the values at x of the [α,∞)-Stieltjes
transforms of the two distinguished molecular solutions mentioned above (see
Theorem 17.16). In this way, we obtain a far-reaching generalization of a deep
result due to Yu. M. Dyukarev [7] who considered the case α = 0 in the completely
non-degenerate situation. The strategy of our approach is completely different from
that applied by Yu. M. Dyukarev. In the heart of our approach stands the interplay
of the two related Schur-type algorithms worked out in [20, 21]. More precisely,
our construction is based on a careful analysis of the elementary step of the Schur-
type algorithm. Namely, it turns out that this elementary step can be written as a
composition mapping of four basic transformations for complex q × q matrices.
Then it is shown that all these basic transformations map closed intervals onto closed
intervals. The combination of these observations leads us to Proposition B.5 which
provides one of the key instruments for the proof of Theorem 17.16.

3 Preliminaries

In order to describe more concretely the central topics studied in this paper, we
introduce some notation. Throughout this paper, let p and q be positive integers.
Let N, N0, Z, R, and C be the set of all positive integers, the set of all non-negative
integers, the set of all integers, the set of all real numbers, and the set of all complex
numbers, respectively. For every choice of ρ, κ ∈ R ∪ {−∞,∞}, let Zρ,κ := {k ∈
Z : ρ ≤ k ≤ κ}. We will write C

p×q , Cq×qH , Cq×q� , and C
q×q$ for the set of all

complex p × q matrices, the set of all Hermitian complex q × q matrices, the set
of all non-negative Hermitian complex q × q matrices, and the set of all positive
Hermitian complex q × q matrices, respectively. We will use BR to denote the σ -
algebra of all Borel subsets of R. For each � ∈ BR \ {∅}, let B� := BR ∩ �.
Furthermore, for each � ∈ BR \ {∅}, we will write M�

q (�) to designate the set
of all non-negative Hermitian q × q measures defined on B�, i. e., the set of all σ -
additive mappingsμ : B� → C

q×q
� . We will use the integration theory with respect

to non-negative Hermitian q × q measures, which was worked out independently
by I. S. Kats [29] and M. Rosenberg [39]. In particular, for each σ ∈M�

q (�), we
will use the notion L1(�,B�,μ;C) to denote the space of all Borel measurable
functions f : � → C for which the integral

∫
�
f dμ exists. For every choice of

� ∈ BR \ {∅} and κ ∈ N0 ∪ {∞}, we will use M�
q,κ(�) to denote the set of all

σ ∈M�
q (�) such that the integral

s
(σ )
j

:=
∫
�

xjσ(dx)
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exists for all j ∈ Z0,κ . In this case, (s(σ )j )∗ = s
(σ )
j obviously holds true for all

k ∈ Z0,κ . Observe that M�
q,�(�) ⊆M�

q,k(�) for all k, � ∈ N0 with k < �.
We are going to study several aspects of the following two moment problems:

Problem (M[[α,∞); (sj )mj=0,�]) Let α ∈ R, let m ∈ N0 and let (sj )mj=0 be a

sequence of complex q × q matrices. Discuss the set M�
q [[α,∞); (sj )mj=0,�] of

all σ ∈ M�
q,m([α,∞)) for which the matrix sm − s(σ )m is non-negative Hermitian

and in the case m ≥ 1, moreover s(σ )j = sj is satisfied for each j ∈ Z0,m−1.

M[[α,∞); (sj )mj=0,�] is intimately connected with the following:

Problem (M[[α,∞); (sj )mj=0,=]) Let α ∈ R, let m ∈ N0, and let (sj )mj=0 be a

sequence of complex q × q matrices. Discuss the set M�
q [[α,∞); (sj )mj=0,=] of

all σ ∈M�
q,m([α,∞)) for which s(σ )j = sj is fulfilled for all j ∈ Z0,m.

In the case that a sequence (sj )mj=0 of complex q × q matrices is given for which

the set M�
q [[α,∞); (sj )mj=0,=] is non-empty, we obtained in [21, Theorem 13.1]

a complete parametrization of this set via a linear fractional transformation of
matrices the generating function of which is a 2q × 2q matrix polynomial built
from the sequence (sj )mj=0 of the original data. In [23], a description of the set

M�
q [[α,∞); (sj )mj=0,�] is given.
It seems to be useful to recall the notion of two types of sequences of matrices.

If n ∈ N0 and if (sj )2nj=0 is a sequence of complex q × q matrices, then (sj )2nj=0 is
called Hankel non-negative definite if the block Hankel matrixHn := [sj+k]nj,k=0 is
non-negative Hermitian. A sequence (sj )∞j=0 of complex q × q matrices is called

Hankel non-negative definite if (sj )2nj=0 is Hankel non-negative definite for all

n ∈ N0. For all κ ∈ N0 ∪ {∞}, we will write H�
q,2κ for the set of all Hankel non-

negative definite sequences (sj )2κj=0 of complex q × q matrices. Furthermore, for all

n ∈ N0, let H�,e
q,2n be the set of all sequences (sj )2nj=0 of complex q × q matrices for

which there exist complex q × q matrices s2n+1 and s2n+2 such that (sj )
2(n+1)
j=0 ∈

H�
q,2(n+1), whereas H�,e

q,2n+1 stands for the set of all sequences (sj )
2n+1
j=0 of complex

q × q matrices for which there exist some s2n+2 ∈ C
q×q such that (sj )

2(n+1)
j=0 ∈

H�
q,2(n+1). For each m ∈ N0, the elements of the set H�,e

q,m are called Hankel non-

negative definite extendable sequences. For technical reason, we set H�,e
q,∞ := H�

q,∞.
Besides the just introduced classes of sequences of complex q × q matrices, we
will use analogous classes of sequences of complex q × q matrices, which take
into account the influence of the prescribed number α ∈ R. We will introduce
several classes of finite or infinite sequences of complex q × q matrices, which are
characterized by properties of the sequences (sj )κj=0 and (−αsj + sj+1)

κ−1
j=0.
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Let (sj )κj=0 be a sequence of complex p × q matrices. Then, for all n ∈ N0 with
2n + 1 ≤ κ , we define the block Hankel matrix Kn := [sj+k+1]nj,k=0. Let α ∈ R.

Let K�
q,0,α := H�

q,0, and, for all n ∈ N, let K�
q,2n,α be the set of all sequences

(sj )
2n
j=0 of complex q × q matrices for which the block Hankel matrices Hn and

−αHn−1 +Kn−1 are both non-negative Hermitian, i. e.,

K�
q,2n,α =

{
(sj )

2n
j=0 ∈ H�

q,2n : (−αsj + sj+1)
2(n−1)
j=0 ∈ H�

q,2(n−1)

}
.

For each κ ∈ N0 ∪ {∞}, let Fq,κ be the set of all sequences (sj )κj=0 of complex

q × q matrices. Furthermore, for all n ∈ N0, let K�
q,2n+1,α be the set of all sequences

(sj )
2n+1
j=0 ∈ Fq,2n+1 for which the block Hankel matrices Hn and −αHn + Kn are

both non-negative Hermitian, i. e.,

K�
q,2n+1,α :=

{
(sj )

2n+1
j=0 ∈ Fq,2n+1 :

{
(sj )

2n
j=0, (−αsj + sj+1)

2n
j=0

}
⊆ H�

q,2n

}
.

Remark 3.1 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�
q,m,α . Then one can

easily see that (sj )�j=0 ∈ K�
q,�,α for all � ∈ Z0,m. Thus, let K�

q,∞,α be the set of all

sequences (sj )∞j=0 of complex q × q matrices such that (sj )mj=0 ∈ K�
q,m,α for all

m ∈ N0.

Lemma 3.2 (cf. [16, Lemma 2.9]) Let α ∈ R, let κ ∈ N0∪{∞}, and let (sj )κj=0 ∈
K�
q,κ,α. Then sj ∈ C

q×q
H for all j ∈ Z0,κ and s2k ∈ C

q×q
� for all k ∈ N0 with

2k ≤ κ .

For each m ∈ N0, let K�,e
q,m,α be the set of all sequences (sj )mj=0 of complex

q × q matrices for which there exists an sm+1 ∈ C
q×q such that (sj )

m+1
j=0 belongs to

K�
q,m+1,α . Furthermore, let K�,e

q,∞,α := K�
q,∞,α .

Remark 3.3 Let α ∈ R, let κ ∈ N∪ {∞}, and let (sj )κj=0 ∈ K�
q,κ,α. Then (sj )�j=0 ∈

K�,e
q,�,α for all � ∈ Z0,κ−1.

Remark 3.4 Let α ∈ R and let κ ∈ N0 ∪ {∞}. Then K�,e
q,κ,α ⊆ K�

q,κ,α . Furthermore,

if κ ≥ 1 and if (sj )κj=0 ∈ K�
q,κ,α, then (sj )�j=0 ∈ K�,e

q,�,α for all � ∈ Z0,κ−1.

Let m ∈ N0. Then we call a sequence (sj )mj=0 of complex q × q matrices

right-sided α-Stieltjes non-negative definite if it belongs to K�
q,m,α and right-sided

α-Stieltjes non-negative definite extendable if it belongs to K�,e
q,m,α . (Note that left

versions of this notions are considered in [16].) The following result indicates
the importance of the sets K�

q,m,α and K�,e
q,m,α for the above formulated truncated

matricial Stieltjes-type moment problems.



392 B. Fritzsche et al.

Theorem 3.5 ([10, Theorems 1.3 and 1.4]) Let α ∈ R, letm ∈ N0, and let (sj )mj=0
be a sequence of complex q × q matrices. Then:

(a) M�
q [[α,∞); (sj )mj=0,=] �= ∅ if and only if (sj )mj=0 ∈ K�,e

q,m,α .

(b) M�
q [[α,∞); (sj )mj=0,�] �= ∅ if and only if (sj )mj=0 ∈ K�

q,m,α .

Corollary 3.6 ([23, Corollary 1.9]) If α ∈ R, if m ∈ N0, and if σ ∈
M�

q,m([α,∞)), then (s(σ )j )mj=0 ∈ K�,e
q,m,α .

We introduce now a further class of sequences of complex q × q matrices which
plays an important role in the study of the moment problems under consideration.
Let α ∈ R. For all n ∈ N0, let K$q,2n,α be the set of all sequences (sj )2nj=0 of
complex q × q matrices for which Hn is positive Hermitian and, in the case n ≥ 1,
furthermore −αHn−1 + Kn−1 is positive Hermitian. For all n ∈ N0, let K$q,2n+1,α

be the set of all sequences (sj )
2n+1
j=0 of complex q × q matrices for which the block

Hankel matrices Hn and −αHn + Kn are positive Hermitian. Furthermore, let
K$q,∞,α be the set of all sequences (sj )∞j=0 of complex q × q matrices such that
(sj )

m
j=0 ∈ K$q,m,α for all m ∈ N0.

Proposition 3.7 ([16, Proposition 2.20]) Let α ∈ R and let m ∈ N0. Then
K$q,m,α ⊆ K�,e

q,m,α .

The combination of Proposition 3.7 with Theorem 3.5 and Remark 3.4 shows that
both moment problems under consideration in this paper are solvable for sequences
belonging to K$q,m,α . This is the so-called non-degenerate case which was studied
by Yu. M. Dyukarev [7]. The following result reflects an interrelation between the
sets K�

q,m,α and K�,e
q,m,α , which strongly influences our following considerations:

Theorem 3.8 ([10, Theorem 5.2]) Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈
K�
q,m,α . Then there is a unique sequence (s̃j )mj=0 ∈ K�,e

q,m,α such that

M�
q [[α,∞); (sj )mj=0,�] =M�

q [[α,∞); (s̃j )mj=0,�]. (3.1)

It should be mentioned that in [19] a concrete general principle to describe the
sequence (s̃j )mj=0 ∈ K�,e

q,m,α satisfying (3.1) is obtained.

Definition 3.9 (cf. [10, Section 5]) Letm ∈ N0 and let (sj )mj=0 ∈ K�
q,m,α . Then the

unique sequence (s̃j )mj=0 belonging to K�,e
q,m,α for which (3.1) holds true is said to

be the right-sided α-Stieltjes non-negative definite extendable sequence equivalent
to (sj )mj=0.

Theorem 3.8 is essential for the realization of the above formulated basic strategy
of our approach, because, it is namely possible to restrict our considerations to the
case that the given sequence (sj )mj=0 belongs to the subclass K�,e

q,m,α of K�
q,m,α .
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Lemma 3.10 Let α ∈ R, let m ∈ N, and let (sj )mj=0 ∈ K�
q,m,α . Denote by (s̃j )mj=0

the right-sided α-Stieltjes non-negative definite extendable sequence equivalent to
(sj )

m
j=0. Then sm− s̃m ∈ C

q×q
� . Ifm ≥ 1, then sj = s̃j for all j ∈ Z0,m−1. Moreover,

(sj )
m
j=0 = (s̃j )mj=0 if and only if (sj )mj=0 ∈ K�,e

q,m,α .

Proof By construction, we have (s̃j )mj=0 ∈ K�,e
q,m,α and (3.1). Theorem 3.5(a) yields

M�
q [[α,∞); (s̃j )mj=0,=] �= ∅. Let σ ∈ M�

q [[α,∞); (s̃j )mj=0,=]. Then s(σ )m =
s̃m. Consequently, σ ∈ M�

q [[α,∞); (s̃j )mj=0,�]. In particular, (3.1) implies σ ∈
M�

q [[α,∞); (sj )mj=0,�]. Thus, sm − s
(σ )
m ∈ C

q×q
� . Because of s(σ )m = s̃m, we

get sm − s̃m ∈ C
q×q
� . The remaining assertions are immediate consequences of

Theorem 3.8. ��

Similar as in [20, 21, 23], we reformulate the original truncated matricial moment
problem via Stieltjes transform into an equivalent problem of prescribed asymptotic
expansions for particular classes of matrix-valued functions, which are holomorphic
in C \ [α,∞). The key for the success of our approach is caused by the fact that the
Schur–Stieltjes transform for q × q matrix-valued holomorphic functions in C \
[α,∞), which we worked out in [21], is also compatible with the problem under
consideration in this paper.

This paper is organized as follows. In Sect. 4, we present some material on
the intrinsic structure of sequences belonging to K�,e

q,m,α . In particular, we draw
our attention to the role of α-Stieltjes completely degenerate sequences within the
concept of α-Stieltjes non-negative definite extension of α-Stieltjes non-negative
definite extendable sequences. In Sect. 5, we recall some basic facts on right -
Stieltjes parametrization of sequences from C

q×q . This material is mostly taken
from [10, 16]. In Sect. 6, using purely algebraic methods we construct two distin-
guished molecular solutions σm and σm of the truncated matricial [α,∞)-moment
problem. These solutions play a key role in the course of this paper. It turns out that
they occupy an extremal position within the whole solution set. Our main strategy to
demonstrate that is based on the use of Schur analysis methods. The algebraic aspect
of our Schur analysis approach is handled in Sect. 7. This material is mostly taken
from [20]. To prepare the function-theoretic aspect of our Schur analysis method,
we introduce in Sect. 8 a class Sq,[α,∞) of in C \ [α,∞) holomorphic q × q matrix-
valued functions, which can be characterized by an important integral representation
(see Theorem 8.2). Due to this fact it will be possible to reformulate the original
moment problem as an equivalent problem of finding a prescribed asymptotic
expansion in an open sector of the open upper half plane �+ of C. This leads us
to certain subclasses of the class Sq,[α,∞), which are determined by mild growth
conditions ensuring the integral representation (9.4) which is also called [α,∞)-
Stieltjes transform. In Sect. 10, via [α,∞)-Stieltjes transform the original moment
problem is reformulated as a problem of finding a prescribed asymptotic expansion
for in C \ [α,∞) holomorphic q × q matrix-valued functions belonging to some
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subclass of Sq,[α,∞). The solution set of this reformulated problem is described by a
linear fractional transformation of matrices the generating matrix-valued function of
it is a 2q × 2q matrix polynomial only built from (sj )

m
j=0 and α. The parameter set

of this linear fractional transformation is a set of equivalence classes of pairs of in C\
[α,∞) meromorphic q × q matrix-valued functions. Section 11 contains a detailed
description of these pairs under the light of this paper. In Sect. 12, we investigate a
coupled pair of Schur–Stieltjes transforms. The first component of this pair realizes
the elementary step of our function-theoretic Schur algorithm whereas the second
component is connected with the elementary step of the inverse [α,∞)-Schur–
Stieltjes algorithm. This theme was opened in [23]. We obtain new insights about
the finer structure of the set S0,q,[α,∞)[(sj )0j=0,�] (see Propositions 12.9, 12.10,
and 12.11). The main theme of Sect. 13 is a detailed investigation of some
remarkable subsets of the set Sm,q,[α,∞)[(sj )mj=0,�] of [α,∞)-Stieltjes transforms
of the moment problem M[[α,∞); (sj )mj=0,�]. In particular, we investigate the

[α,∞)-Stieltjes transforms Sm and Sm of the distinguished molecular solutions σm
and σm of the truncated [α,∞)-moment problem, respectively, which were found
in Sect. 6. We call Sm and Sm the upper and lower Sq,[α,∞)-functions associated

with a sequence (sj )
m
j=0 ∈ K�,e

q,m,α . In Sect. 14, we introduce via appropriate
recurrence formulas two interrelated sequences of q × q matrix polynomials which
turn out to be intimately connected with monic right orthogonal systems of matrix
polynomials. In Sect. 15, we show that the canonical q × q blocks of the resolvent
matrix which generates the linear fractional transformation parametrizing the set
Sm,q,[α,∞)[(sj )mj=0,�] are determined by the q × q matrix polynomials which are

recursively constructed in Sect. 14. In Sect. 16, we express the functions Sm and Sm
in terms of the q × q matrix polynomials introduced in Sect. 14. In Sect. 17, we fix a
sequence (sj )mj=0 ∈ K�,e

q,m,α and a number x ∈ (−∞, α). Then we determine the set
I[α, x, (sj )mj=0;�] of the values in the point x of the [α,∞)-Stieltjes transforms of

the measures belonging to M�
q [[α,∞); (sj )mj=0,�]. This set proves to be a closed

matricial interval the endpoints of which are determined by the values Sm(x) and
Sm(x) (see Theorem 17.16). In Sect. 18, we study the relation between consecutive
matricial intervals of the type occurring in Theorem 17.16. In the final section
Sect. 19, we study the asymptotic behavior of the matricial Weyl intervals. In this
way, we are able to generalize some results due to Yu. M. Dyukarev [7] who handled
a particular case.

4 On the Structure of Finite α-Stieltjes Non-Negative
Definite Extendable Sequences of Complex q × q Matrices

In this section, we introduce two classes of finite sequences of complex q × q matri-
ces, which prove to be right-sided α-Stieltjes non-negative definite extendable. We
start with some notation. By Ip and 0p×q we designate the unit matrix in C

p×p and
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the null matrix in C
p×q , respectively. If the size of a unit matrix and a null matrix

is obvious, then we will also omit the indexes. For each A ∈ C
q×q , let trA be the

trace ofA. IfA ∈ C
p×q , then we denote by N (A) and R(A) the null space ofA and

the column space of A, respectively, and we will use rankA to denote the rank of A.
For every choice of x, y ∈ C

q , the notation 〈x, y〉E stands for the (left) Euclidean
inner product. For each A ∈ C

p×q , let ‖A‖E := √tr(A∗A) be the Euclidean norm
of A, whereas ‖A‖S stands for the operator norm of A. If M is a non-empty subset
of Cq , then M⊥ stands for the (left) orthogonal complement of M. If U is a linear
subspace of Cq , then let PU be the orthogonal projection matrix onto U , i. e., PU
is the unique complex q × q matrix P that fulfills the three conditions P 2 = P ,
P ∗ = P , and R(P ) = U . We will often use the Moore-Penrose inverse of a
complex p × q matrix A. This is the unique complex q × p matrix X such that
the four equations AXA = A, XAX = X, (AX)∗ = AX, and (XA)∗ = XA hold
true (see, e. g. [5, Proposition 1.1.1]). As usual, we will write A† for this matrix X.
If n ∈ N, if (pj )nj=1 is a sequence of positive integers, and if Aj ∈ C

pj×q for all
j ∈ Z1,n, then let

col(Aj )
n
j=1 :=

⎡
⎢⎢⎢⎣

A1

A2
...

An

⎤
⎥⎥⎥⎦ .

Let κ ∈ N0∪{∞} and let (sj )κj=0 be a sequence of complex p × q matrices. We will
associate with (sj )κj=0 several matrices, which we will often need in our subsequent
considerations: For all l,m ∈ N0 with l ≤ m ≤ κ , let

y
〈s〉
l,m

:= col(sj )mj=l and z
〈s〉
l,m

:= [sl, sl+1, . . . , sm]. (4.1)

Let

H 〈s〉n := [sj+k]nj,k=0 for all n ∈ N0 with 2n ≤ κ, (4.2)

K〈s〉n := [sj+k+1]nj,k=0 for all n ∈ N0 with 2n+ 1 ≤ κ. (4.3)

Let

L
〈s〉
0 := s0, L〈s〉n := s2n − z〈s〉n,2n−1(H

〈s〉
n−1)

†y
〈s〉
n,2n−1 (4.4)

for all n ∈ N with 2n ≤ κ . Let

�
〈s〉
0 := 0p×q and let �〈s〉n := z〈s〉n,2n−1(H

〈s〉
n−1)

†y
〈s〉
n,2n−1 (4.5)



396 B. Fritzsche et al.

for all n ∈ N with 2n− 1 ≤ κ . In situations in which it is obvious which sequence
(sj )

κ
j=0 of complex matrices is meant, we will write yl,m, zl,m, Hn, Kn, Ln, and �n

instead of y〈s〉j,k , z
〈s〉
j,k , H 〈s〉n , K〈s〉n , L〈s〉n , and �〈s〉n , respectively.

Let α ∈ C and let κ ∈ N ∪ {∞}. Then the sequence (aj )
κ−1
j=0 given by

aj := sα8j and sα8j := −αsj + sj+1 (4.6)

for all j ∈ Z0,κ−1 plays a key role in our following considerations. We define

�α8n := �〈a〉n for all n ∈ N0 with 2n ≤ κ, (4.7)

Hα8n := H 〈a〉n , Lα8n := L〈a〉n for all n ∈ N0 with 2n+ 1 ≤ κ,
Kα8n := K〈a〉n for all n ∈ N0 with 2n+ 2 ≤ κ,

and yα8l,m := y〈a〉l,m and zα8l,m := z〈a〉l,m for all l,m ∈ N0 with l ≤ m ≤ κ . Obviously,
−αHn +Kn = Hα8n for all n ∈ N0 with 2n+ 1 ≤ κ .

Remark 4.1 If (sj )κj=0 is a sequence of complex p × q matrices, then Hn =[
Hn−1 yn,2n−1
zn,2n−1 s2n

]
for all n ∈ N with 2n ≤ κ .

Let

M =
[
A B

C D

]
(4.8)

be the block representation of a complex (p + q)× (r + s) matrix M with
p × r block A. Then we consider the Schur complement

M/A := D − CA†B. (4.9)

In view of Remark 4.1 and (4.4), we have then:

Remark 4.2 Let (sj )κj=0 be a sequence of complex p × q matrices. For all n ∈ N

with 2n ≤ κ , then Ln is the Schur complementHn/Hn−1.

Now we turn our attention to an important subclass of Hankel non-negative
definite sequences. For all n ∈ N0, let H�,cd

q,2n := {(sj )2nj=0 ∈ H�
q,2n : L〈s〉n = 0q×q}.

The elements of the set H�,cd
q,2n are called Hankel completely degenerate.

Let (sj )∞j=0 ∈ H�
q,∞ and let n ∈ N0. Then (sj )∞j=0 is called Hankel completely

degenerate of order n if (sj )2nj=0 ∈ H�,cd
q,2n . The symbol H�,cd,n

q,∞ stands for the
set of all Hankel completely degenerate sequences of order n. A sequence (sj )∞j=0

belonging to H�
q,∞ is called Hankel completely degenerate if there exists an n ∈ N0
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such that (sj )∞j=0 is Hankel completely degenerate of order n. Obviously,H�,cd,n
q,∞ ⊆

H�,cd,�
q,∞ for all integers � and n with 0 ≤ n ≤ �.
For every choice of α ∈ R and n ∈ N0, let K�,cd

q,2n,α := K�
q,2n,α ∩H�,cd

q,2n and let

K�,cd
q,2n+1,α := {(sj )2n+1

j=0 ∈ K�
q,2n+1,α : (sα8j )2nj=0 ∈ H�,cd

q,2n }.
Example 4.3 Let α ∈ R. Then K�,cd

q,0,α = {(0q×q)0j=0} and (0q×q)mj=0 ∈ K�,cd
q,m,α for

all m ∈ N0.

Let α ∈ R and let (sj )∞j=0 ∈ K�
q,∞,α . For each m ∈ N0, then (sj )∞j=0 is called

α-Stieltjes completely degenerate of order m if (sj )mj=0 ∈ K�,cd
q,m,α . The sequence

(sj )
∞
j=0 is called α-Stieltjes completely degenerate if there exists an m ∈ N0 such

that (sj )∞j=0 is α-Stieltjes completely degenerate of order m. For each m ∈ N0, we

denote by K�,cd,m
q,∞,α the set of all sequences (sj )∞j=0 ∈ K�

q,∞,α which are α-Stieltjes

completely degenerate of order m. Furthermore, we will write K�,cd
q,∞,α for the set

of all sequences (sj )∞j=0 ∈ K�
q,∞,α which are α-Stieltjes completely degenerate.

Obviously,
⋃∞
m=0 K

�,cd,m
q,∞,α = K�,cd

q,∞,α .

Example 4.4 Let α ∈ R. Then Example 4.3 shows that K�,cd,0
q,∞,α = {(0q×q)∞j=0}.

Proposition 4.5 ([16, Proposition 5.9]) Let α ∈ R and m ∈ N0. Then K�,cd
q,m,α ⊆

K�,e
q,m,α .

Now we turn our attention to the elements of sequences (sj )mj=0 belonging to

K�
q,m,α . First we describe, for an arbitrary sequence (sj )mj=0 ∈ K�,e

q,m,α , the set of all

sm+1 ∈ C
q×q such that (sj )

m+1
j=0 ∈ K�

q,m+1,α .

Proposition 4.6 ([10, Proposition 4.9]) Let α ∈ R, let n ∈ N0, and let (sj )2nj=0 ∈
K�,e
q,2n,α. Further, let s2n+1 ∈ C

q×q . Then the following statements hold true:

(a) The sequence (sj )
2n+1
j=0 belongs to K�

q,2n+1,α if and only if there exists a matrix

G ∈ C
q×q
� such that s2n+1 = �α8n + αs2n +G.

(b) The sequence (sj )
2n+1
j=0 belongs to K�,e

q,2n+1,α if and only if there exists a matrix

G ∈ C
q×q
� such that s2n+1 = �α8n + αs2n + LnL†

nGLnL
†
n.

Proposition 4.7 ([10, Proposition 4.13]) Let α ∈ R, let n ∈ N, and let (sj )
2n−1
j=0 ∈

K�,e
q,2n−1,α. Furthermore, let s2n ∈ C

q×q . Then the following statements hold true:

(a) The sequence (sj )2nj=0 belongs to K�
q,2n,α if and only if there exists a matrix

G ∈ C
q×q
� such that s2n = �n +G.
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(b) The sequence (sj )2nj=0 belongs to K�,e
q,2n,α if and only if there exists a matrix

G ∈ C
q×q
� such that s2n = �n + Lα8n−1L

†
α8n−1GLα8n−1L

†
α8n−1.

A closer look at Propositions 4.6 and 4.7 leads us to the following notion.

Remark 4.8 Let α ∈ C, letm ∈ N0, and let (sj )mj=0 be a sequence from C
p×q . Then

am :=
{
�α8n + αs2n if m = 2n with some n ∈ N0

�n if m = 2n− 1 with some n ∈ N

(4.10)

is called the α-Stieltjes minimal element associated with (sj )mj=0. Obviously, one
can see that s2n+1 − a2n = Lα8n for all n ∈ N0 and s2n − a2n−1 = Ln for all n ∈ N.

Example 4.9 If α ∈ C, if m ∈ N0, and if sj := 0p×q for all j ∈ Z0,m, then
am = 0p×q .

The following remark shows why the notion “α-Stieltjes minimal element
associated with (sj )mj=0” was chosen in Remark 4.8.

Remark 4.10 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,e
q,m,α . Denote by am the

α-Stieltjes minimal element associated with (sj )mj=0. Let sm+1 ∈ C
q×q be such that

(sj )
m+1
j=0 ∈ K�

q,m+1,α. In view of Propositions 4.6(a) and 4.7(a), then sm+1 − am ∈
C
q×q
� .

Proposition 4.11 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,cd
q,m,α . Denote by am

the α-Stieltjes minimal element associated with (sj )mj=0. Then

{
sm+1 ∈ C

q×q : (sj )m+1
j=0 ∈ K�,e

q,m+1,α

}
= {am}.

Proof Proposition 4.5 shows that (sj )mj=0 ∈ K�,e
q,m,α . Because of (sj )mj=0 ∈ K�,cd

q,m,α ,
we infer Ln = 0q×q if m = 2n with some n ∈ N0 and Lα8n−1 = 0q×q if m =
2n− 1 with some n ∈ N. Applying Propositions 4.6(b) and 4.7(b) and Remark 4.8
completes the proof. ��

Proposition 4.12 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,e
q,m,α . Denote by am

the α-Stieltjes minimal element associated with (sj )mj=0. Further, let sm+1 ∈ C
q×q .

Then (sj )
m+1
j=0 ∈ K�,cd

q,m+1,α if and only sm+1 = am.

Proof If (sj )
m+1
j=0 ∈ K�,cd

q,m+1,α then sm+1 = am because of Remark 4.8. Conversely,

suppose sm+1 = am. Then Propositions 4.6(a) and 4.7(a) yield (sj )
m+1
j=0 ∈ K�

q,m+1,α.

Consequently, because of sm+1 = am and Remark 4.8, we get (sj )
m+1
j=0 ∈ K�,cd

q,m+1,α.
��
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Proposition 4.13 Let α ∈ R, let κ ∈ N0 ∪ {∞}, let m ∈ Z0,κ , and let (sj )κj=0 ∈
K�
q,κ,α be such that (sj )mj=0 ∈ K�,cd

q,m,α . Then (sj )�j=0 ∈ K�,cd
q,�,α for all � ∈ Zm,κ .

Proof It is sufficient to consider the case m < κ . In view of (sj )κj=0 ∈ K�
q,κ,α, we

infer from Remarks 3.1 and 3.3 that (sj )
m+1
j=0 ∈ K�,e

q,m+1,α . Thus, the combination

of Propositions 4.11 and 4.12 yields (sj )
m+1
j=0 ∈ K�,cd

q,m+1,α . By induction, we obtain

then that (sj )�j=0 ∈ K�,cd
q,�,α for all � ∈ Zm,κ . ��

Corollary 4.14 Let α ∈ R, let (sj )∞j=0 ∈ K�
q,∞,α , and let m ∈ N0. If (sj )∞j=0 is

α-Stieltjes completely degenerate of order m, then (sj )∞j=0 is α-Stieltjes completely
degenerate of order � for all � ∈ Zm,∞.

Proof This follows from Proposition 4.13. ��

Now we iterate the construction from Remark 4.8.

Definition 4.15 Let α ∈ C, let m ∈ N0, and let (sj )mj=0 be a sequence from C
p×q .

Further, let (sj )∞j=m+1 be a sequence from C
p×q . Then (sj )

∞
j=0 is called the α-

Stieltjes minimal extension of (sj )mj=0 if, for all � ∈ Zm+1,∞, the matrix s� coincides

with the α-Stieltjes minimal element associated with (sj )
�−1
j=0.

Example 4.16 Let α ∈ C, let m ∈ N0, and let sj := 0p×q for all j ∈ Z0,m. In
view of Example 4.9, the α-Stieltjes minimal extension (sj )∞j=0 of (sj )mj=0 fulfills
sj = 0p×q for all j ∈ Zm+1,∞.

Proposition 4.17 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,e
q,m,α . Then there is

a unique sequence (sj )∞j=m+1 from C
q×q such that (sj )∞j=0 ∈ K�,cd,m+1

q,∞,α , namely,
that sequence (sj )∞j=m+1, for which (sj )∞j=0 is the α-Stieltjes minimal extension of
(sj )

m
j=0.

Proof Apply Propositions 4.12 and 4.5 and use Definition 4.15. ��

As an immediate consequence of Proposition 4.17 and K�,cd
q,∞,α ⊆ K�

q,∞,α for all
α ∈ R, we obtain the following result, which also follows from Proposition 4.6(b):

Corollary 4.18 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,e
q,m,α . Then there exists

a sequence (sj )∞j=m+1 of complex q × q matrices such that (sj )∞j=0 ∈ K�
q,∞,α .

Corollary 4.19 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,cd
q,m,α . Then there

is a unique sequence (sj )∞j=m+1 from C
q×q such that (sj )∞j=0 ∈ K�

q,∞,α , namely,
that sequence (sj )∞j=m+1 for which (sj )∞j=0 is the α-Stieltjes minimal extension of
(sj )

m
j=0.
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Proof Combine Propositions 4.11 and 4.17. ��

Proposition 4.17 leads us to the following notion.

Definition 4.20 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,e
q,m,α . Further, let

(sj )
∞
j=m+1 be the unique sequence from C

q×q such that (sj )∞j=0 ∈ K�,cd,m+1
q,∞,α . Then

(sj )
∞
j=0 is called the α-Stieltjes completely degenerate sequence associated with

(sj )
m
j=0.

Example 4.21 Let α ∈ R, let m ∈ N0, and let sj := 0q×q for j ∈ Z0,m. Then

(sj )
m
j=0 ∈ K�,cd

q,m,α . In view of Proposition 4.17 and Example 4.16, then the α-
Stieltjes completely degenerate sequence (sj )

∞
j=0 associated with (sj )mj=0 fulfills

sj = 0q×q for j ∈ Zm+1,∞.

5 Right α-Stieltjes Parametrization

In this section, we recall some basic facts on right α-Stieltjes parametrization
from [10, 16]. We use the Löwner semi-ordering in C

q×q
H , i. e., we write A � B

or B � A in order to indicate that A and B are Hermitian complex matrices such
that the matrix A − B is non-negative Hermitian. Before introducing the central
notion of this section, we note that we again use the matrices introduced in Sect. 4.

Definition 5.1 ([16, Definition 4.2]) Let α ∈ C, let κ ∈ N0 ∪ {∞}, and let (sj )κj=0
be a sequence of complex p × q matrices. Then the sequence (Qj )

κ
j=0 given by

Q2k := Lk for all k ∈ N0 with 2k ≤ κ and by Q2k+1 := Lα8k for all k ∈ N0 with
2k + 1 ≤ κ is called the right α-Stieltjes parametrization of (sj )κj=0. In the case
α = 0, the sequence (Qj )

κ
j=0 is simply said to be the right Stieltjes parametrization

of (sj )
κ
j=0.

According to (4.4), (4.6), (4.1), and (4.2), we have in particular

Q0 = s0, Q1 = sα80 = s1 − αs0, Q2 = s2 − s1s†
0s1, (5.1)

and

Q3 = sα82 − sα81s†
α80sα81 = s3 − αs2 − (s2 − αs1)(s1 − αs0)†(s2 − αs1).

Remark 5.2 ([16, Remark 4.3]) Let α ∈ C, let κ ∈ N0 ∪ {∞}, and let (Qj )
κ
j=0

be a sequence of complex p × q matrices. Then it can be immediately checked
by induction that there is a unique sequence (sj )κj=0 of complex p × q matrices
such that (Qj )

κ
j=0 is the right α-Stieltjes parametrization of (sj )κj=0, namely the

sequence (sj )κj=0 recursively given by s2k = �k +Q2k for all k ∈ N0 with 2k ≤ κ
and s2k+1 = αs2k +�α8k +Q2k+1 for all k ∈ N0 with 2k + 1 ≤ κ .
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From Remarks 5.2 and 4.8 we get the following observation.

Remark 5.3 Let α ∈ C, let κ ∈ N0∪{∞}, and let (sj )κj=0 be a sequence from C
p×q

with right α-Stieltjes parametrization (Qj )
κ
j=0. For each m ∈ Z0,κ , let am be the α-

Stieltjes minimal element associated with (sj )mj=0. Furthermore, let a−1 := 0p×q .
For all j ∈ Z0,κ , then Qj = sj − aj−1.

Using Remark 4.2, we obtain:

Remark 5.4 Let (sj )κj=0 be a sequence of complex p × q matrices. For all n ∈ N

with 2n ≤ κ , then Q2n is the Schur complement Hn/Hn−1. For all n ∈ N with
2n+ 1 ≤ κ , furthermoreQ2n+1 is the Schur complementHα8n/Hα8n−1.

Remark 5.5 ([16, Remark 4.8]) Let α ∈ C, let κ ∈ N0 ∪ {∞}, and let (sj )κj=0 be
a sequence from C

p×q . Denote by (Qj )
κ
j=0 the right α-Stieltjes parametrization

of (sj )κj=0. For all m ∈ Z0,κ , then (Qj )
m
j=0 is exactly the right α-Stieltjes

parametrization of (sj )mj=0.

The following result shows that the membership of a sequence (sj )
κ
j=0 of

complex q × q matrices to one of the classes K�
q,κ,α , K�,e

q,κ,α, and K$q,κ,α can be
characterized in terms of its right α-Stieltjes parametrization.

Theorem 5.6 ([16, Theorem 4.12]) Let α ∈ R, let κ ∈ N0 ∪ {∞}, and let (sj )κj=0
be a sequence of complex q × q matrices with right α-Stieltjes parametrization
(Qj )

κ
j=0. Then:

(a) The sequence (sj )κj=0 belongs to K�
q,κ,α if and only if Qj ∈ C

q×q
� for all j ∈

Z0,κ and, in the case κ ≥ 2, furthermore N (Qj ) ⊆ N (Qj+1) for all j ∈
Z0,κ−2.

(b) The sequence (sj )κj=0 belongs to K�,e
q,κ,α if and only if Qj ∈ C

q×q
� for all j ∈

Z0,κ and, in the case κ ≥ 1, furthermore N (Qj ) ⊆ N (Qj+1) for all j ∈
Z0,κ−1.

(c) The sequence (sj )κj=0 belongs to K$q,κ,α if and only if Qj ∈ C
q×q$ for all j ∈

Z0,κ .

Against to the background of Remark 5.4, Theorem 5.6 tells us that the member-
ship of a sequence (sj )κj=0 of complex q × q matrices to one of the classes K�

q,κ,α or

K�,e
q,κ,α can be characterized by the interplay of consecutive Schur complements in

the block Hankel matrices Hn and Hα8n. More precisely, the interplay is described
by a successive inclusion of the null spaces of consecutive Schur complements in
Hn and Hα8n. This observation is very essential for the rest of this paper.

Corollary 5.7 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,e
q,m,α with right α-

Stieltjes parametrization (Qj )
m
j=0. Then the following statements are equivalent:

(i) (sj )mj=0 ∈ K$q,m,α .

(ii) Qm ∈ C
q×q$ .

(iii) detQm �= 0.
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Proof Because of (sj )mj=0 ∈ K�,e
q,m,α , Theorem 5.6(b) implies:

(I) (Qj )
m
j=0 is a sequence from C

q×q
� .

(II) In the case m ≥ 1, for all j ∈ Z0,m−1 it holds N (Qj ) ⊆ N (Qj+1).

“(i)⇒(ii)”: This follows from Theorem 5.6(c).
“(ii)⇒(iii)”: This is trivial.
“(iii)⇒(i)”: In view of (iii) we have N (Qm) = {0q×1}. Thus, (II) implies for all

j ∈ Z0,m that N (Qj ) = {0q×1}. Combining this with (I) we infer that (Qj )
m
j=0 is a

sequence from C
q×q$ . Thus, Theorem 5.6(c) implies (i). ��

Proposition 5.8 ([16, Proposition 5.3]) Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈
K�
q,m,α with right α-Stieltjes parametrization (Qj )

m
j=0. Then (sj )mj=0 ∈ K�,cd

q,m,α if
and only if Qm = 0q×q .

Corollary 5.9 Let α ∈ R, let m ∈ N0, and let (sj )∞j=0 ∈ K�,cd,m
q,∞,α . Let (Qj )

∞
j=0

be the right α-Stieltjes parametrization of (sj )∞j=0. For each � ∈ Zm,∞, then Q� =
0q×q .

Proof Let � ∈ Zm,∞. From Corollary 4.14 we infer then (sj )�j=0 ∈ K�,cd
q,�,α, whereas

Remark 5.5 yields that (Qj )
�
j=0 is the right α-Stieltjes parametrization of (sj )�j=0.

Thus, Proposition 5.8 implies Q� = 0q×q . ��

Lemma 5.10 Let α ∈ R, let m ∈ N0, and let (sj )∞j=0 ∈ K�,cd,m
q,∞,α . Then:

(a) If m = 2n with some n ∈ N0, then the sequences (sj )∞j=0 and (sα8j )∞j=0 are
both Hankel completely degenerate of order n.

(b) If m = 2n + 1 with some n ∈ N0, then (sα8j )∞j=0 is Hankel completely
degenerate of order n and (sj )∞j=0 is Hankel completely degenerate of order
n+ 1.

Proof First observe that the sequences (sj )∞j=0 and (sα8j )∞j=0 both belong to H�
q,∞

by virtue of the definitions of K�
q,∞,α and H�

q,∞. Let (Qj )
∞
j=0 be the right α-

Stieltjes parametrization of (sj )∞j=0. Because of the choice of (sj )∞j=0, we obtain
from Corollary 5.9 that Qm = 0q×q and Qm+1 = 0q×q . In view of Definition 5.1,
the proof is complete. ��

Remark 5.11 Let α ∈ R. Then K�,cd
q,∞,α ⊆ H�,cd

q,∞ by virtue of Lemma 5.10.

Remark 5.12 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 be a sequence of complex
q × q matrices. Denote by (sj )∞j=0 the α-Stieltjes minimal extension of (sj )mj=0.
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In view of Proposition 4.17 and Remark 3.4, then the following statements are
equivalent:

(i) (sj )mj=0 ∈ K�,e
q,m,α .

(ii) (sj )∞j=0 ∈ K�,cd,m+1
q,∞,α .

(iii) (sj )∞j=0 ∈ K�
q,∞,α .

Definition 5.13 Let α ∈ R, letm ∈ N0, and let (sj )mj=0 ∈ K�
q,m,α . Ifm ≥ 1, then let

(sj )
∞
j=0 be the α-Stieltjes minimal extension of (sj )

m−1
j=0 . If m = 0, then let (sj )

∞
j=0

be given by sj := 0q×q for each j ∈ N0. Then the sequence (sj )
∞
j=0 is called the

lower α-Stieltjes completely degenerate sequence associated with (sj )mj=0.

The choice of the notion introduced in Definition 5.13 is caused by the following:

Lemma 5.14 Let α ∈ R, let m ∈ N, and let (sj )mj=0 ∈ K�
q,m,α . Further, let (sj )

∞
j=0

be the lower α-Stieltjes completely degenerate sequence associated with (sj )mj=0.

Then (sj )
∞
j=0 ∈ K�,cd,m

q,∞,α and sm − sm ∈ C
q×q
� .

Proof First we consider the case m ≥ 1. In view of (sj )mj=0 ∈ K�
q,m,α , Remark 3.4

yields (sj )
m−1
j=0 ∈ K�,e

q,m−1,α . Thus, Definition 5.13 and Remark 5.12 give (sj )
∞
j=0 ∈

K�,cd,m
q,∞,α . By construction (see Definition 4.15 and Remark 4.8), the matrix sm is

the α-Stieltjes minimal element associated with (sj )
m−1
j=0 . Thus, taking into account

(sj )
m
j=0 ∈ K�

q,m,α , we infer from Remark 4.10 that sm − sm ∈ C
q×q
� . If m = 0, then

Example 4.4 and Remarks 3.3 and 3.4 show that (sj )
∞
j=0 belongs to K�

q,∞,α and that

s0 − s0 ∈ C
q×q
� . ��

Definition 5.15 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,e
q,m,α . Then the

α-Stieltjes minimal extension (sj )
∞
j=0 of (sj )mj=0 is called the upper α-Stieltjes

completely degenerate sequence associated with (sj )
m
j=0.

Remark 5.16 Let α ∈ R, let m ∈ N, and let (sj )mj=0 ∈ K�,e
q,m,α . Then the lower α-

Stieltjes completely degenerate sequence (sj )∞j=0 associated with (sj )mj=0 is exactly

the upper α-Stieltjes completely degenerate sequence associated with (sj )
m−1
j=0 .

The following result shows why we chosen the notion introduced in Defini-
tion 5.15.

Proposition 5.17 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,e
q,m,α . Then:

(a) (sj )mj=0 ∈ K�
q,m,α and the upper α-Stieltjes completely degenerate sequence

(sj )
∞
j=0 associated with (sj )

m
j=0 belongs to K�,cd,m+1

q,∞,α . Furthermore, each

sm+1 ∈ C
q×q such that (sj )

m+1
j=0 ∈ K�

q,m+1,α fulfills sm+1 − sm+1 ∈ C
q×q
� .
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(b) Let a−1 := 0q×q and, for each m ∈ N, let am−1 be the α-Stieltjes
minimal element associated with (sj )

m−1
j=0 . Let (sj )

∞
j=0 be the lower α-Stieltjes

completely degenerate sequence associated with (sj )mj=0 and let (Qj )
m
j=0 be

the right α-Stieltjes parametrization of (sj )mj=0. Then the following statements
are equivalent:

(i) (sj )mj=0 ∈ K�,cd
q,m,α .

(ii) (sj )∞j=0 = (sj )∞j=0.
(iii) sm = am−1.
(iv) Qm = 0q×q .

Proof

(a) Use Remarks 5.12, 4.10, and 3.4.
(b) “(i)⇔(iii)”: In the case m = 0, this equivalence follows from Example 4.3. In

the case m ∈ N, the application of Proposition 4.12 yields the equivalence of (i)
and (iii).
“(ii)⇔(iii)”: From the construction of the sequences (sj )∞j=0 and (sj )

∞
j=0 we

see that (ii) is equivalent to sm = sm. Further, by construction of sm and sm, we
have sm = sm and sm = am−1. Thus, (ii) and (iii) are equivalent.
“(iii)⇔(iv)”: This follows from Remark 5.3.

��

6 On Distinguished Molecular Solutions of the Truncated
Matricial [α,∞)-Stieltjes Moment Problems

In the preceding section, we have seen that the α-Stieltjes completely degenerate
sequences of complex q × q matrices occupy a distinguished role within the set of
all right-sided α-Stieltjes non-negative definite sequences of complex q × q matri-
ces. In this section, we will discuss α-Stieltjes completely degenerate sequences
under the view of truncated matricial Stieltjes moment problems. We will see
that such sequences are intimately connected to molecular solutions having certain
extremal properties.

For arbitrarily given α ∈ R and m ∈ N0, we consider an arbitrary sequence
(sj )

m
j=0 ∈ K�,cd

q,m,α . In view of Proposition 4.5, then (sj )
m
j=0 ∈ K�,e

q,m,α . Thus,

Theorem 3.5(a) tells us that M�
q [[α,∞); (sj )mj=0,=] �= ∅. In particular,

M�
q [[α,∞); (sj )mj=0,�] �= ∅. In [10, Section 6], we took a closer look at these

sets. For the convenience of the reader, we recall some essential features of this
topic.

We start with an observation on the matricial Hamburger moment problem. If
� ∈ BR \ {∅} and if σ ∈M�

q (�) then σ is said to be molecular if there exists a
finite subset N of � such that σ(� \N) = 0q×q .



A Closer Look at the Solution Set of the Truncated Matricial Moment problem. . . 405

Theorem 6.1 ([11, Propositions 2.38 and 4.9]) Let n ∈ N and let (sj )
2n−1
j=0 ∈

H�,e
q,2n−1. Then:

(a) There is a unique sequence (sk)
∞
k=2n of complex q × q matrices such that

(sj )
∞
j=0 is a Hankel completely degenerate Hankel non-negative definite

sequence of order n.
(b) The set M�

q [R; (sj )∞j=0,=] contains exactly one element σn.

(c) The measure σn is molecular. In particular, σn ∈M�
q,∞(R).

Definition 6.2 ([11, Definition 4.10]) Let n ∈ N and let (sj )
2n−1
j=0 ∈ H�,e

q,2n−1. Then
the measure σn given via Theorem 6.1(b) is called the Hankel completely degenerate
non-negative Hermitian measure (short CD-measure) associated with (sj )

2n−1
j=0 .

In the situation, that an odd number of prescribed matricial moments are given, a
characterization of the case that the set M�

q [R; (sj )2nj=0,=] consists of exactly one
elementμ is stated in [11, Theorem 8.7]. For additional information, we refer to [11,
Chs. 4 and 5].

Theorem 6.3 ([10, Theorems 6.1 and 6.3]) Let α ∈ R, letm ∈ N0, and let (sj )mj=0
be a sequence from C

q×q . Then:

(a) The set M�
q [[α,∞); (sj )mj=0,=] consists of exactly one element μ if and only

if (sj )mj=0 ∈ K�,cd
q,m,α .

(b) Let (sj )mj=0 ∈ K�,cd
q,m,α . Then:

(b1) If m = 0, then μ is the q × q zero measure on B[α,∞).
(b2) If m = 2n with some n ∈ N, then (sj )

2n−1
j=0 ∈ H�,e

q,2n−1 and μ is the

restriction of the CD-measure σn associated with (sj )
2n−1
j=0 onto B[α,∞).

(b3) If m = 2n + 1 with some n ∈ N0, then (sj )
2n+1
j=0 ∈ H�,e

q,2n+1 and μ is the

restriction of the CD-measure σn+1 associated with (sj )
2n+1
j=0 onto B[α,∞).

Theorem 6.3 leads us to the following notion.

Definition 6.4 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,cd
q,m,α . Then the

unique measure μ ∈M�
q ([α,∞)) which satisfies M�

q [[α,∞); (sj )mj=0,=] = {μ}
is called the [α,∞)-measure associated with (sj )mj=0. It will be also denoted by
μ(sj )mj=0

.

Remark 6.5 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,cd
q,m,α . Then the

combination of Definition 6.2, Theorems 6.3(b), and 6.1(c) shows that the measure
μ(sj )mj=0

is molecular and belongs to M�
q,∞([α,∞)).



406 B. Fritzsche et al.

Remark 6.6 Let α ∈ R, let m ∈ N, let � ∈ Z0,m−1, and let (sj )mj=0 ∈ K�
q,m,α be

such that (sj )�j=0 ∈ K�,cd
q,�,α. Then Proposition 4.13 shows that (sj )mj=0 ∈ K�,cd

q,m,α .
From Theorem 6.3 and Definition 6.4 then one can see that μ(sj )mj=0

= μ(sj )�j=0
.

Example 6.7 Let α ∈ R and let s0 := 0q×q . Then Example 4.3 shows that (sj )0j=0 ∈
K�,cd
q,0,α. Thus μ(sj )0j=0

is exactly the q × q zero measure on B[α,∞).

The following result can be considered as an extended version of [10, Theo-
rem 6.4].

Theorem 6.8 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�
q,m,α . Let a−1 := 0q×q

and, in the case m ≥ 1, let am−1 be the α-Stieltjes minimal element associated
with (sj )

m−1
j=0 . Further, let (s̃j )mj=0 be the right-sided α-Stieltjes non-negative definite

extendable sequence equivalent to (sj )mj=0. Then:

(a) The following statements are equivalent:

(i) The set M�
q [[α,∞); (sj )mj=0,�] consists of exactly one element μ.

(ii) s̃m = am−1.
(iii) (s̃j )mj=0 ∈ K�,cd

q,m,α .

(b) Let (iii) be satisfied. Then M�
q [[α,∞); (sj )mj=0,�] = {μ(s̃j )mj=0

}, where

μ(s̃j )mj=0
is the [α,∞)-measure associated with (s̃j )mj=0.

(c) Let (iii) be satisfied and let m = 2n + 1 with some n ∈ N0. Then (s̃j )
2n+1
j=0 ∈

H�,e
q,2n+1 and μ is the restriction of the CD-measure associated with (s̃j )

2n+1
j=0

onto B[α,∞).

Proof

(a) “(i)⇔(ii)”: This follows from [10, Theorem 6.4].
“(ii)⇔(iii)”: This follows from Example 4.3 and Proposition 4.12.

(b) From the choice of (s̃j )
m
j=0 we have (3.1). In view of (iii), Theo-

rem 6.3 yields M�
q [[α,∞); (s̃j )mj=0,=] = {μ(s̃j )mj=0

}. Thus, μ(s̃j )mj=0
∈

M�
q [[α,∞); (s̃j )mj=0,�]. Consequently, (3.1) yields μ(s̃j )mj=0

∈ M�
q [[α,∞);

(sj )
m
j=0,�]. From (iii) and (a) we get that the set M�

q [[α,∞); (sj )mj=0,�]
contains exactly one element. Therefore, (b) is proved.

(c) This follows from [10, Theorem 6.4].
��

Proposition 6.9 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,cd
q,m,α . Denote

by μ(sj )mj=0
the [α,∞)-measure associated with (sj )

m
j=0. Then M�

q [[α,∞);
(sj )

m
j=0,�] = {μ(sj )mj=0

}.



A Closer Look at the Solution Set of the Truncated Matricial Moment problem. . . 407

Proof In view of Proposition 4.5, we have (sj )mj=0 ∈ K�,e
q,m,α . Thus, if we denote

by (s̃j )
m
j=0 the right-sided α-Stieltjes non-negative definite extendable sequence

equivalent to (sj )mj=0, then Theorem 3.8 yields (s̃j )mj=0 = (sj )
m
j=0. In particular,

(s̃j )
m
j=0 ∈ K�,cd

q,m,α . Thus, Theorem 6.8(b) implies M�
q [[α,∞); (sj )mj=0,�] ={μ(s̃j )mj=0

} = {μ(sj )mj=0
}. ��

Remark 6.10 Let α ∈ R and let m ∈ N0.

(a) Let (sj )mj=0 ∈ K�,e
q,m,α and let (sj )∞j=0 be the upper α-Stieltjes completely

degenerate sequence associated with (sj )
m
j=0. Then Definition 5.15 and

Proposition 5.17(a) show that (sj )
m+1
j=0 ∈ K�,cd

q,m+1,α .

(b) Let (sj )mj=0 ∈ K�
q,m,α and let (sj )

∞
j=0 be the lower α-Stieltjes completely degen-

erate sequence associated with (sj )mj=0. Then Definition 5.13 and Lemma 5.14

yield (sj )
m
j=0 ∈ K�,cd

q,m,α .

Remark 6.10 leads us to the following notions.

Definition 6.11 Let α ∈ R and let m ∈ N0.

(a) Let (sj )mj=0 ∈ K�,e
q,m,α and let (sj )∞j=0 be the upper α-Stieltjes completely

degenerate sequence associated with (sj )
m
j=0. By the upper CD-measure

σ (sj )mj=0
associated with (sj )

m
j=0 and [α,∞) we mean the [α,∞)-measure

μ
(sj )

m+1
j=0

associated with (sj )
m+1
j=0 .

(b) Let (sj )mj=0 ∈ K�
q,m,α and let (sj )

∞
j=0 be the lower α-Stieltjes completely

degenerate sequence associated with (sj )
m
j=0. By the lower CD-measure

σ (sj )mj=0
associated with (sj )

m
j=0 and [α,∞) we mean the [α,∞)-measure

μ(sj )
m
j=0

associated with (sj )
m
j=0.

In the case where it is clear which sequence (sj )mj=0 is meant, we will also write
σm and σm instead of σ (sj )mj=0

and σ (sj )mj=0
.

Example 6.12 Let α ∈ R and let (sj )0j=0 ∈ K�
q,0,α. Then by construction s0 = 0q×q

and, consequently, the lower CD-measure σ 0 associated with (sj )0j=0 and [α,∞) is
the q × q zero measure defined on B[α,∞).

Now we are going to describe first aspects of the distinguished role which
the measures introduced in Definition 6.11 occupy in the framework of truncated
[α,∞)-Stieltjes matrix moment problems. First we consider the case α ∈ R, m ∈
N0, and (sj )mj=0 ∈ K�,e

q,m,α . Then we will see that the upper CD-measure σm associ-

ated with (sj )mj=0 and [α,∞) is the unique measure σ ∈M�
q [[α,∞); (sj )mj=0,=]∩

M�
q,m+1([α,∞)) for which the matrix s(σ )m+1 is minimal with respect to the Löwner

semi-ordering in C
q×q
H :
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Proposition 6.13 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,e
q,m,α . Denote by σm

the upper CD-measure associated with (sj )mj=0 and [α,∞). Then the measure σm is

molecular and belongs to M�
q [[α,∞); (sj )mj=0,=]∩M�

q,∞([α,∞)). Furthermore,

if σ ∈M�
q [[α,∞); (sj )mj=0,=]∩M�

q,m+1([α,∞)), then s(σ )m+1−s(σm)m+1 � 0q×q with
equality if and only if σ = σm.

Proof Remark 6.10, Definition 6.11, and Remark 6.5 show that σm is
molecular and belongs to M�

q,∞([α,∞)). Denote by (sj )
∞
j=0 the upper

α-Stieltjes completely degenerate sequence associated with (sj )
m
j=0. By

construction, then M�
q [[α,∞); (sj )m+1

j=0 ,=] = {σm} and (sj )
m
j=0 = (sj )

m
j=0.

In particular, σm ∈ M�
q [[α,∞); (sj )mj=0,=]. Now we consider an arbitrary

σ ∈ M�
q [[α,∞); (sj )mj=0,=] ∩ M�

q,m+1([α,∞)). From Remark 6.10(a) we

get (sj )
m+1
j=0 ∈ K�,cd

q,m+1,α . In view of Corollary 3.6 and Remark 3.4, we get

(s
(σ )
j )m+1

j=0 ∈ K�
q,m+1,α . Because of the choice of σ , we have (s(σ )j )mj=0 = (sj )

m
j=0.

Thus, Proposition 5.17(a) yields s
(σ )
m+1 − sm+1 � 0q×q . Now suppose that

s
(σ )
m+1 = sm+1. From the choice of σ and M�

q [[α,∞); (sj )m+1
j=0 ,=] = {σm}

we get σ ∈M�
q [[α,∞); (sj )m+1

j=0 ,=] and σ = σm. ��

Now we consider arbitrary α ∈ R, m ∈ N0, and (sj )
m
j=0 ∈ K�

q,m,α . We
will see that the lower CD-measure σm associated with (sj )

m
j=0 and [α,∞)

is characterized by an extremal property amongst all measures belonging to
M�

q [[α,∞); (sj )mj=0,�].
Proposition 6.14 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�

q,m,α . Denote by σm
the lower CD-measure associated with (sj )mj=0 and [α,∞). Then:

(a) The measure σm is molecular and belongs to M�
q [[α,∞); (sj )mj=0,�] ∩

M�
q,∞([α,∞)).

(b) Let σ ∈ M�
q [[α,∞); (sj )mj=0,�]. Then s(σ )m − s(σm)m � 0q×q with equality if

and only if σ = σm.

Proof

(a) Remark 6.10, Definition 6.11, and Remark 6.5 show that σm is molecular and

belongs to M�
q,∞([α,∞)). Denote by (sj )

∞
j=0 the lower α-Stieltjes completely

degenerate sequence associated with (sj )mj=0. From the construction of σm, we
have

M�
q [[α,∞); (sj )mj=0,=] = {σm}. (6.1)
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From Lemma 5.14 we know that sm − sm ∈ C
q×q
� . If m ≥ 1, then by con-

struction (see Definition 5.13) we also have (sj )
m−1
j=0 = (sj )m−1

j=0 . Consequently,

from (6.1), we get σm ∈M�
q [[α,∞); (sj )mj=0,�].

(b) First we consider the case m = 0. Then Example 6.12 shows that σm is the

q × q zero measure on B[α,∞). In particular, s
(σm)

0 = 0q×q . Thus, in view of the

choice of σ we have s(σ )0 − s(σm)0 = σ([α,∞)) � 0q×q . If s(σ )0 − s(σm)0 = 0q×q
then σ([α,∞)) = s(σ )0 − s(σm)0 = 0q×q , which implies that σ is the q × q zero
measure on B[α,∞). Now let m ∈ N. By the choice of σ , we have

σ ∈M�
q,m([α,∞)) and (s

(σ )
j )m−1

j=0 = (sj )m−1
j=0 . (6.2)

Corollary 3.6 shows then that (s(σ )j )mj=0 ∈ K�,e
q,m,α . Thus, Remark 3.4 yields

(s
(σ )
j )mj=0 ∈ K�

q,m,α . Taking into account Lemma 5.14, we see that s(σ )m − sm ∈
C
q×q
� . Combining this with (6.1), we conclude s

(σ )
m − s

(σm)
m ∈ C

q×q
� . If

s
(σ )
m = s

(σm)
m , then from (6.2) we get (s(σ )j )mj=0 = (s

(σm)

j )mj=0. Consequently,

(6.1) implies σ = σm. Conversely, ifm ∈ N0 and if σ = σm, then s(σ )m −s(σm)m =
0q×q .

��

Proposition 6.15 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,e
q,m,α . Denote by

σm (resp. σm) the lower (resp. upper) CD-measure associated with (sj )
m
j=0 and

[α,∞) and by (sj )
∞
j=0 (resp. (sj )∞j=0) the lower (resp. upper) α-Stieltjes completely

degenerate sequence associated with (sj )mj=0. Then M�
q [[α,∞); (sj )mj=0,=] =

{σm} and M�
q [[α,∞); (sj )m+1

j=0 ,=] = {σm}.

Proof In view of Remark 6.10, we have (sj )
m+1
j=0 ∈ K�,cd

q,m+1,α and (sj )
m
j=0 ∈

K�,cd
q,m,α . Thus, the assertions follow from Theorem 6.3 and Definitions 6.4 and 6.11.

��

The following result complements Proposition 6.14.

Theorem 6.16 ([10, Theorem 5.4]) Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈
K�
q,m,α . Denote by (s̃j )mj=0 the right-sided α-Stieltjes non-negative definite extend-

able sequence equivalent to (sj )mj=0. Let a−1 := 0q×q and, in the case m ∈ N, let

am−1 be the α-Stieltjes minimal element associated with (sj )
m−1
j=0 . Then

{
s(σ )m : σ ∈M�

q [[α,∞); (sj )mj=0,�]
}
= {s ∈ C

q×q
H : am−1 � s � s̃m}.
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We consider the set M�
q [[α,∞); (sj )mj=0,�] now under the aspect of right α-

Stieltjes parametrization.

Proposition 6.17 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,e
q,m,α with right

α-Stieltjes parametrization (Qj )
m
j=0. For each σ ∈ M�

q [[α,∞); (sj )mj=0,�], let

(Q
(σ)
j )mj=0 be the right α-Stieltjes parametrization of (s(σ )j )mj=0. Then:

(a) {Q(σ)
m : σ ∈M�

q [[α,∞); (sj )mj=0,�]} = {Q ∈ C
q×q
H : 0q×q � Q � Qm}.

(b) Suppose m ∈ N and let σ ∈ M�
q [[α,∞); (sj )mj=0,�]. Then Q(σ)

j = Qj for
each j ∈ Z0,m−1.

Proof Using Remark 5.3 and the notations given there, we get then Qm = sm −
am−1. We consider an arbitrary σ ∈ M�

q [[α,∞); (sj )mj=0,�]. In particular, we

conclude sm − s(σ )m ∈ C
q×q
� and, if m ≥ 1, furthermore s(σ )j = sj for each j ∈

Z0,m−1. We set a(σ )−1 := 0q×q . If m ∈ N, then let a(σ )m−1 be the α-Stieltjes minimal

element associated with (s(σ )j )m−1
j=0 . Then a(σ )m−1 = am−1 and, applying Remark 5.3

again, we conclude that Q(σ)
m = s

(σ )
m − a

(σ )
m−1. Consequently, Qm − Q(σ)

m = sm −
am−1 − (s

(σ )
m − a(σ )m−1) = sm − s

(σ )
m . Using sm − s(σ )m ∈ C

q×q
� it follows Qm −

Q
(σ)
m ∈ C

q×q
� . Since σ belongs to M�

q [[α,∞); (sj )mj=0,�], from Corollary 3.6 we

get (s(σ )j )mj=0 ∈ K�,e
q,m,α . Thus, Theorem 5.6(b) yields Q(σ)

m ∈ C
q×q
� . Hence,

{
Q(σ)
m : σ ∈M�

q [[α,∞); (sj )mj=0,�]
}
⊆ {Q ∈ C

q×q
H : 0q×q � Q � Qm}.

(6.3)

Conversely, let Q ∈ C
q×q
H be such that 0q×q � Q � Qm holds true. Consequently,

Q ∈ C
q×q
� and Qm −Q ∈ C

q×q
� . (6.4)

Let

Q′m := Q. (6.5)

If m ∈ N, then let

Q′j := Qj for each j ∈ Z0,m−1. (6.6)

In view of Remark 5.2, then there exists a unique sequence (s′j )
m
j=0 from C

q×q such
that (Q′j )mj=0 is the right α-Stieltjes parametrization of (s′j )mj=0. Let a′−1 := 0q×q .
If m ∈ N, then we denote by a′m−1 the α-Stieltjes minimal element associated with

(s′j )
m−1
j=0 . According to Remark 5.5 and (6.6), the sequence (Qj )

m−1
j=0 is the right



A Closer Look at the Solution Set of the Truncated Matricial Moment problem. . . 411

Stieltjes parametrization of (s′j )
m−1
j=0 . Consequently, Remark 5.2 yields that

sj = s′j for each j ∈ Z0,m−1. (6.7)

Thus, (4.10) shows that a′m−1 = am−1. Because of Remark 5.3, we get then Q′m =
s′m − am−1. Combining this with Qm = sm − am−1 and (6.5), we obtain

sm − s′m = (Qm + am−1)− (Q′m + am−1) = Qm −Q′m = Qm −Q.

Thus, (6.4) provides us sm − s′m ∈ C
q×q
� . If m = 0, then, in view of (4.4),

Definition 5.1, and (6.5), we have s′0 = Q′0 = Q and because of (6.4), hence,

s′0 ∈ C
q×q
� . Thus, Theorem 5.6(b) implies (s′j )0j=0 ∈ K�,e

q,0,α. In view of (6.4)
and (6.5), Lemma A.17 yields N (Qm) ⊆ N (Q′m). Now let m ∈ N. Because

of (sj )mj=0 ∈ K�,e
q,m,α , Theorem 5.6(b) yields Qj ∈ C

q×q
� for all j ∈ Z0,m and

N (Qj ) ⊆ N (Qj+1) for all j ∈ Z0,m−1. Consequently, using additionally (6.5),
(6.6), and (6.4), we obtain Q′j ∈ C

q×q
� for all j ∈ Z0,m and, in view of (6.6) and

N (Qm) ⊆ N (Q′m), furthermore

N (Q′j ) ⊆ N (Q′j+1) for all j ∈ Z0,m−1.

Since (Q′j )mj=0 is the right α-Stieltjes parametrization of (s′j )mj=0, from Theo-
rem 5.6(b) we get then

(s′j )mj=0 ∈ K�,e
q,m,α. (6.8)

hence, (6.8) is proved for each m ∈ N0. Now we consider again the case that m is
a non-negative integer. Taking into account that (6.8) is true, Theorem 3.5(b) yields
M�

q [[α,∞); (s′j )mj=0,=] �= ∅. Let σ ∈ M�
q [[α,∞); (s′j )mj=0,=]. In particular,

s
(σ )
j = s′j for all j ∈ Z0,m. Consequently, Q(σ)

j = Q′j for all j ∈ Z0,m. In view
of (6.6), part (b) is proved. Furthermore, (6.5) shows that

Q(σ)
m = Q′m = Q. (6.9)

Combining s(σ )j = s′j for all j ∈ Z0,m and sm − s′m ∈ C
q×q
� , we infer sm − s(σ )m ∈

C
q×q
� . If m ∈ N, then, using (6.7), we get furthermore s(σ )j = sj for all j ∈ Z0,m−1.

Thus, σ belongs to M�
q [[α,∞); (sj )mj=0,�]. Hence, (6.9) provides us

{Q ∈ C
q×q
� : Qm −Q ∈ C

q×q
� } ⊆

{
Q(σ)
m : σ ∈M�

q [[α,∞); (sj )mj=0,�]
}
.

(6.10)

Because of (6.3) and (6.10), the proof of part (a) is also complete. ��
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Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�
q,m,α . Then Theorem 6.16 leads

us to an explicit description of the set of all matrices s′m ∈ C
q×q
H which satisfy

sm − s′m ∈ C
q×q
� and (s′j )

m
j=0 ∈ K�,e

q,m,α where in the case m ≥ 1 we have set
s′j := sj for all j ∈ Z0,m−1.

Proposition 6.18 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�
q,m,α . Denote

by (s̃j )mj=0 the right-sided α-Stieltjes non-negative definite extendable sequence
equivalent to (sj )mj=0. Let a−1 := 0q×q . If m ≥ 1, then let am−1 be the α-Stieltjes

minimal element associated with (sj )
m−1
j=0 . Then the set E((sj )mj=0) of all s ∈ C

q×q
H

for which the sequence (s′j )
m
j=0 given by

s′j :=
{
sj if j ∈ Z0,m−1

s if j = m (6.11)

fulfills sm − s′m ∈ C
q×q
� and (s′j )mj=0 ∈ K�,e

q,m,α admits the representation

E
(
(sj )

m
j=0

)
= {s ∈ C

q×q
H : am−1 � s � s̃m}. (6.12)

In particular, if (sj )mj=0 ∈ K�,e
q,m,α , then E((sj )mj=0) = {s ∈ C

q×q
H : am−1 � s � sm}.

Proof Let s ∈ C
q×q
H be such that am−1 � s � s̃m is satisfied. We consider the

sequence (s′j )
m
j=0 defined by (6.11). Then from Theorem 6.16 we infer the existence

of a measure σ ∈ M�
q,m([α,∞)) which fulfills s(σ )j = s′j for each j ∈ Z0,m.

Corollary 3.6 implies (s
(σ )
j )mj=0 ∈ K�,e

q,m,α . Consequently, (s′j )mj=0 ∈ K�,e
q,m,α .

Furthermore, Lemma 3.10 shows that sm − s′m = sm − s � sm − s̃j � 0q×q .
Thus,

{s ∈ C
q×q
H : am−1 � s � s̃m} ⊆ E

(
(sj )

m
j=0

)
. (6.13)

Conversely, now we consider an arbitrary s ∈ E((sj )mj=0). Then (s′j )mj=0 defined
by (6.11) satisfies

sm − s′m ∈ C
q×q
� and (s′j )mj=0 ∈ K�

q,m,α. (6.14)

Theorem 3.5(a) provides us then M�
q [[α,∞); (s′j )mj=0,=] �= ∅. Let μ ∈

M�
q [[α,∞); (s′j )mj=0,=]. In view of (6.14), then μ ∈ M�

q [[α,∞); (sj )mj=0,�]
and s(σ )m = s′m = s. Now Theorem 6.16 implies s ∈ C

q×q
H and am−1 � s � s̃m.

Hence, E((sj )mj=0) ⊆ {r ∈ C
q×q
H : am−1 � r � s̃m}. Therefore, from (6.13) we
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get (6.12). If (sj )mj=0 ∈ K�,e
q,m,α , then Lemma 3.10 yields (sj )mj=0 = (s̃j )

m
j=0. This

completes the proof. ��

7 A Schur-Type Algorithm for Sequences of Complex
Matrices

The basic object of this section was introduced in [20]. We want to recall its
definition. For this reason, we start with the following notion:

Definition 7.1 ([25, Definition 4.13]) Let κ ∈ N0 ∪ {∞} and let (sj )κj=0 be a

sequence of complex p × q matrices. The sequence (s'j )
κ
j=0 given by s

'
0 := s

†
0

and s'j := −s†
0

∑j−1
l=0 sj−l s

'
l for all j ∈ Z1,κ is said to be the reciprocal sequence

corresponding to (sj )κj=0.

Definition 7.2 ([20, Definition 4.1]) Let α ∈ C, let κ ∈ N0 ∪ {∞}, and let (sj )κj=0

be a sequence of complex p × q matrices. Then we call the sequence (s[+,α]j )κj=0

given, for all j ∈ Z0,κ , by s[+,α]j
:= −αsj−1 + sj where s−1 := 0p×q , the [+, α]-

transform of (sj )κj=0.

Obviously, the [+, α]-transform of (sj )κj=0 is connected with the sequence

(sα8j )κ−1
j=0 given in (4.6) via s[+,α]j+1 = sα8j for all j ∈ Z0,κ−1. Furthermore, we

have s[+,α]0 = s0.
Let α ∈ C. In order to prepare the basic construction in Sect. 12, we study the

reciprocal sequence corresponding to the [+, α]-transform of a sequence. Let κ ∈
N0 ∪ {∞} and let (sj )κj=0 be a sequence of complex p × q matrices with [+, α]-
transform (uj )

κ
j=0. Then we define (s[',α]j )κj=0 by s[',α]j

:= u
'
j for all j ∈ Z0,κ ,

i. e., (s[',α]j )κj=0 is defined to be the reciprocal sequence corresponding to the [+, α]-
transform of (sj )κj=0.

Definition 7.3 ([20, Definition 7.1]) Let α ∈ C, let κ ∈ N ∪ {∞}, and let (sj )κj=0

be a sequence of complex p × q matrices. Then the sequence (s[1,α]j )κ−1
j=0 defined

by s[1,α]j
:= −s0s[',α]j+1 s0 for all j ∈ Z0,κ−1 is called the first α-Schur transform (or

short the first α-S-transform) of (sj )
κ
j=0.

Theorem 7.4 ([20, Theorem 7.21(b)]) Let α ∈ R, let m ∈ N, and let (sj )mj=0

be a sequence of complex q × q matrices with first α-S-transform (s
[1,α]
j )m−1

j=0 . If

(sj )
m
j=0 ∈ K�,e

q,m,α , then (s[1,α]j )m−1
j=0 ∈ K�,e

q,m−1,α.
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Definition 7.5 ([20, Definition 10.1]) Let α ∈ C, let κ ∈ N0 ∪ {∞}, let (tj )κj=0 be
a sequence of complex p × q matrices, and let A be a complex p × q matrix. The
sequence (t [−1,α,A]

j )κ+1
j=0 recursively defined by t [−1,α,A]

0 := A and

t
[−1,α,A]
j

:= αjA+
j∑
l=1

αj−lAA†

[
l−1∑
k=0

tl−k−1A
†(t
[−1,α,A]
k )[+,α]

]

for all j ∈ Z1,κ+1 is called the first inverse α-S-transform corresponding to
[(tj )κj=0, A].

The α-Schur transform for sequences of complex p × q matrices introduced
above generates in a natural way a corresponding algorithm for (finite and infinite)
sequences of complex q × q matrices. In generalization of Definition 7.3, we
introduced the following:

Definition 7.6 ([20, Definition 8.1]) Let α ∈ C, let κ ∈ N0 ∪ {∞}, and let
(sj )

κ
j=0 be a sequence of complex p × q matrices. The sequence (s[0,α]j )κj=0 given

by s[0,α]j
:= sj for all j ∈ Z0,κ is called the 0-th α-S-transform of (sj )κj=0. In the

case κ ≥ 1, for all k ∈ Z1,κ , the k-th α-S-transform (s
[k,α]
j )κ−kj=0 of (sj )

κ
j=0 is

recursively defined by s[k,α]j
:= t [1,α]j for all j ∈ Z0,κ−k , where (tj )

κ−(k−1)
j=0 denotes

the (k − 1)-th α-S-transform of (sj )κj=0.

A comprehensive investigation of this algorithm was carried out in [20].
In the following, we will make essential use of the fact that, for the α-Stieltjes

non-negative definite extendable sequences and its distinguished subclasses, there
are remarkable connections between their right α-Stieltjes parametrization and the
Schur algorithm.

Theorem 7.7 ([20, Theorem 9.15]) Let α ∈ R, let κ ∈ N0∪{∞}, and let (sj )κj=0 ∈
K�,e
q,κ,α. Then (s[j,α]0 )κj=0 is exactly the right α-Stieltjes parametrization of (sj )κj=0.

Theorem 7.8 ([20, Theorem 9.26]) Let α ∈ R, let κ ∈ N0 ∪ {∞}, let (sj )κj=0 ∈
K�,e
q,κ,α, and let k ∈ Z0,κ . Denote by (tj )

κ−k
j=0 the k-th α-S-transform of (sj )κj=0 and

by (Qj )
κ
j=0 the right α-Stieltjes parametrization of (sj )κj=0. Then (Qk+j )κ−kj=0 is

exactly the right α-Stieltjes parametrization of (tj )
κ−k
j=0 .

8 The Class Sq,[α,∞)

In this section, we summarize some basic facts about the class of [α,∞)-Stieltjes
functions of order q , which are mostly taken from our former paper [22]. If A ∈
C
q×q , then let ReA := 1

2 (A+A∗) and ImA := 1
2i (A−A∗) be the real part and the
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imaginary part of A, respectively. Let �+ := {z ∈ C : Im z > 0} be the open upper
half plane of C.

Definition 8.1 Let α ∈ R and let F : C \ [α,∞) → C
q×q . Then F is called a

[α,∞)-Stieltjes function of order q if F satisfies the following three conditions:

(I) F is holomorphic in C \ [α,∞).
(II) For all w ∈ �+, the matrix Im[F(w)] is non-negative Hermitian.

(III) For all w ∈ (−∞, α), the matrix F(w) is non-negative Hermitian.

We denote by Sq,[α,∞) the set of all [α,∞)-Stieltjes functions of order q . For a
comprehensive survey on the class Sq,[α,∞), we refer the reader to [22]. We start
with a useful characterization of the membership of a function to the class Sq,[α,∞).
Let �− := {z ∈ C : Im z < 0} and let Cα,− := {z ∈ C : Re z ∈ (−∞, α)}. We

observe that, for all μ ∈ M�
q ([α,∞)) and each z ∈ C \ [α,∞), the function

hα,z : [α,∞) → C defined by hα,z(t) := (1 + t − α)/(t − z) belongs to
L1([α,∞),B[α,∞), μ;C).
Theorem 8.2 (cf. [22, Theorem 3.6]) Let α ∈ R and let F : C \ [α,∞)→ C

q×q .
Then:

(a) If F ∈ Sq,[α,∞), then there are a unique matrix γ ∈ C
q×q
� and a unique non-

negative Hermitian measure μ ∈M�
q ([α,∞)) such that

F(z) = γ +
∫
[α,∞)

1+ t − α
t − z μ(dt) (8.1)

holds true for each z ∈ C \ [α,∞).
(b) If there are a matrix γ ∈ C

q×q
� and a non-negative Hermitian measure μ ∈

M�
q ([α,∞)) such that F can be represented via (8.1) for each z ∈ C \ [α,∞),

then F belongs to the class Sq,[α,∞).

In the special case that q = 1 and α = 0 hold true, Theorem 8.2 can be found
in Krein/Nudelman [37, Appendix]. Furthermore, observe that Theorem 8.2 shows
in particular that all constant q × q matrix-valued functions defined on C \ [α,∞)
which value is a non-negative Hermitian complex matrix belong to Sq,[α,∞).

Notation 8.3 For all F ∈ Sq,[α,∞), we will write (γF , μF ) for the unique pair

(γ, μ) ∈ C
q×q
� ×M�

q ([α,∞)) for which the representation (8.1) holds true for
all z ∈ C \ [α,∞).

In the sequel, we will sometimes meet situations where interrelations between
the null space (respectively, column space) of a function F ∈ Sq,[α,∞) and the null
space (respectively, column space) of a given matrix A ∈ C

p×q are of interest.

Notation 8.4 Let α ∈ R and let A ∈ C
q×q . We denote by Sq,[α,∞)[A] the set of all

F ∈ Sq,[α,∞) which satisfy R(F (z)) ⊆ R(A) for all z ∈ C \ [α,∞).
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Observe that the fact that a matrix-valued function F ∈ Sq,[α,∞) belongs to the
subclass Sq,[α,∞)[A] of the class Sq,[α,∞) can be characterized by several conditions
(see [22, Lemma 3.18]). In particular, we have the following:

Lemma 8.5 ([23, Lemma 4.9]) Let α ∈ R, let F ∈ Sq,[α,∞), and let A ∈ C
q×q .

Then F ∈ Sq,[α,∞)[A] if and only if R(γF )+R(μF ([α,∞))) ⊆ R(A).

9 On Some Subclasses of Sq,[α,∞)

In this section, we summarize some basic facts about several subclasses of Sq,[α,∞),
which are characterized by growth properties on the positive imaginary axis. It
should be mentioned that scalar versions of the function classes were introduced
and studied in Kats/Krein [30]. We recognized in [21] that a detailed analysis of the
behavior on the positive imaginary axis of the concrete functions of F ∈ Sq,[α,∞)
under study is very useful. For this reason, we turn now our attention to some
subclasses of Sq,[α,∞), which are described in terms of their growth on the positive
imaginary axis. First we consider the set

S9q,[α,∞) :=
{
F ∈ Sq,[α,∞) : lim

y→∞‖F(iy)‖S = 0

}
. (9.1)

In [21, Section 4], we considered a particular subclass of the class S9q,[α,∞)
introduced in (9.1). We have seen in [22, Proposition 3.15] that, for an arbitrary
function F ∈ Sq,[α,∞), the null space of F(z) is independent from the concrete
choice of z ∈ C \ [α,∞). For the case that F belongs to S9q,[α,∞), a complete
description of this constant null space was given in [21, Proposition 3.7]. Against
to this background, we single out now a special subclass of S9q,[α,∞): In view of

Notation 8.3, for all A ∈ C
p×q , let

S9q,[α,∞)[A] :=
{
F ∈ S9q,[α,∞) : N (A) ⊆ N (μF ([α,∞)))

}
(9.2)

Observe that the constant function defined on C\[α,∞)with value 0q×q belongs to
S9q,[α,∞)[A] for allA ∈ C

p×q . In [21], the role of the matrixAwas taken by a matrix
which is generated from the sequence of the given data of the moment problem via
a Schur-type algorithm.

An important subclass of the class Sq,[α,∞) is the set

S0,q,[α,∞) :=
{
F ∈ Sq,[α,∞) : sup

y∈[1,∞)
y‖F(iy)‖S <∞

}
. (9.3)

Let � be a non-empty closed subset of R and let σ ∈ M�
q (�). Then, in view

of [22, Lemma A.4], for each z ∈ C \ �, the function fz : � → C defined by
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fz(t) := (t − z)−1 belongs to L1(�,B�, σ ;C). In particular, for each α ∈ R and
each σ ∈M�

q ([α,∞)), the matrix-valued function Sσ : C \ [α,∞)→ C
q×q given

by

Sσ (z) :=
∫
[α,∞)

1

t − zσ(dt) (9.4)

is well defined and it is called [α,∞)-Stieltjes transform of σ .
There is an important characterization of the set of all [α,∞)-Stieltjes transforms

of measures belonging to M�
q ([α,∞)):

Theorem 9.1 ([21, Theorem 3.2]) Let α ∈ R. The mapping σ 
→ Sσ is a bijective
correspondence between M�

q ([α,∞)) and S0,q,[α,∞). In particular, S0,q,[α,∞) =
{Sσ : σ ∈M�

q ([α,∞))}.
For each F ∈ S0,q,[α,∞), the unique measure σ ∈ M�

q ([α,∞)) satisfying
Sσ = F is called the [α,∞)-Stieltjes measure of F and we will also write σF
for σ . Theorem 9.1 and (9.3) indicate that the [α,∞)-Stieltjes transform Sσ of a
measure σ ∈ M�

q ([α,∞)) is characterized by a particular mild growth on the
positive imaginary axis.

In view of Theorem 9.1, the Problems M[[α,∞); (sj )mj=0,�] and M[[α,∞);
(sj )

m
j=0,=] can be reformulated as an equivalent problem in the class S0,q,[α,∞)

as follows:

Problem (S[[α,∞); (sj )mj=0,�]) Let α ∈ R, let m ∈ N0, and let (sj )mj=0 be
a sequence of complex q × q matrices. Describe the set Sm,q,[α,∞)[(sj )mj=0,�]
of all F ∈ S0,q,[α,∞) the [α,∞)-Stieltjes measure of which belongs to

M�
q [[α,∞); (sj )mj=0,�].

Problem (S[[α,∞); (sj )mj=0,=]) Let α ∈ R, let m ∈ N0, and let (sj )mj=0 be
a sequence of complex q × q matrices. Describe the set Sm,q,[α,∞)[(sj )mj=0,=]
of all F ∈ S0,q,[α,∞) the [α,∞)-Stieltjes measure of which belongs to

M�
q [[α,∞); (sj )mj=0,=].
In [21, Section 6], we stated a reformulation of the original power moment

problem M[[α,∞); (sj )κj=0,=] as an equivalent problem of finding a prescribed
asymptotic expansion in a sector of the open upper half plane �+.

For all α ∈ R and all κ ∈ N ∪ {∞}, we now consider the class

Sκ,q,[α,∞) :=
{
F ∈ S0,q,[α,∞) : σF ∈M�

q,κ ([α,∞))
}
. (9.5)
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10 The Classes Sm,q,[α,∞)[(sj )m
j=0,�] and

Sκ,q,[α,∞)[(sj )κ
j=0,=]

In [21, Section 4], we studied the particular subclasses of the class Sκ,q,[α,∞), which
was introduced in (9.3) for κ = 0 and in (9.5) for κ ∈ N ∪ {∞}. In view of
Theorem 9.1, for each function F belonging to one of the classes Sκ,q,[α,∞) with
some κ ∈ N0 ∪ {∞}, we can consider the [α,∞)-Stieltjes measure σF of F . Now
we turn our attention to subclasses of functions F ∈ Sκ,q,[α,∞) with prescribed first
κ + 1 power moments of the [α,∞)-Stieltjes measure σF .

For all α ∈ R, all κ ∈ N0 ∪ {∞}, and each sequence (sj )κj=0 of complex
q × q matrices, now we consider the class

Sκ,q,[α,∞)[(sj )κj=0,=] :=
{
F ∈ Sκ,q,[α,∞) : σF ∈M�

q [[α,∞); (sj )κj=0,=]
}
.

(10.1)

Now we characterize those sequences for which the sets defined in (10.1) are
non-empty.

Theorem 10.1 ([21, Theorem 5.3]) Let α ∈ R, let κ ∈ N0 ∪ {∞}, and let (sj )κj=0
be a sequence of complex q × q matrices. Then Sκ,q,[α,∞)[(sj )κj=0,=] �= ∅ if and

only if (sj )κj=0 ∈ K�,e
q,κ,α .

Remark 10.2 Let α ∈ R and let F : C \ [α,∞)→ C
q×q be a function. Then:

(a) If F ∈ S0,q,[α,∞), then F ∈ S0,q,[α,∞)[(sj )0j=0,=] with s0 := σF ([α,∞)).
(b) Let κ ∈ N0∪{∞} and let (sj )κj=0 ∈ K�,e

q,κ,α . If F ∈ Sκ,q,[α,∞)[(sj )κj=0,=], then
F ∈ S0,q,[α,∞) and σF ([α,∞)) = s0.

Now we state a useful characterization of the set of functions given in (10.1).

Theorem 10.3 ([21, Theorem 5.4]) Let α ∈ R, let κ ∈ N0 ∪ {∞}, and let (sj )κj=0
be a sequence of complex q × q matrices. In view of (9.4), then

Sκ,q,[α,∞)[(sj )κj=0,=] =
{
Sσ : σ ∈M�

q [[α,∞); (sj )κj=0,=]
}
.

Theorem 10.3 shows that Sκ,q,[α,∞)[(sj )κj=0,=] coincides with the solution
set of Problem S[[α,∞); (sj )κj=0,=], which is via [α,∞)-Stieltjes transform
equivalent to the original Problem M[[α,∞); (sj )κj=0,=]. Thus, the investigation
of the set Sκ,q,[α,∞)[(sj )κj=0,=] is a central theme of our further considerations.

Now we consider special subclasses of the class Sm,q,[α,∞), which was intro-
duced in (9.3) for m = 0 and in (9.5) for each m ∈ N. For all α ∈ R, all m ∈ N0,
and each sequence (sj )mj=0 of complex q × q matrices, we consider the class

Sm,q,[α,∞)[(sj )mj=0,�] :=
{
F ∈ Sm,q,[α,∞) : σF ∈M�

q [[α,∞); (sj )mj=0,�]
}
.

(10.2)
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Remark 10.4 Let α ∈ R, letm ∈ N, and let (sj )mj=0 be a sequence from C
q×q . Then

Sm,q,[α,∞)[(sj )mj=0,�] ⊆ S�,q,[α,∞)[(sj )�j=0,=] for all � ∈ Z0,m−1.

Now we characterize those sequences for which the sets defined in (10.2) are
non-empty.

Theorem 10.5 ([23, Theorem 6.4]) Let α ∈ R, let m ∈ N0, and let (sj )mj=0
be a sequence from C

q×q . Then Sm,q,[α,∞)[(sj )mj=0,�] �= ∅ if and only if

(sj )
m
j=0 ∈ K�

q,m,α . Furthermore, in view of (9.4), if (sj )mj=0 ∈ K�
q,m,α , then

Sm,q,[α,∞)[(sj )mj=0,�] = {Sσ : σ ∈M�
q [[α,∞); (sj )mj=0,�]}.

The following result should be compared with [21, Proposition 5.5].

Proposition 10.6 Let α ∈ R, let m ∈ N, let (sj )mj=0 ∈ K�
q,m,α , and let F ∈

Sm,q,[α,∞)[(sj )mj=0,�]. For all z ∈ C \ [α,∞), the equations R(F (z)) = R(s0),
N (F (z)) = N (s0), [F(z)][F(z)]† = s0s

†
0 , and [F(z)]†[F(z)] = s

†
0s0 hold true.

Moreover, the function F belongs to the class Sq,[α,∞) with R(s0) = R(γF ) +
R(μF ([α,∞))) and N (s0) = N (γF ) ∩N (μF ([α,∞))).

Proof In view of Remark 3.4, we have (sj )
m−1
j=0 ∈ K�,e

q,m−1,α , whereas Remark 10.4

yields F ∈ Sm−1,q,[α,∞)[(sj )m−1
j=0 ,=]. Thus, the application [21, Proposition 5.5]

completes the proof. ��

Proposition 10.7 ([23, Proposition 6.6]) Let α ∈ R, letm ∈ N0, and let (sj )mj=0 ∈
K�
q,m,α . Then Sm,q,[α,∞)[(sj )mj=0,�] ⊆ Sq,[α,∞)[s0].

11 Stieltjes Pairs of Meromorphic q × q Matrix-Valued
Functions in C \ [α,∞)

In this section, we consider an arbitrary α ∈ R. Then the set C \ [α,∞) is
clearly a region in C. We consider a class of ordered pairs of q × q matrix-
valued meromorphic functions in C \ [α,∞) which turns out to be closely related
to the class Sq,[α,∞) introduced in Definition 8.1. This set of ordered pairs of
q × q matrix-valued meromorphic functions in C \ [α,∞) plays an important role
in our subsequent considerations. Indeed, this set acts as the set of parameters in our
description of the set of Stieltjes transforms of the solutions of our original truncated
matricial moment problem at the interval [α,∞).

Before we introduce the central object of this section, we make some prelimi-
naries. A subset D of C is called discrete if for every bounded subset B of C the
intersection D ∩ B only contains a finite number of points. By a region we mean an
open connected subset of C. Let G be a region in C and let f be a complex function
in G. Then f is called meromorphic in G if there exists a discrete subset Pf of G
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such that f is holomorphic in Hf := G \ Pf whereas f has a pole in each point
of Pf . We denote by M(G) the set of all meromorphic functions in G. The notation
H(G) stands for the set of all complex-valued holomorphic functions in G.

Now we extend these notions to matrix-valued functions. Let G be a region in
C and let r, s ∈ N. Let f = [fjk]j=1,...,r

k=1,...,s
∈ [M(G)]r×s . Then the sets Hf :=

⋂r
j=1

⋂s
k=1 Hfjk and Pf := ⋃r

j=1
⋃s
k=1 Pfjk are called the holomorphicity set of

f and the pole set of f , respectively. Then one can easily see that Pf is a discrete
subset of G and that Hf ∪ Pf = G and Hf ∩ Pf = ∅ hold true. We consider
an f ∈ [M(G)]r×s also as a mapping f between the sets Hf and C

r×s . In the
following, we use the particular signature matrices

J̃q :=
[

0q×q −iIq
iIq 0q×q

]
and Jq :=

[
0q×q −Iq
−Iq 0q×q

]
.

Remark 11.1 For all A,B ∈ C
q×q , the equations

[
A
B

]∗
(−J̃q)

[
A
B

] = 2 Im(B∗A)
and

[
A
B

]∗
(−Jq)

[
A
B

] = 2 Re(B∗A) hold true. In particular,
[
A
Iq

]∗
(−J̃q)

[
A
Iq

] =
2 ImA and

[
A
Iq

]∗
(−Jq)

[
A
Iq

] = 2 ReA are valid for each A ∈ C
q×q .

Definition 11.2 ([23, Definitions 7.1 and 7.2]) Let α ∈ R. Let φ,ψ ∈ [M(C \
[α,∞))]q×q . Then (φ,ψ) is called a q × q Stieltjes pair in C \ [α,∞) if there
exists a discrete subset D of C \ [α,∞) such that the following three conditions are
fulfilled:

(i) φ are ψ are holomorphic in C \ ([α,∞) ∪D).
(ii) rank

[ φ(z)
ψ(z)

] = q for each z ∈ C \ ([α,∞) ∪D).

(iii)
[ φ(z)
ψ(z)

]∗
(
−J̃q

2 Im z
)
[ φ(z)
ψ(z)

] ∈ C
q×q
� and

[ (z−α)φ(z)
ψ(z)

]∗
(
−J̃q

2 Im z
)
[ (z−α)φ(z)

ψ(z)

] ∈ C
q×q
� for

every choice of z ∈ C \ (R ∪D).

The set of all q × q Stieltjes pairs in C \ [α,∞) will be denoted by P (q,q)

−J̃q ,�(C \
[α,∞)). A pair (φ,ψ) ∈ P (q,q)

−J̃q ,�(C \ [α,∞)) is said to be a proper q × q Stieltjes

pair in C \ [α,∞) if detψ does not vanish identically in C \ [α,∞). The set of all
proper q × q Stieltjes pairs in C \ [α,∞) will be denoted by P̃ (q,q)

−J̃q ,�(C \ [α,∞)).
Remark 11.3 ([23, Remarks 7.3 and 7.5, Definition 7.4]) Let α ∈ R, let (φ,ψ) ∈
P (q,q)

−J̃q ,�(C \ [α,∞)), and let g be a q × q matrix-valued function which is

meromorphic in C \ [α,∞) such that det g does not vanish identically. Then it
is readily checked that (φg,ψg) ∈ P (q,q)

−J̃q ,�(C \ [α,∞)). Stieltjes pairs (φ1, ψ1)

and (φ2, ψ2) are called equivalent if there is a function θ ∈ [M(C \ [α,∞))]q×q
such that det θ does not identically vanish in C \ [α,∞) and that φ2 = φ1θ and
ψ2 = φ2θ are satisfied. It is easily checked that this relation is an equivalence
relation on the set P (q,q)

−J̃q ,�(C \ [α,∞)). For each (φ,ψ) ∈ P (q,q)

−J̃q ,�(C \ [α,∞)),



A Closer Look at the Solution Set of the Truncated Matricial Moment problem. . . 421

we denote by 〈(φ,ψ)〉 the equivalence class generated by (φ,ψ). Furthermore, we
write 〈P (q,q)

−J̃q ,�(C \ [α,∞))〉 for the set of all these equivalence classes.

Let Iq and Oq be the constant functions (defined on C \ [α,∞)) with value
Iq and 0q×q , respectively. From [23, Proposition 7.7] one can see that the class

P (q,q)

−J̃q ,�(C\[α,∞)) can be considered as a projective extension of the class Sq,[α,∞).

Now we turn our attention to a particular subclass of P (q,q)

−J̃q ,�(C \ [α,∞)), which

was introduced in [23, Notation 7.13].

Notation 11.4 Let α ∈ R and let A ∈ C
q×p. We denote by Pq,α[A] the set of all

(φ,ψ) ∈ P (q,q)

−J̃q ,�(C \ [α,∞)) such that R(φ(z)) ⊆ R(A) for all points z ∈ C \
[α,∞) which are points of holomorphicity of φ. Further, let P̃q,α[A] := Pq,α[A] ∩
P̃ (q,q)

−J̃q ,�(C \ [α,∞)).
Remark 11.5 ([23, Remark 7.15]) Let α ∈ R. Further, let A be a non-singular
complex q × q matrix. Then Pq,α[A] = P (q,q)

−J̃q ,�(C \ [α,∞)).
Example 11.6 Let α ∈ R, let Q ∈ C

q×q be such that R(Q∗) = R(Q), and let
η ∈ C \ {0}. Let φ,ψ : C \ [α,∞) → C

q×q be defined by φ(z) := ηQ and
ψ(z) := PN (Q). In view of Remark A.6, then it is readily checked that (φ,ψ)
belongs to Pq,α[Q] and that conditions (i)–(iii) of Definition 11.2 are fulfilled with
the discrete subset D := ∅ of C \ [α,∞).
Example 11.7 Let α ∈ R and let A ∈ C

q×q . Then (Oq,Iq ) ∈ Pq,α[A] and
conditions (i)–(iii) of Definition 11.2 are fulfilled with the discrete subset D := ∅ of
C \ [α,∞).

The procedure of constructing subclasses of P (q,q)

−J̃q ,�(C \ [α,∞)) via Nota-

tion 11.4 stands in full harmony with the equivalence relation in P (q,q)

−J̃q ,�(C\[α,∞))
introduced in Remark 11.3:

Lemma 11.8 ([23, Lemma 7.17]) Let α ∈ R, let A ∈ C
q×q , and let (φ1, ψ1) ∈

Pq,α[A]. Further, let (φ2, ψ2) ∈ P (q,q)

−J̃q ,�(C \ [α,∞)) be such that 〈(φ1, ψ1)〉 =
〈(φ2, ψ2)〉. Then (φ2, ψ2) ∈ Pq,α[A].

The following result shows that the class Pq,α[A] can be considered as a
projective extension of the class Sq,[α,∞)[A] introduced in Notation 8.4.

Remark 11.9 ([23, Remark 7.18]) Let α ∈ R and let f ∈ Sq,[α,∞). According

to [23, Proposition 7.7], then (f,Iq ) belongs to P̃ (q,q)

−J̃q ,�(C \ [α,∞)). Furthermore,

if A ∈ C
q×q is given, then f ∈ Sq,[α,∞)[A] if and only if (f,Iq ) ∈ P (q,q)

−J̃q ,�(C \[α,∞)).
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12 On a Coupled Pair of Schur–Stieltjes-Type Transforms

Now we recall some aspects of the elementary step of our Schur-type algorithm
for the class Sq,[α,∞), used in [21, Section 9]. We will be led to a situation which,
roughly speaking, looks as follows: Let α ∈ R, let A ∈ C

p×q and let F : C \
[α,∞)→ C

p×q . Then the matrix-valued functions F [+,α,A] : C \ [α,∞)→ C
p×q

and F [−,α,A] : C \ [α,∞)→ C
p×q which are defined by

F [+,α,A](z) := −A
(
Iq + (z− α)−1[F(z)]†A

)
(12.1)

and

F [−,α,A](z) := −(z− α)−1A
[
Iq + A†F(z)

]†
, (12.2)

respectively, will be central objects in our further considerations. The matrix-valued
functionsF [+,α,A] and F [−,α,A] are called the (α,A)-Schur–Stieltjes transform of F
and the inverse (α,A)-Schur–Stieltjes transform ofF , respectively. The generic case
studied here concerns the situation where p = q , A is a complex q × q matrix with
later specified properties, and F ∈ Sq,[α,∞). In essential cases, the formulas (12.1)
and (12.2) can be rewritten as linear fractional transformations with appropriately
chosen generating matrix-valued functions (see [21, Section 9]). The role of these
generating functions will be played by the matrix polynomialsWα,A and Vα,A which
are given as follows:

Remark 12.1 Let α ∈ R and let A ∈ C
p×q . Then Vα,A : C → C

(p+q)×(p+q) and
Wα,A : C→ C

(p+q)×(p+q) given by

Vα,A(z) :=
[

0p×p −A
(z − α)A† (z− α)Iq

]
, Wα,A(z) :=

[
(z− α)Ip A

−(z− α)A† Iq − A†A

]

(12.3)

are linear (p + q)× (p + q) matrix polynomials and, in particular, holomorphic in
C.

The use of the matrix polynomial Vα,A was inspired by some constructions in the
paper [26]. In particular, we mention [26, formula (2.3)]. In their constructions, Hu
and Chen used Drazin inverses instead of Moore-Penrose inverses of matrices. Since
both types of generalized inverses coincide for Hermitian matrices (see, e. g. [24,
Proposition A.2]), we can conclude that in the generic case the matrix polynomials
Vα,A coincide for α = 0 with the functions used in [26].

Let α ∈ R, let κ ∈ N0 ∪ {∞}, let (sj )κj=0 be a sequence of complex

p × q matrices, and let m ∈ Z0,κ . For all l ∈ Z0,m, let (s[l,α]j )κ−lj=0 be the l-th α-
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S-transform of (sj )κj=0 (see Definition 7.6). Let the sequence (V
α,s
[j,α]
0

)mj=0 be given

via (12.3), let

V[α,(sj )
m
j=0] := V

α,s
[0,α]
0

V
α,s
[1,α]
0
· · ·V

α,s
[m−1,α]
0

V
α,s
[m,α]
0

, (12.4)

and let

V
[α,(sj )mj=0] =

⎡
⎣v
[α,(sj )mj=0]
11 v

[α,(sj )mj=0]
12

v
[α,(sj )mj=0]
21 v

[α,(sj )mj=0]
22

⎤
⎦ (12.5)

be the q × q block representation of V
[α,(sj )mj=0] with p × p block v

[α,(sj )mj=0]
11 .

Furthermore, let the sequence (W
α,s
[j,α]
0

)mj=0 be given via (12.3), let

W[α,(sj )
m
j=0] := W

α,s
[0,α]
0

W
α,s
[1,α]
0
· · ·W

α,s
[m−1,α]
0

W
α,s
[m,α]
0

, (12.6)

and let

W
[α,(sj )mj=0] =

⎡
⎣w
[α,(sj )mj=0]
11 w

[α,(sj )mj=0]
12

w
[α,(sj )mj=0]
21 w

[α,(sj )mj=0]
22

⎤
⎦

be the q × q block representation of W[α,(sj )
m
j=0] with p × p block w

[α,(sj )mj=0]
11 .

Remark 12.2 Let α ∈ R, let κ ∈ N∪{∞}, and let (sj )κj=0 be a sequence of complex
p × q matrices. For all m ∈ Z1,κ and all l ∈ Z0,m−1, one can see then from (12.4),
(12.6), and [20, Remark 8.3] that

V[α,(s
[l,α]
j )m−lj=0 ] = V[α,(s

[l,α]
j )

m−(l+1)
j=0 ]

V
α,s
[m,α]
0

,

V[α,(s
[l,α]
j )m−lj=0 ] = V

α,s
[l,α]
0

V[α,(t
[l,α]
j )

m−(l+1)
j=0 ]

,

W[α,(s
[l,α]
j )m−lj=0 ] =W[α,(s

[l,α]
j )

m−(l+1)
j=0 ]

W
α,s
[m,α]
0

,

and

W
[α,(s[l,α]j )m−lj=0 ] = W

α,s
[l,α]
0

W
[α,(t [l,α]j )

m−(l+1)
j=0 ]

hold true, where tj := s[l+1,α]
j for all j ∈ Z0,m−(l+1).



424 B. Fritzsche et al.

Now we are going to consider the situation which will turn out to be typical
for larger parts of our future considerations. Let A ∈ C

q×q
� and let G ∈

Sq,[α,∞)[A] where the class Sq,[α,∞)[A] was introduced in Notation 8.4. Our aim
is then to investigate the function G[−,α,A] given by (12.2). We begin by rewriting
formula (12.2) as linear fractional transformation. In the sequel, we will often use
the fact that, for each G ∈ Sq,[α,∞), the matrix γG given via Notation 8.3 is non-
negative Hermitian.

Lemma 12.3 Let α ∈ R, let A ∈ C
q×q
� , and let G ∈ Sq,[α,∞)[A]. For all z ∈

C \ [α,∞), then G(z) ∈ Q[(z−α)A†,(z−α)Iq] and G[−,α,A](z) = S(q,q)Vα,A(z)
(G(z)).

Proof In view of Lemma 8.5, the assertion follows immediately from [21,
Lemma 9.8]. ��

Assuming the situation of Lemma 12.3, now we obtain useful insights into the
structure of the inverse (α,A)-Schur–Stieltjes transform of F .

Proposition 12.4 Let A ∈ C
q×q
� , let α ∈ R, let G ∈ Sq,[α,∞)[A], and let u0 :=

A(A + γG)
†A. Then G[−,α,A] : C \ [α,∞) → C

q×q given by (12.2) belongs to
S0,q,[α,∞)[(uj )0j=0,=] and fulfills R(G[−,α,A](z)) = R(A) and N (G[−,α,A](z)) =
N (A) for all z ∈ C \ [α,∞).

Proof Combine Lemma 8.5 with [21, Proposition 9.10]. ��

We have verified in [21, Section 9] that under appropriate conditions the
equations

(F [+,α,A])[−,α,A] = F and (G[−,α,A])[+,α,A] = G (12.7)

hold true. The formulas in (12.7) show that the functionsF [+,α,A] andG[−,α,A] form
indeed a coupled pair of transformations.

In [21, Section 10], we studied the following situation: Let α ∈ R, let
m ∈ N0, and let (sj )mj=0 ∈ K�,e

q,m,α . Then Theorem 10.1 yields that the class
Sm,q,[α,∞)[(sj )mj=0,=] is non-empty. If F ∈ Sm,q,[α,∞)[(sj )mj=0,=], then our inter-
est in [21, Section 10] was concentrated on the (α, s0)-Schur–Stieltjes transform
F [+,α,s0] of F .

We will consider now a function F ∈ Sm,q,[α,∞)[(sj )mj=0,�]. The following
result provides essential information about the (α, s0)-Schur–Stieltjes transform
F [+,α,s0] of F .

Theorem 12.5 Let α ∈ R, let m ∈ N, let (sj )mj=0 ∈ K�
q,m,α with α-S-

transform (s
[1,α]
j )m−1

j=0 , and let F ∈ Sm,q,[α,∞)[(sj )mj=0,�]. Then F [+,α,s0] belongs

to Sm−1,q,[α,∞)[(s[1,α]j )m−1
j=0 ,�].



A Closer Look at the Solution Set of the Truncated Matricial Moment problem. . . 425

Proof Because of (10.2), we have F ∈ Sm,q,[α,∞) and σF ∈ M�
q [[α,∞)];

(sj )
m
j=0,�. In particular, σF ∈M�

q,m([α,∞)). We set

tj := s(σF )j for all j ∈ Z0,m. (12.8)

Because of (12.8), the application of Corollary 3.6 yields (tj )mj=0 ∈ K�,e
q,m,α .

Furthermore, from (12.8) and (10.1) we get F ∈ Sm,q,[α,∞)[(tj )mj=0,=]. From

(tj )
m
j=0 ∈ K�,e

q,m,α and Remark 3.4 we get (tj )mj=0 ∈ K�
q,m,α . Because of this

and (sj )mj=0 ∈ K�
q,m,α , from [16, Lemma 2.9(a), (b)] we see that sj ∈ C

q×q
H and

tj ∈ C
q×q
H for all j ∈ Z0,m hold true. Because of (12.8) and the choice of F , we

infer tj = sj for all j ∈ Z0,m−1 and tm � sm. In particular, t0 = s0. If (s[1,α]j )m−1
j=0

and (t
[1,α]
j )m−1

j=0 are the α-S-transforms of (sj )mj=0 and (tj )
m
j=0, respectively, the

application of [23, Lemma 3.6] yields then that (s[1,α]j )m−1
j=0 and (t

[1,α]
j )m−1

j=0 are

sequences from C
q×q
H which satisfy t [1,α]m−1 � s

[1,α]
m−1 and, in the case m ≥ 2, moreover

s
[1,α]
j = t [1,α]j for all j ∈ Z0,m−2. (12.9)

In view of (tj )mj=0 ∈ K�,e
q,m,α and F ∈ Sm,q,[α,∞)[(tj )mj=0,=], [21, Theorem 10.3]

yields F [+,α,t0] ∈ Sm−1,q,[α,∞)[(t [1,α]j )m−1
j=0 ,=]. Combining this with s0 = t0, we

get F [+,α,s0] ∈ Sm−1,q,[α,∞)[(t [1,α]j )m−1
j=0 ,=]. In view of t [1,α]m−1 � s

[1,α]
m−1 and (12.9),

this implies F [+,α,s0] ∈ Sm−1,q,[α,∞)[(s[1,α]j )m−1
j=0 ,�]. ��

In [21, Section 11] we considered the following situation: Let α ∈ R, let
m ∈ N, let (sj )mj=0 ∈ K�,e

q,m,α with first α-S-transform (s
[1,α]
j )m−1

j=0 , and let F ∈
Sm−1,q,[α,∞)[(s[1,α]j )m−1

j=0 ,=]. Then our interest in [21, Section 11] was concentrated

on the inverse (α, s0)-Schur–Stieltjes transform F [−,α,s0] of F . The following result
on this theme is of fundamental importance.

Theorem 12.6 ([21, Theorem 11.3]) Let α ∈ R, let m ∈ N, let (sj )mj=0 ∈ K�,e
q,κ,α

with first α-S-transform (s
[1,α]
j )m−1

j=0 , and let F ∈ Sm−1,q,[α,∞)[(s[1,α]j )m−1
j=0 ,=].

Then F [−,α,s0] belongs to Sm,q,[α,∞)[(sj )mj=0,=].
Now we consider the following situation: Let s0 ∈ C

q×q
H . Further, let M ∈ C

q×q
�

be such that the conditions s0−M ∈ C
q×q
� and rankM = rank s0 are satisfied. Then

we will show that the functionG : C\[α,∞)→ C
q×q which is defined byG(z) :=

s0M
†(s0 −M) belongs to Sq,[α,∞)[s0] and if S := G[−,α,s0] stands for the inverse

(α, s0)-Schur–Stieltjes transform of G then S belongs to S0,q,[α,∞)[(sj )0j=0,�] and
satisfies σS([α,∞)) = M .
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Proposition 12.7 Let s0 ∈ C
q×q
H and M ∈ C

q×q
� be such that s0 − M ∈ C

q×q
�

and rankM = rank s0, and let α ∈ R. Then G : C \ [α,∞) → C
q×q defined

by G(z) := s0M
†(s0 −M) belongs to Sq,[α,∞)[s0] and the inverse (α, s0)-Schur–

Stieltjes transform S := G[−,α,s0] of G fulfills S ∈ S0,q,[α,∞)[(sj )0j=0,�] and

σS([α,∞)) = M . Moreover, S ∈ S0,q,[α,∞)[(sj )0j=0,=] if and only if M = s0.

If M = s0, then S(z) = (α − z)−1s0 for all z ∈ C \ [α,∞) and σS = s0δα, where
δα is the Dirac measure on ([α,∞),B[α,∞)) with unit mass at α.

Proof In view of Lemma A.20(b), we have s0M
†(s0 − M) ∈ C

q×q
� . Thus,

Theorem 8.2 yields G ∈ Sq,[α,∞) and

(γG,μG) =
(
s0M

†(s0 −M), oq

)
, (12.10)

where oq : B[α,∞) → C
q×q is given by oq(B) := 0q×q . Because of

s0s
†
0 [s0M†(s0−M)] = s0M†(s0−M), we get s0s

†
0G = G. Hence,G ∈ Sq,[α,∞)[s0].

Lemma A.20(a) yields s0 ∈ C
q×q
� , s0s

†
0 = MM†, and s†

0s0 = M†M . Consequently,
(12.10) shows that

s0 + γG = s0 + s0M†(s0 −M) = s0 + s0M†s0 − s0M†M = s0M†s0.

Thanks to s0 ∈ C
q×q
� and Proposition 12.4, we get S ∈ S0,q,[α,∞)[(uj )0j=0,=],

where u0 := s0(s0 + γG)†s0. In view of (12.10) and Lemma A.20(c) we obtain

u0 = s0(s0 + γG)†s0 = s0
[
s0 + s0M†(s0 −M)

]†
s0 = M. (12.11)

From S ∈ S0,q,[α,∞)[(uj )0j=0,=] and (12.11) we conclude σS([α,∞)) = M

and that S belongs to S0,q,[α,∞)[(sj )0j=0,=] if and only if M = s0. Furthermore,

because of s0 − M ∈ C
q×q
� , S ∈ S0,q,[α,∞)[(uj )0j=0,=], and (12.11), we get

S ∈ S0,q,[α,∞)[(sj )0j=0,�]. If M = s0, then, for all z ∈ C \ [α,∞), we get
G(z) = 0q×q and, in view of (12.2), furthermore

S(z) = G[−,α,s0](z) = −(z− α)−1s0

[
Iq + s†

0G(z)
]† = 1

α − z s0.

Setting σ := s0δα, from (9.4) we get in the case M = s0 then

Sσ (z) =
∫
[α,∞)

1

t − zσ(dt) =
∫
[α,∞)

1

t − z (s0δα)(dt) =
1

α − z s0 = S(z)

for all z ∈ C \ [α,∞). By virtue of Theorem 9.1, hence σS = σ . ��
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Remark 12.8 Let α ∈ R, let s0 ∈ C
q×q
H , and M ∈ C

q×q
� be such that s0 −

M ∈ C
q×q
� and rankM = rank s0. Then Proposition 12.7 shows that there

exists some constant function G ∈ Sq,[α,∞)[s0] such that S := G[−,α,s0] satisfies
S ∈ S0,q,[α,∞)[(sj )0j=0,�] and σS([α,∞)) = M .

Our following consideration complements the topic of Proposition 12.7.

Proposition 12.9 Let α ∈ R, let s0 ∈ C
q×q
� , and let G ∈ Sq,[α,∞)[s0]. Then S :=

G[−,α,s0] belongs to S0,q,[α,∞)[(sj )0j=0,�] and rankσS([α,∞)) = rank s0.

Proof The application of Proposition 12.4 yields that S belongs to
S0,q,[0,∞)[(uj )0j=0,=], where u0 := s0(s0 + γG)†s0. In view of (10.1), this implies

S ∈ S0,q,[α,∞) and σS([α,∞)) = u0 = s0(s0 + γG)†s0. Because of γG ∈ C
q×q
� ,

we have s0 + γG � s0 � 0q×q , which in view of [18, Lemma A.7] implies
s0 � s0(s0 + γG)†s0 � 0q×q and R(s0(s0 + γG)†s0) = R(s0). Thus, we obtain
σS([α,∞)) � s0 and rankσS([α,∞)) = rank s0. ��

It should be mentioned that, in view of Remark 11.9 and Lemma 12.3, the
assertion S ∈ S0,q,[α,∞)[(sj )0j=0,�] in Proposition 12.9 is also a direct consequence

of [23, Proposition 11.3]. On the other hand, if S ∈ S0,q,[α,∞)[(sj )0j=0,�] fulfills
rankσS([α,∞)) < rank s0, then we see from Proposition 12.9 that there is no
G ∈ Sq,[α,∞)[s0] such that G[−,α,s0] = S. However, [21, Proposition 11.2(b), (c)]
shows that there exists a (φ,ψ) ∈ Pq,α[s0] such that S is generated by the linear
fractional transformation of the pair (φ,ψ) with generating matrix-valued function
Vα,s0 . Because of the above arguments, the pair (φ,ψ) is then not proper.

The following result continues the theme of [21, Proposition 11.2].

Proposition 12.10 Let α ∈ R, let s0 ∈ C
q×q
� , and let F ∈ S0,q,[α,∞)[(sj )0j=0,�]

be such that rank σF ([α,∞)) = rank s0 is satisfied. Further, let Wα,s0 be given
by (12.3) and let Wα,s0

[
F
Iq

] = [ φ
ψ

]
be the q × q block representation of Wα,s0

[
F
Iq

]
.

Then:

(a) detψ(z) �= 0 for all z ∈ C \ [α,∞).
(b) G : C \ [α,∞) → C

q×q defined by G(z) := [φ(z)][ψ(z)]−1 belongs to
Sq,[α,∞)[s0].

(c) F = G[−,α,s0].

Proof

(a) Let z ∈ C \ [α,∞). In view of (12.3), we have

[
φ(z)

ψ(z)

]
= Wα,s0(z)

[
F(z)

Iq

]
=

[
(z− α)F (z)+ s0

−(z− α)s†
0F(z)+ Iq − s†

0s0

]
.
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Consequently,

φ(z) = (z− α)F (z)+ s0 and ψ(z) = −(z − α)s†
0F(z)+ Iq − s†

0s0.

(12.12)

Now we consider an arbitrary v ∈ N (ψ(z)). From (12.12) we infer then

(Iq − s†
0s0)v = (z − α)s†

0 [F(z)]v. (12.13)

In view of (12.13) and s0(Iq−s†
0s0) = 0q×q , we conclude (z−α)s0s†

0 [F(z)]v =
s0(Iq − s

†
0s0)v = 0q×1. Because of z − α �= 0, then s0s

†
0 [F(z)]v = 0q×1

follows. Since the assumption s0 ∈ C
q×q
� implies (sj )0j=0K

�
q,0,α, from F ∈

S0,q,[α,∞)[(sj )0j=0,�] and Proposition 10.7 we obtain F ∈ Sq,[α,∞)[s0]. In
view of Notation 8.4 then R(F (z)) ⊆ R(s0). Thus from Remark A.4 then
s0s

†
0F(z) = F(z). Combining this with s0s

†
0 [F(z)]v = 0q×1, we get [F(z)]v =

0q×1. Hence, from (12.13) it follows v = s
†
0s0v. Let M := σF ([α,∞)).

Therefore, because of the choice of F , then M ∈ C
q×q
� , s0 − M ∈ C

q×q
� ,

and rankM = rank s0. Consequently, we infer from Lemma A.20(a) that
s

†
0s0 = M†M . Combining this with v = s0s

†
0v, we get v = M†Mv. Because

of F ∈ S0,q,[α,∞) and M ∈ C
q×q
� we obtain from [21, Lemma 3.9] that

N (F (z)) = N (M) holds true. Thus, using [F(z)]v = 0q×1, we conclude
then Mv = 0q×1. In view of v = M†Mv, we get then v = 0q×1. Hence,
N (ψ(z)) = {0q×1}. This implies detψ(z) �= 0.

(b) In view of [23, Proposition 11.2(b)], the pair (φ,ψ) belongs to Pq,α[s0] and,

in particular, to P (q,q)

−J̃q ,�(C \ [α,∞)). Part (a) yields that (φ,ψ) is proper.

Thus, Remark 11.9 provides us that G ∈ Sq,[α,∞). If Iq denotes the constant
function in C \ [α,∞) with value Iq , then [21, Proposition 7.11] yields

(G,Iq ) ∈ P (q,q)

−J̃q ,�(C\[α,∞)) and 〈(φ,ψ)〉 = 〈(G,Iq)〉. Since (φ,ψ) belongs

to Pq,α[s0], Lemma 11.8 shows that (G,Iq ) belongs to Pq,α[s0]. Since G
belongs to Sq,[α,∞), Remark 11.9 gives G ∈ Sq,[α,∞)[s0].

(c) We consider again an arbitrary z ∈ C \ [α,∞). Then [23, Proposition 11.2(c)]
yields det[(z − α)s†

0φ(z)+ (z− α)Iq · ψ(z)] �= 0 and

[
0q×q · φ(z)− s0ψ(z)

][
(z− α)s†

0φ(z)+ (z− α)Iq · ψ(z)
]−1 = F(z).

In view of (12.3), part (a) implies then det[(z−α)s†
0G(z)+ (z−α)Iq ] �= 0 and

F(z) = [
0q×q ·G(z)− s0

][
(z− α)s†

0G(z)+ (z− α)Iq
]−1 = S(q,q)Vα,s0 (z)

(G(z)).

(12.14)
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Taking into account s0 ∈ C
q×q
� and part (b), Lemma 12.3 then yields

S(q,q)Vα,s0 (z)
(G(z)) = G[−,α,s0](z). Comparing with (12.14), we get F = G[−,α,s0].

��

A closer look at Propositions 12.9 and 12.10 leads us to the following observa-
tion.

Proposition 12.11 Let α ∈ R, let s0 ∈ C
q×q
� , and let

S̃0,q,[α,∞)[(sj )0j=0,�]
:=

{
S ∈ S0,q,[α,∞)[(sj )0j=0,�] : rankσS([α,∞)) = rank s0

}
.

Then the mapping T[−,α,s0] : Sq,[α,∞)[s0] → S̃0,q,[α,∞)[(sj )0j=0,�] given by

T[−,α,s0](G) := G[−,α,s0] is well defined and bijective. The inverse mapping T −1
[−,α,s0]

is given, for F ∈ S̃0,q,[α,∞)[(sj )0j=0,�], by T −1
[−,α,s0](F ) = F [+,α,s0].

Proof In view of the assumption s0 ∈ C
q×q
� and Proposition 12.9, we obtain

T[−,α,s0](Sq,[α,∞)[s0]) ⊆ S̃0,q,[α,∞)[(sj )0j=0,�]. In view of parts (b) and (c) of

Proposition 12.10, we get S̃0,q,[α,∞)[(sj )0j=0,�] ⊆ T[−,α,s0](Sq,[α,∞)[s0]). Conse-

quently, T[−,α,s0](Sq,[α,∞)[s0]) = S̃0,q,[α,∞)[(sj )0j=0,�]. Because of s0 ∈ C
q×q
� ,

we have (sj )0j=0 ∈ K�,e
q,0,α . For each G ∈ Sq,[α,∞)[s0] [21, Corollary 9.14] yields

(G[−,α,s0])[+,α,s0] = G. Thus, [T[−,α,s0](G)][+,α,s0] = G. Hence, T[−,α,s0] is also
injective and the inverse mapping is given, for F ∈ S̃0,q,[α,∞)[(sj )0j=0,�], by

T −1
[−,α,s0](F ) = F [+,α,s0]. ��

13 Some Observations on Distinguished Elements of the Set
Sm,q,[α,∞)[(sj )m

j=0,�]

The main goal of this section is a closer look on some distinguished elements of the
set Sm,q,[α,∞)[(sj )mj=0,�]. Our starting point is the following description of this set
which was one of the central results in [23]:

Theorem 13.1 ([23, Theorem 12.3]) Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈
K�,e
q,m,α . Let (s[m,α]j )0j=0 be the m-th α-S-transform of (sj )

m
j=0. Let V[α,(sj )

m
j=0]

be defined via (12.4) and (12.3). Furthermore, let (12.5) be the q × q block
representation of V[α,(sj )

m
j=0]. Then the following statements hold true:
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(a) For each (φ,ψ) ∈ Pq,α[s[m,α]0 ], the function det(v
[α,(sj )mj=0]
21 φ+ v

[α,(sj )mj=0]
22 ψ) is

meromorphic in C \ [α,∞) and does not vanish identically. Furthermore,

(v
[α,(sj )mj=0]
11 φ + v

[α,(sj )mj=0]
12 ψ)(v

[α,(sj )mj=0]
21 φ + v

[α,(sj )mj=0]
22 ψ)−1

∈ Sm,q,[α,∞)[(sj )mj=0,�].

(b) For each F ∈ Sm,q,[α,∞)[(sj )mj=0,�], there exists a pair (φ,ψ) ∈ Pq,α[s[m,α]0 ]
of q × q matrix-valued functions φ andψ which are holomorphic in C\[α,∞)
such that, for each z ∈ C \ [α,∞), the inequality det[v[α,(sj )

m
j=0]

21 (z)φ(z) +
v
[α,(sj )mj=0]
22 (z)ψ(z)] �= 0 and the representation

F(z) =
[
v
[α,(sj )mj=0]
11 (z)φ(z)+ v

[α,(sj )mj=0]
12 (z)ψ(z)

]

×
[
v
[α,(sj )mj=0]
21 (z)φ(z)+ v

[α,(sj )mj=0]
22 (z)ψ(z)

]−1

of F hold true.
(c) Let (φ1, ψ1), (φ2, ψ2) ∈ Pq,α[s[m,α]0 ]. Then 〈(φ1, ψ1)〉 = 〈(φ2, ψ2)〉 is fulfilled

if and only if the equation (v
[α,(sj )mj=0]
11 φ1 + v

[α,(sj )mj=0]
12 ψ1)(v

[α,(sj )mj=0]
21 φ1 +

v
[α,(sj )mj=0]
22 ψ1)

−1 = (v[α,(sj )
m
j=0]

11 φ2 + v
[α,(sj )mj=0]
12 ψ2)(v

[α,(sj )mj=0]
21 φ2 + v

[α,(sj )mj=0]
22 )

ψ2
−1 holds true.

In the following, we will often use an essential fact expressed in Theorem 7.7.
Indeed, for each sequence (sj )mj=0 ∈ K�,e

q,m,α , its right α-Stieltjes parametrization

(Qj )
m
j=0 can be expressed in terms of the sequences ((s[k,α]j )m−kj=0 )

m
k=0 of k-th α-S-

transforms of (sj )mj=0.
Let α ∈ R, let m ∈ N0, and let (sj )mj=0 be a sequence of complex q × q matri-

ces. Denote by (s
[m,α]
j )0j=0 the m-th α-S-transform of (sj )mj=0. According to

Lemma 11.8, we write 〈Pq,α[s[m,α]0 ]〉 for the set of the equivalence classes the

representatives of which belong to Pq,α[s[m,α]0 ]. From Theorem 13.1 one gets
immediately the following result:

Corollary 13.2 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,e
q,m,α with right

α-Stieltjes parametrization (Qj )
m
j=0. Then the mapping �

〈s〉
m,� : 〈Pq,α[Qm]〉 →

Sm,q,[α,∞)[(sj )mj=0,�] given by

�
〈s〉
m,�(〈(φ,ψ)〉) := (v[α,(sj )

m
j=0]

11 φ + v
[α,(sj )mj=0]
12 ψ)(v

[α,(sj )mj=0]
21 φ + v

[α,(sj )mj=0]
22 ψ)−1
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is well defined and bijective.

Proof Theorem 7.7 yields s[m,α]0 = Qm, where (s[m,α]j )0j=0 denotes the m-th α-S-
transform of (sj )mj=0. The application of [23, Corollary 12.4] completes the proof.

��

Let the assumptions of Corollary 13.2 be satisfied and let the 2q × 2q matrix
polynomial V[α,(sj )

m
j=0] be defined by (12.3) and (12.4). In view of Theorem 13.1

and Corollary 13.2 the function V
[α,(sj )mj=0] is then also called resolvent matrix for

the problem M[[α,∞); (sj )mj=0,�].
The following two lines of investigations naturally arise as a consequence of

Corollary 13.2.

1. Let M be a subset of 〈Pq,α[Qm]〉 which is of some interest for several reasons.
Then determine that subset of Sm,q,[α,∞)[(sj )mj=0,�] which corresponds to the
parameter set M via Corollary 13.2.

2. Let S be a distinguished element of Sm,q,[α,∞)[(sj )mj=0,�]. Then determine that
element of 〈Pq,α[Qm]〉 which produces S via Corollary 13.2.

We start with a particular question which can be classified under the first case of the
just formulated topics.

Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,e
q,m,α . Denote by (Qj )

m
j=0 the right

α-Stieltjes parametrization of (sj )mj=0. Then our aim is to determine that subset of
Sm,q,[α,∞)[(sj )mj=0,�]which corresponds in the sense of Corollary 13.2 to the set of
all proper pairs belonging to Pq,α[Qm]. Because of Remark 11.9, these pairs stand
in a bijective correspondence to the class Sq,[α,∞)[Qm]. Caused by this fact we
are able to apply immediately our former results from Propositions 12.9 and 12.10
where we have treated the case m = 0.

Theorem 13.3 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,e
q,m,α . Denote by

(Qj )
m
j=0 the right α-Stieltjes parametrization of (sj )mj=0. Let �〈s〉m,� be the bijec-

tive correspondence between 〈Pq,α[Qm]〉 and Sm,q,[α,∞)[(sj )mj=0,�] defined in

Corollary 13.2. Let F ∈ Sm,q,[α,∞)[(sj )mj=0,�] and let 〈(φ,ψ)〉 := (�
〈s〉
m,�)

−1(F ).

Denote by (Q〈σF 〉j )mj=0 the right α-Stieltjes parametrization of (s(σF )j )mj=0. Let Vα,Qm

be defined by (12.3) and let Fm := S̃(q,q)Vα,Qm
((φ,ψ)), where the mapping S̃(q,q)Vα,Qm

is
defined in Notation C.1. Then:

(a) Fm ∈ S0,q,[α,∞)[(Qm−j )0j=0,�] and σFm([α,∞)) = Q〈σF 〉m .

(b) Denote by P̃q,α[Qm] the subclass of all proper pairs (φ,ψ) belonging to
Pq,α[Qm].

(b1) If (�〈s〉m,�)
−1(F ) ∈ P̃q,α[Qm], then rankQ〈σF 〉m = rankQm.

(b2) If rankQ〈σF 〉m = rankQm, then (�〈s〉m,�)
−1(F ) ∈ P̃q,α[Qm].
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Proof Denote by (s
[m,α]
j )0j=0 the m-th α-S-transform of (sj )mj=0. In view of

(sj )
m
j=0 ∈ K�,e

q,m,α the application of Theorem 7.7 yields s[m,α]0 = Qm.

(a) In view of Theorem 5.6(b), we have Qm ∈ C
q×q
� . Again applying The-

orem 5.6(b), we see that (Qm−j )0j=0 ∈ K�,e
q,0,α. Now the application of

Theorem 13.1(a) to the sequence (Qm−j )0j=0 completes the proof of part (a).

(b1) Let (�〈s〉m,�)
−1(F ) ∈ P̃q,α[Qm]. Then the function detψ does not identically

vanish in C \ [α,∞) and because of [23, Proposition 7.11] and Remark 11.9
the function G := φψ−1 satisfies G ∈ Sq,[α,∞)[Qm]. From the definitions

of the considered mappings and Lemma 12.3 we get Fm = S(q,q)Vα,Qm
(G) =

G[−,α,Qm]. Thus, Proposition 12.9 yields rankσFm([α,∞)) = rankQm. In
view of part (a), then rankQ〈σF 〉m = rankQm.

(b2) This follows from Proposition 12.10.
��

In the rest of this section, we discuss situations which are associated with the
second of the above formulated topics.

Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,e
q,m,α . Because of Remark 3.4,

then (sj )mj=0 ∈ K�
q,m,α . We denote by σm the upper CD-measure associated with

(sj )
m
j=0 and [α,∞) and by σm the lower CD-measure associated with (sj )

m
j=0

and [α,∞) (see Definition 6.11). In Sect. 6 (see in particular Propositions 6.13
and 6.14), we have seen that σm and σm belong to M�

q [[α,∞); (sj )mj=0,�] and
possess special extremal properties within the elements of this set. Now we are
interested in the [α,∞)-Stieltjes transforms Sm and Sm of σm and σm, respectively.
We will call Sm and Sm the upper and lower Sq,[α,∞)-functions associated
with (sj )mj=0. These two functions will play an important role in our subsequent
considerations. In Theorem 13.1, we obtained a complete description of the set
Sm,q,[α,∞)[(sj )mj=0,�] of [α,∞)-Stieltjes transforms of measures belonging to

M�
q [[α,∞); (sj )mj=0,�]. Now we are interested in the position of Sm and Sm in

the set Sm,q,[α,∞)[(sj )mj=0,�]. In particular, we determine the pairs (φm,ψm) ∈
Pq,α[s[m,α]0 ] and (φ

m
,ψ

m
) ∈ Pq,α[s[m,α]0 ] which correspond to Sm and Sm,

respectively, according to Theorem 13.1(b). It can be expected that these pairs
possess certain extremal properties within the set Pq,α[s[m,α]0 ].

In the first step we express the functions Sm and Sm explicitly in terms of the
sequences (sj )

m
j=0 and (sj )

m+1
j=0 , respectively. For this reason, we start with the

following observation.

Lemma 13.4 Let α ∈ R, let m ∈ N0, let (sj )mj=0 ∈ K�,e
q,m,α with right α-Stieltjes

parametrization (Qj )
m
j=0, and let η ∈ C \ {0}. Then det[ηv[α,(sj )

m
j=0]

21 (z)Qm +
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v
[α,(sj )mj=0]
22 (z)PN (Qm)] �= 0 and det v

[α,(sj )mj=0]
22 (z) �= 0 for all z ∈ C \ [α,∞). In

particular, rank[v[α,(sj )
m
j=0]

21 (z), v
[α,(sj )mj=0]
22 (z)] = q for all z ∈ C \ [α,∞).

Proof From Proposition 5.6(b) we infer R(Q∗m) = R(Qm). Denote by (s[m,α]j )0j=0

the m-th α-S-transform of (sj )mj=0. According to Theorem 7.7, then Qm = s
[m,α]
0 .

The combination of [23, Proposition 12.1] with Examples 11.6 and 11.7 completes
the proof. ��

Proposition 13.5 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,e
q,m,α . Denote by

(sj )
∞
j=0 (resp. (sj )∞j=0) the lower (resp. upper) α-Stieltjes completely degenerate

sequence associated with (sj )mj=0. For all z ∈ C \ [α,∞), then det v
[α,(sj )mj=0]
22 (z) �=

0, det v
[α,(sj )m+1

j=0 ]
22 (z) �= 0,

Sm(z) = v
[α,(sj )mj=0]
12 (z)

[
v
[α,(sj )mj=0]
22 (z)

]−1

,

and

Sm(z) = v
[α,(sj )m+1

j=0 ]
12 (z)

[
v
[α,(sj )m+1

j=0 ]
22 (z)

]−1

.

Proof Because of Remark 6.10(a), we have (sj )
m+1
j=0 ∈ K�,cd

q,m+1,α , whereas the

combination of Remarks 3.4 and 6.10(b) shows that (sj )
m
j=0 ∈ K�,cd

q,m,α . According

to Proposition 4.5, in particular (sj )
m+1
j=0 ∈ K�,e

q,m+1,α and (sj )
m
j=0 ∈ K�,e

q,m,α . From

Lemma 13.4 we obtain then det v
[α,(sj )mj=0]
22 (z) �= 0 and det v

[α,(sj )m+1
j=0 ]

22 (z) �= 0 for all
z ∈ C \ [α,∞). Thus, Proposition 6.15 and [23, Theorem 13.2] yield the remaining
identities. ��

Now we are going to express the functions Sm and Sm explicitly in terms of the
original sequence (sj )mj=0.

Lemma 13.6 Let α ∈ R, let m ∈ N0, and let (sj )
m+1
j=0 ∈ K�,e

q,m+1,α with right

α-Stieltjes parametrization (Qj )
m+1
j=0 . Let V[α,(sj )

m
j=0] and V

[α,(sj )m+1
j=0 ] be defined

via (12.4) and (12.3). Furthermore, let (12.5) and V
[α,(sj )m+1

j=0 ] = [v[α,(sj )
m+1
j=0 ]

k� ]2k,�=1
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be the q × q block representations of V[α,(sj )
m
j=0] and V[α,(sj )

m+1
j=0 ], respectively. For

all z ∈ C, then

v
[α,(sj )m+1

j=0 ]
11 (z) = (z− α)v[α,(sj )

m
j=0]

12 (z)Q
†
m+1,

v
[α,(sj )m+1

j=0 ]
12 (z) = (z− α)v[α,(sj )

m
j=0]

12 (z)− v
[α,(sj )mj=0]
11 (z)Qm+1,

v
[α,(sj )m+1

j=0 ]
21 (z) = (z− α)v[α,(sj )

m
j=0]

22 (z)Q
†
m+1, and

v
[α,(sj )m+1

j=0 ]
22 (z) = (z− α)v[α,(sj )

m
j=0]

22 (z)− v
[α,(sj )mj=0]
21 (z)Qm+1.

Proof Let (s[m+1,α]
j )0j=0 be the (m + 1)-th α-S-transform of (sj )

m+1
j=0 . In view

of Theorem 7.7, we have s[m+1,α]
0 = Qm+1. From Remark 12.2 we obtain then

V[α,(sj )
m+1
j=0 ] = V[α,(sj )

m
j=0]Vα,Qm+1 . Using the q × q block partitions of V[α,(sj )

m+1
j=0 ]

and V
[α,(sj )mj=0] as well as (12.3), a straightforward calculation completes the proof.

��

Lemma 13.7 Let α ∈ R. Then:

(a) Let m ∈ N0 and let (sj )mj=0 ∈ K�,e
q,m,α . Denote by (sj )∞j=0 the upper α-Stieltjes

completely degenerate sequence associated with (sj )mj=0. For all z ∈ C, then

v
[α,(sj )m+1

j=0 ]
11 (z) = 0q×q, v

[α,(sj )m+1
j=0 ]

12 (z) = (z− α)v[α,(sj )
m
j=0]

12 (z),

v
[α,(sj )m+1

j=0 ]
21 (z) = 0q×q, and v

[α,(sj )m+1
j=0 ]

22 (z) = (z− α)v[α,(sj )
m
j=0]

22 (z).

(b) Let m ∈ N. Denote by (sj )
∞
j=0 the lower α-Stieltjes completely degenerate

sequence associated with (sj )mj=0. For all z ∈ C, then

v
[α,(sj )mj=0]
11 (z) = 0q×q, v

[α,(sj )mj=0]
12 (z) = (z− α)v[α,(sj )

m−1
j=0 ]

12 (z),

v
[α,(sj )mj=0]
21 (z) = 0q×q, and v

[α,(sj )mj=0]
22 (z) = (z− α)v[α,(sj )

m−1
j=0 ]

22 (z).

Proof Denote by (Q
j
)∞j=0 (resp. (Qj )

∞
j=0) the right α-Stieltjes parametrization

of (sj )
∞
j=0 (resp. (sj )∞j=0). In view of Definition 5.15 and Remark 5.12, we have

(sj )
m+1
j=0 ∈ K�,e

q,m+1,α . If m ≥ 1, then Definition 5.13 and Remark 5.12 show that

(sj )
m
j=0 belongs to K�,e

q,m,α . According to Definitions 5.13 and 5.15, Remark 5.16,

and Proposition 5.17, we have (sj )
∞
j=0 ∈ K�,cd,m

q,∞,α and (sj )
∞
j=0 ∈ K�,cd,m+1

q,∞,α .

From Corollary 5.9 we get then Q
m
= 0q×q and Qm+1 = 0q×q . In view of
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Definitions 4.15, 5.15, and 5.13, we have sj = sj for all j ∈ Z0,m and, in the
case m ≥ 1, furthermore sj = sj for all j ∈ Z0,m−1. Now, the application of

Lemma 13.6 to the sequence (sj )
m+1
j=0 , and, in the case m ≥ 1, to the sequence

(sj )
m
j=0 completes the proof. ��

Proposition 13.8 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,e
q,m,α . For all z ∈

C\[α,∞), then det v
[α,(sj )mj=0]
22 (z) �= 0 and Sm(z) = v

[α,(sj )mj=0]
12 (z)[v[α,(sj )

m
j=0]

22 (z)]−1.

If m ≥ 1, then det v
[α,(sj )m−1

j=0 ]
22 (z) �= 0 and Sm(z) = v

[α,(sj )m−1
j=0 ]

12 (z)[v[α,(sj )
m−1
j=0 ]

22 (z)]−1

for all z ∈ C \ [α,∞).

Proof Combine Proposition 13.5 with Lemma 13.7. ��

Our next step can be described as follows. Let α ∈ R, let m ∈ N0, and let
(sj )

m
j=0 ∈ K�,e

q,m,α . Denote by σm (resp. σm) the lower (resp. upper) CD-measure
associated with (sj )mj=0 and [α,∞). Then we are going to determine the position

of the [α,∞)-Stieltjes transform Sm of σm (resp. Sm of σm) within the general
description of the set Sm,q,[α,∞)[(sj )mj=0,�] of [α,∞)-Stieltjes transforms of the

measures belonging to M�
q [[α,∞); (sj )mj=0,�].

Theorem 13.9 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,e
q,m,α with right α-

Stieltjes parametrization (Qj )
m
j=0. Let V[α,(sj )

m
j=0] be defined via (12.4) and (12.3)

and let (12.5) be the q × q block representation of V[α,(sj )
m
j=0]. Let Sm and Sm be the

upper and lower Sq,[α,∞)-functions associated with (sj )mj=0, respectively. Then:

(a) The functions Sm and Sm both belong to Sm,q,[α,∞)[(sj )mj=0,�].
(b) Let φ

m
,ψ

m
: C \ [α,∞) → C

q×q be defined by φ
m
(z) := Qm and ψ

m
(z) :=

PN (Qm) where the matrix PN (Qm) is introduced in Remark A.2. Then the
pair (φ

m
,ψ

m
) belongs to Pq,α[Qm]. For all z ∈ C \ [α,∞), furthermore

det[v[α,(sj )
m
j=0]

21 (z)φ
m
(z)+ v

[α,(sj )mj=0]
22 (z)ψ

m
(z)] �= 0 and

Sm(z) =
[
v
[α,(sj )mj=0]
11 (z)φ

m
(z)+ v

[α,(sj )mj=0]
12 (z)ψ

m
(z)

]

×
[
v
[α,(sj )mj=0]
21 (z)φ

m
(z)+ v

[α,(sj )mj=0]
22 (z)ψ

m
(z)

]−1

.

(c) Let φm,ψm : C \ [α,∞) → C
q×q be defined by φm(z) := 0q×q and

ψm(z) := Iq . Then the pair (φm,ψm) belongs to Pq,α[Qm]. For all z ∈
C \ [α,∞), furthermore det[v[α,(sj )

m
j=0]

21 (z)φm(z) + v
[α,(sj )mj=0]
22 (z)ψm(z)] �= 0

is meromorphic in C\ [α,∞) and does not vanish identically. Furthermore, Sm
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can be represented via

Sm(z) =
[
v
[α,(sj )mj=0]
11 (z)φm(z)+ v

[α,(sj )mj=0]
12 (z)ψm(z)

]

×
[
v
[α,(sj )mj=0]
21 (z)φm(z)+ v

[α,(sj )mj=0]
22 (z)ψm(z)

]−1

.

Proof For each j ∈ {1, 2}, the functionsGj,Gj : C \ [α,∞)→ C
q×q defined by

Gj(z) := v
[α,(sj )mj=0]
j1 (z)φ

m
(z)+ v

[α,(sj )mj=0]
j2 (z)ψ

m
(z)

and

Gj(z) := v
[α,(sj )mj=0]
j1 (z)φm(z)+ v

[α,(sj )mj=0]
j2 (z)ψm(z).

admit for each z ∈ C \ [α,∞) the representation

Gj(z) = v
[α,(sj )mj=0]
j1 (z)Qm + v

[α,(sj )mj=0]
j2 (z)PN (Qm), Gj (z) = v

[α,(sj )mj=0]
j2 (z),

resp. In view of Lemma 13.4, we have thus detG2(z) �= 0 and detG2(z) �= 0
for all z ∈ C \ [α,∞). In particular, the functions detG2 and detG2 does not

vanish identically and the functions F := G1G
−1
2 and F := G1G

−1
2 admit for

all z ∈ C \ [α,∞) the representations F(z) = G1(z)[G2(z)]−1 and F(z) =
G1(z)[G2(z)]−1, resp. From Proposition 5.6(b) we infer R(Q∗m) = R(Qm).
Examples 11.6 and 11.7 show then that (φ

m
,ψ

m
) and (φm,ψm) both belong to

Pq,α[Qm]. Denote by (s[m,α]j )0j=0 the m-th α-S-transform of (sj )mj=0. According to

Theorem 7.7, we haveQm = s[m,α]0 . Theorem 13.1(a) then yields that F and F both
belong to Sm,q,[α,∞)[(sj )mj=0,�]. Using Proposition 13.8, we infer Sm(z) = F(z)

for all z ∈ C \ [α,∞). To complete the proof, we show that Sm(z) = F(z) for all
z ∈ C \ [α,∞) holds trues. To that end, let z ∈ C \ [α,∞) be arbitrary.

First we consider the case m = 0. We have

V
[α,(sj )0j=0](z) = Vα,s0(z) = Vα,Q0(z) =

[
0q×q −Q0

(z − α)Q†
0 (z − α)Iq

]

and, in view of (12.5), henceG1(z) = 0q×q ·Q0+(−Q0)PN (Q0) = 0q×q , implying
F(z) = 0q×q . Since we know from Example 6.12 that σ 0 is the q × q zero measure
on B[α,∞), we get F(z) = S0(z).
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Now assume m ≥ 1. In view of PN (Qm) = Iq − Q
†
mQm, we obtain from

Lemma 13.6 then

v
[α,(sj )mj=0]
11 (z)φ

m
(z) = (z− α)v[α,(sj )

m−1
j=0 ]

12 (z)Q†
mQm,

v
[α,(sj )mj=0]
12 (z)ψ

m
(z) = (z− α)v[α,(sj )

m−1
j=0 ]

12 (z)(Iq −Q†
mQm),

v
[α,(sj )mj=0]
21 (z)φ

m
(z) = (z− α)v[α,(sj )

m−1
j=0 ]

22 (z)Q†
mQm, and

v
[α,(sj )mj=0]
22 (z)ψ

m
(z) = (z− α)v[α,(sj )

m−1
j=0 ]

22 (z)(Iq −Q†
mQm).

Consequently, G1(z) = (z − α)v[α,(sj )
m−1
j=0 ]

12 (z) and G2(z) = (z − α)v[α,(sj )
m−1
j=0 ]

22 (z).

Thus, F(z) = v
[α,(sj )m−1

j=0 ]
12 (z)[v[α,(sj )

m−1
j=0 ]

22 (z)]−1. Hence, Sm(z) = F(z) by virtue of
Proposition 13.8. ��

We have seen in Propositions 6.13 and 6.14 that the measures σm and
σm are the unique solutions of certain extremal problems within the set

M�
q [[α,∞); (sj )mj=0,�]. If we look back now to Theorem 13.9 and consider

the corresponding pairs (φm,ψm) and (φ
m
,ψ

m
) belonging to Pq,α[Qm], then it

should be mentioned that these pairs consist of constant Cq×q -valued functions in
C \ [α,∞), which have extremal rank properties. Indeed, the function φ

m
satisfies

rankφ
m
= rankQm, which is the maximal possible rank of a q × q matrix-valued

function φ with R(φ(z)) ⊆ R(Qm) for all points z ∈ C\[α,∞) which are points of
holomorphy of φ, whereas the function φm has rank 0 which is clearly the minimal
possible rank.

It should be mentioned that a careful study of the particular [α,∞)-Stieltjes
transforms Sm and Sm was initiated by Yu. M. Dyukarev [7], who considered
the case of α = 0 and a sequence (sj )mj=0 ∈ K$q,m,0. These investigations were
continued by A. E. Choque Rivero [4, Theorem 4.8], who could express the
functions Sm and Sm in terms of orthogonal q × q matrix polynomials. In his recent
PhD thesis [27] (see also [28]), B. Jeschke was able to extend essential results due
to Yu. M. Dyukarev [7] to the case of an arbitrary α ∈ R.

We start our last topic in this section with the following specification of
Theorem 6.16.

Theorem 13.10 Let α ∈ R, letm ∈ N0, and let (sj )mj=0 ∈ K�,e
q,m,α . Let a−1 := 0q×q

and, in the case m ∈ N, let am−1 be the α-Stieltjes minimal element associated with
(sj )

m−1
j=0 . Then

{
s(σ )m : σ ∈M�

q [[α,∞); (sj )mj=0,�]
}
= {s ∈ C

q×q
H : am−1 � s � sm}.
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Proof Denote by (s̃j )mj=0 the right-sided α-Stieltjes non-negative definite extend-

able sequence equivalent to (sj )mj=0. In view of (sj )mj=0 ∈ K�,e
q,m,α we infer from

Lemma 3.10 that (sj )mj=0 = (s̃j )
m
j=0. Thus the application of Theorem 6.16

completes the proof. ��

Against to the background of Corollary 13.2, Theorem 13.10 leads us to the
following question: Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,e

q,m,α with right
α-Stieltjes parametrization (Qj )

m
j=0. Let am−1 be given as in Theorem 13.10 and

let s ∈ C
q×q
H be such that am−1 � s � sm. Then describe the subset of 〈Pq,α[Qm]〉,

which corresponds via Corollary 13.2 to the set

{
F ∈ Sm,q,[α,∞)[(sj )mj=0,�] : s(σF )m = s

}
.

We start with the treatment of the case m = 0.

Remark 13.11 Let α ∈ R and let M,N ∈ C
q×q . Since S9q,[α,∞)[M] given by (9.1)

is non-empty, the set

Pq,α[N,M,=]
:=

{
(NM†G+N −M,N†M + Iq −N†N) : G ∈ S9q,[α,∞)[M]

}
(13.1)

is non-empty as well.

We continue to use the notation given in Remark 13.11.

Lemma 13.12 Let α ∈ R, let M ∈ C
q×q
H , and let N ∈ C

q×q . Then

Pq,α[N,M,=]
=

{
(NM†FM†M +N −M,N†M + Iq −N†N) : F ∈ S9q,[α,∞)

}
.

Proof From [21, Remark 4.6] we get

S9q,[α,∞)[M] = {M†MFM†M : F ∈ S9q,[α,∞)}. (13.2)

Because of M∗ = M and Remark A.6, we have M†M = MM†. Thus,

{M†GM†M : G ∈ S9q,[α,∞)} = {M†MM†GM†MM†M : G ∈ S9q,[α,∞)}
=

{
M†(M†MGM†M)M†M : G ∈ S9q,[α,∞)

}

=
{
M†FM†M : F ∈ S9q,[α,∞)[M]

}
.
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Taking into account (13.1), the proof is complete. ��

Example 13.13 Let α ∈ R and let N ∈ C
q×q . Then Pq,α[N, 0q×q ,=] = {(N, Iq −

N†N)}. If N ∈ C
q×q
H , we see from Lemma 13.12 and formula (13.2) for N instead

of M furthermore

Pq,α[N,N,=] =
{
(NN†FN†N,N†N + Iq −N†N) : F ∈ S9q,[α,∞)

}

=
{
(G, Iq) : G ∈ S9q,[α,∞)[N]

}
.

Proposition 13.14 Let α ∈ R, let s0 ∈ C
q×q
� , let �〈s〉0,� : 〈Pq,α[s0]〉 →

S0,q,[α,∞)[(sj )0j=0,�] be the bijection defined in Corollary 13.2, and letM ∈ C
q×q
�

with s0 −M ∈ C
q×q
� . Then Pq,α[s0,M,=] ⊆ Pq,α[s0] and

�
〈s〉
0,�

(〈Pq,α[s0,M,=]〉) =
{
S ∈ S0,q,[α,∞)[(sj )0j=0,�] : σS([α,∞)) = M

}
.

Proof Let r0 := M .

(I) First consider an arbitrary (φ1, ψ1) ∈ Pq,α[s0, r0,=]. Using (13.1) we
have then φ1 = s0r

†
0G + s0 − r0 and ψ1 = s

†
0r0 + Iq − s

†
0s0 for some

G ∈ S9q,[α,∞)[r0]. According to [21, Theorem 13.1(a)], the function F :=
S(q,q)Vα,r0

(G) is well defined and belongs to S0,q,[α,∞)[(rj )0j=0,=]. Using [21,

Proposition 12.13(a)], we see that X1, Y1 : C \ [α,∞) → C
q×q defined by

X1(z) := −r0 and Y1(z) := (z − α)[r†
0G(z) + Iq ] fulfill detY1(z) �= 0 and

F(z) = [X1(z)][Y1(z)]−1 for all z ∈ C \ [α,∞). Observe that
[
X1(z)
Y1(z)

] =
[Vα,r0(z)]

[G(z)
Iq

]
for all z ∈ C \ [α,∞). Furthermore, s0 − r0 ∈ C

q×q
� yields

F ∈ S0,q,[α,∞)[(sj )0j=0,�].
(II) By virtue of [23, Theorem 12.3(b)] there exists a pair (φ2, ψ2) ∈ Pq,α[s0] such

that φ2 and ψ2 are both holomorphic in C \ [α,∞), fulfilling detY2(z) �= 0
and F(z) = [X2(z)][Y2(z)]−1 for all z ∈ C \ [α,∞), where X2, Y2 : C \
[α,∞) → C

q×q are defined by X2(z) := −s0ψ2(z) and Y2(z) := (z −
α)[s†

0φ2(z) + ψ2(z)]. Observe that s0s
†
0φ2(z) = φ2(z) and

[
X2(z)
Y2(z)

] =
[Vα,s0(z)]

[ φ2(z)
ψ2(z)

]
for all z ∈ C \ [α,∞). Using s0 − r0 ∈ C

q×q
� , Lemma A.17,

Remarks A.4(b), and A.6, we have s†
0s0r

†
0 = r0. Straightforward calculations

yield [Wα,s0(z)][Vα,s0(z)] = (z− α) diag(s0s
†
0 , Iq ) and

[
Wα,s0(z)

][
Vα,r0(z)

] = (z− α)
⎡
⎣ s0r

†
0 s0 − r0

0q×q s
†
0r0 + Iq − s†

0s0

⎤
⎦
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for all z ∈ C \ [α,∞). Hence, we can conclude

[
Wα,s0(z)

] [X2(z)

Y2(z)

]
= (z− α) diag(s0s

†
0 , Iq )

[
φ2(z)

ψ2(z)

]
= (z − α)

[
φ2(z)

ψ2(z)

]

and

[
Wα,s0(z)

] [X1(z)

Y1(z)

]
= (z− α)

⎡
⎣ s0r

†
0 s0 − r0

0q×q s
†
0r0 + Iq − s†

0s0

⎤
⎦
[
G(z)

Iq

]

= (z− α)
[
φ1(z)

ψ1(z)

]

for all z ∈ C \ [α,∞). Consequently,

[
φ2(z)

ψ2(z)

]
[θ(z)] = 1

z − α
[
Wα,s0(z)

] [F(z)
Iq

]
[Y1(z)] =

[
φ1(z)

ψ1(z)

]

for all z ∈ C \ [α,∞), where θ : C \ [α,∞) → C
q×q defined by

θ(z) := [Y2(z)]−1[Y1(z)] is holomorphic fulfilling det θ(z) �= 0 for all
z ∈ C \ [α,∞). Using Remark 11.3 and Lemma 11.8, we can infer
〈(φ1, φ2)〉 = 〈(φ2, φ2)〉 and (φ1, ψ1) ∈ Pq,α[s0]. Since �〈s〉0,�(〈(φ2, φ2)〉) =
X2Y

−1
2 = F ∈ S0,q,[α,∞)[(rj )0j=0,=] ⊆ S0,q,[α,∞)[(sj )0j=0,�], we have

shown Pq,α[s0, r0,=] ⊆ Pq,α[s0] and �
〈s〉
0,�(〈Pq,α[s0, r0,=]〉) ⊆ {S ∈

S0,q,[α,∞)[(sj )0j=0,�] : σS([α,∞)) = r0}.
(III) Conversely, now consider an arbitrary F ∈ S0,q,[α,∞)[(sj )0j=0,�] satis-

fying σF ([α,∞)) = r0. Then F belongs to S0,q,[α,∞)[(rj )0j=0,=]. By

virtue of [21, Theorem 13.1(a)], we have F = S(q,q)Vα,r0
(G) for some G ∈

S9q,[α,∞)[r0]. Let φ1 := s0r
†
0G + s0 − r0 and let ψ1 := s

†
0r0 + Iq − s

†
0s0.

Using (13.1), we see then that (φ1, ψ1) ∈ Pq,α[s0, r0,=]. In view of
part (II) of the proof, there exists a pair (φ2, ψ2) ∈ Pq,α[s0] satisfying

〈(φ1, φ2)〉 = 〈(φ2, φ2)〉 and �
〈s〉
0,�(〈(φ2, φ2)〉) = F . Consequently, {S ∈

S0,q,[α,∞)[(sj )0j=0,�] : σS([α,∞)) = r0} ⊆ �〈s〉0,�(〈Pq,α[s0, r0,=]〉). ��

Corollary 13.15 Let α ∈ R, let s0 ∈ C
q×q
� , let r := rank s0, and

let �
〈s〉
0,� : 〈Pq,α[s0]〉 → S0,q,[α,∞)[(sj )0j=0,�] be the bijection defined in

Corollary 13.2. If � ∈ N0, then the set M� := {M ∈ C
q×q
� : s0 − M ∈

C
q×q
� and rankM = �} is non-empty if and only if � ≤ r . Furthermore,⋃r
�=0 M� = [0q×q, s0] and 〈⋃r

�=0
⋃
M∈M�

Pq,α[s0,M,=]〉 = 〈Pq,α[s0]〉.
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For each � ∈ Z0,r , the equation �
〈s〉
0,�(〈

⋃
M∈M�

Pq,α[s0,M,=]〉) = {S ∈
S0,q,[α,∞)[(sj )0j=0,�] : rankσS([α,∞)) = �} holds true. Furthermore,

�
〈s〉
0,�(〈

⋃r
�=0

⋃
M∈M�

Pq,α[s0,M,=]〉) = S0,q,[α,∞)[(sj )0j=0,�].

Proof Use Lemma A.17, Proposition 13.14, and Corollary 13.2. ��

Let the assumption of Proposition 13.14 be satisfied. Then (sj )0j=0 ∈ K�,e
q,0,α

and for σ ∈ M�
q [[α,∞); (sj )0j=0,�] we have s(σ )0 = σ([α,∞)). Thus, Proposi-

tion 13.14 completely answers our question in the case m = 0.
Now we draw our attention to the remaining case m ∈ N. If A ∈ C

q×q then we
use the set S9q,[α,∞)[A] introduced in (9.2).

Lemma 13.16 Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,e
q,m,α with right

α-Stieltjes parametrization (Qj )
m
j=0. Then the mapping �〈s〉m,= : S9q,[α,∞)[Qm] →

Sm,q,[α,∞)[(sj )mj=0,=] given by

�〈s〉m,=(G) := (v[α,(sj )
m
j=0]

11 G+ v
[α,(sj )mj=0]
12 )(v

[α,(sj )mj=0]
21 G+ v

[α,(sj )mj=0]
22 )−1

is well defined and bijective.

Proof Theorem 7.7 yields s[m,α]0 = Qm, where (s[m,α]j )0j=0 denotes the m-th α-S-
transform of (sj )mj=0. Now the assertion can be seen from [23, Proposition 12.13
and Theorem 12.10]. ��

Lemma 13.17 Let α ∈ R, let m ∈ N, and let (sj )mj=0 ∈ K�,e
q,m,α with

right α-Stieltjes parametrization (Qj )
m
j=0 and m-th α-S-transform (s

[m,α]
j )0j=0.

Let �
〈s〉
m−1,= : S9q,[α,∞)[Qm−1] → Sm−1,q,[α,∞)[(sj )m−1

j=0 ,=] be the bijection

given in Lemma 13.16. Then S0,q,[α,∞)[(s[m,α]j )0j=0,=] ⊆ S9q,[α,∞)[Qm−1] and

�
〈s〉
m−1,=(S0,q,[α,∞)[(s[m,α]j )0j=0,=]) = Sm,q,[α,∞)[(sj )mj=0,=].

Proof Denote by (tj )0j=0 them-th α-S-transform of (sj )mj=0. From [21, Lemma 5.6]

we obtain S0,q,[α,∞)[(tj )0j=0,=] ⊆ S9q,[α,∞)[t0]. Theorem 7.7 yields t0 = Qm.
According to Theorem 5.6(b), we have N (Qm−1) ⊆ N (Qm). Thus, the application
of [21, Remark 4.5] provides us S9q,[α,∞)[Qm] ⊆ S9q,[α,∞)[Qm−1]. Consequently,

S0,q,[α,∞)[(tj )0j=0,=] ⊆ S9q,[α,∞)[t0] = S9q,[α,∞)[Qm] ⊆ S9q,[α,∞)[Qm−1].
(13.3)

In view of Theorem 5.6(b), we have Qm ∈ C
q×q
� . Hence, t0 ∈ C

q×q
� , i. e., (tj )0j=0

belongs to K�,e
q,0,α. According to (5.1), the sequence (tj )0j=0 is the right α-Stieltjes
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parametrization of (tj )
0
j=0. Let �〈t〉0,= : S9q,[α,∞)[t0] → S0,q,[α,∞)[(tj )0j=0,=]

be the bijection defined as in Lemma 13.16. Then �
〈t〉
0,=(S

9
q,[α,∞)[t0]) =

S0,q,[α,∞)[(tj )0j=0,=]. In view of (13.3), consequently

�
〈s〉
m−1,=

(
�
〈t〉
0,=

(
S9q,[α,∞)[t0]

))
= �〈s〉m−1,=

(
S0,q,[α,∞)[(tj )0j=0,=]

)
.

Let �〈s〉m,= : S9q,[α,∞)[Qm] → Sm,q,[α,∞)[(sj )mj=0,=] be the bijection defined in
Lemma 13.16. In view of (12.4) and (12.5), we can infer from Proposition C.3 that

�
〈s〉
m−1,=

(
�
〈t〉
0,=(S

9
q,[α,∞)[t0])

)
= �〈s〉m,=

(
S9q,[α,∞)[t0]

)

holds true. Furthermore, by virtue of Lemma 13.16, we have

�〈s〉m,=
(
S9q,[α,∞)[Qm]

)
= Sm,q,[α,∞)[(sj )mj=0,=].

In view of Qm = t0 and t0 = s[m,α]0 , the proof is complete. ��

Observe that we know from Remark 4.10 that under the assumptions of the
following proposition the matricial interval [am−1, sm] is non-empty.

The following result provides a complete answer to the problem under consider-
ation in the case m ∈ N.

Proposition 13.18 Let α ∈ R, let m ∈ N, let (sj )mj=0 ∈ K�,e
q,m,α with right α-

Stieltjes parametrization (Qj )
m
j=0, let �〈s〉m,� : 〈Pq,α[Qm]〉 → Sm,q,[α,∞)[(sj )mj=0],

� be the bijection defined in Corollary 13.2, and let M ∈ [am−1, sm], where am−1
is given via (4.10). Then Pq,α[Qm,M − am−1,=] ⊆ Pq,α[Qm] and

�
〈s〉
m,�

(〈Pq,α[Qm,M − am−1,=]〉
)

=
{
S ∈ Sm,q,[α,∞)[(sj )mj=0,�] :

∫
[α,∞)

xmσS(dx) = M
}
.

Proof Denote by (tj )0j=0 the m-th α-S-transform of (sj )mj=0. Then Theorem 7.7

yields t0 = Qm. In view of Theorem 5.6(b), we have Qm ∈ C
q×q
� . Hence,

t0 ∈ C
q×q
� , i. e., (tj )0j=0 belongs to K�,e

q,0,α. Obviously (tj )0j=0 is the right α-Stieltjes

parametrization of (tj )0j=0. Let �〈t〉0,� : 〈Pq,α[t0]〉 → S0,q,[α,∞)[(tj )0j=0,�] be the
bijection defined analogously as in Corollary 13.2. Let N := M − am−1. Then
N ∈ C

q×q
� . By virtue of Remark 5.3, furthermore

Qm −N = Qm − (M − am−1) = sm − am−1 −M + am−1 = sm −M ∈ C
q×q
� ,
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i. e., t0 − N ∈ C
q×q
� . The application of Proposition 13.14 yields then

Pq,α[t0, N,=] ⊆ Pq,α[t0], i. e., Pq,α[Qm,M − am−1,=] ⊆ Pq,α[Qm], and

�
〈t〉
0,�

(〈Pq,α[t0, N,=]〉) =
{
S ∈ S0,q,[α,∞)[(tj )0j=0,�] : σS([α,∞)) = N

}
.

Let the sequence (rj )mj=0 be given by rj := sj for all j ∈ Z0,m−1 and by rm := M .

Denote by (Q〈r〉j )mj=0 the right α-Stieltjes parametrization of (rj )mj=0. According to

Remark 5.5, then Q〈r〉j = Qj for all j ∈ Z0,m−1. In view of Remark 4.8, (4.7),

and (4.5), furthermore a〈r〉m−1 = am−1. Using Remark 5.3, we obtain then

Q〈r〉m = rm − a
〈r〉
m−1 = M − am−1 = N.

Consequently, Q〈r〉m ∈ C
q×q
� and Qm − Q

〈r〉
m ∈ C

q×q
� , implying N (Qm) ⊆

N (Q
〈r〉
m ) due to Lemma A.17. Taking into account Theorem 5.6(b), we can conclude

N (Q
〈r〉
m−1) = N (Qm−1) ⊆ N (Qm) ⊆ N (Q

〈r〉
m ) as well as N (Q

〈r〉
j ) ⊆ N (Q

〈r〉
j+1)

for each j ∈ Z0,m−2, and, hence, (rj )mj=0 ∈ K�,e
q,m,α . Theorem 7.7 yields then

r
[m,α]
0 = Q〈r〉m . Therefore,

�
〈t〉
0,�

(〈Pq,α[Qm,M − am−1,=]〉
) = S0,q,[α,∞)[(r [m,α]j )0j=0,=].

In view of (rj )
m−1
j=0 ∈ K�,e

q,m−1,α and Remark 5.5, let �〈r〉m−1,= : S9q,[α,∞)[Q〈r〉m−1] →
Sm−1,q,[α,∞)[(rj )m−1

j=0 ,=] be the bijection defined analogously as in Lemma 13.16.

The application of Lemma 13.17 yields S0,q,[α,∞)[(r [m,α]j )0j=0,=] ⊆ S9q,[α,∞)
[Q〈r〉m−1] and

�
〈r〉
m−1,=

(
S0,q,[α,∞)[(r [m,α]j )0j=0,=]

)
= Sm,q,[α,∞)[(rj )mj=0,=].

Taking into account the definition of (rj )mj=0 and sm − M ∈ C
q×q
� , we have

�
〈r〉
m−1,= = �〈s〉m−1,= and

Sm,q,[α,∞)[(rj )mj=0,=]

=
{
S ∈ Sm,q,[α,∞)[(sj )mj=0,�] :

∫
[α,∞)

xmσS(dx) = M
}
.
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In view of (12.4) and (12.5), we can infer from Corollaries 13.2 and 13.16 and
Proposition C.4 that

�
〈s〉
m−1,=

(
�
〈t〉
0,�

(〈Pq,α[Qm,M − am−1,=]〉
))

= �〈s〉m,�
(〈Pq,α[Qm,M − am−1,=]〉

)

holds true. Consequently, we obtain

�
〈s〉
m,�

(〈Pq,α[Qm,M − am−1,=]〉
)

= �〈r〉m−1,=
(
S0,q,[α,∞)[(r [m,α]j )0j=0,=]

)
= Sm,q,[α,∞)[(rj )mj=0,=]

=
{
S ∈ Sm,q,[α,∞)[(sj )mj=0,�] :

∫
[α,∞)

xmσS(dx) = M
}
.

��

Corollary 13.19 Let α ∈ R, let m ∈ N, let (sj )
m
j=0 ∈ K�,e

q,m,α with

right α-Stieltjes parametrization (Qj )
m
j=0, and let �

〈s〉
m,� : 〈Pq,α[Qm]〉 →

Sm,q,[α,∞)[(sj )mj=0,�] be the bijection defined in Corollary 13.2. Let am−1 be

given by (4.10). Let � ∈ N0. Then the set M� := {M ∈ C
q×q
H : am−1 �

M � sm and rankM = �} is non-empty if and only if rankam−1 � � �
rank sm. In this case,

⋃
M∈M�

Pq,α[Qm,M − am−1,=] ⊆ Pq,α[Qm] and

�
〈s〉
m,�(〈

⋃
M∈M�

Pq,α[Qm,M − am−1,=]〉) = {S ∈ Sm,q,[α,∞)[(sj )mj=0,�] : rank∫
[α,∞) xmσS(dx) = �}.

Proof By virtue of Remark 13.11 the set Pq,α[Qm,M − am−1,=] is non-empty
for all M ∈ C

q×q . Lemma A.17 shows that M� �= ∅ if and only if rank am−1 �
� � rank sm. Now suppose rankam−1 � � � rank sm. Let M ∈ M� and let
(φ,ψ) ∈ Pq,α[Qm,M − am−1,=]. According to Proposition 13.18, then S :=
�
〈s〉
m,�(〈(φ,ψ)〉) belongs to Sm,q,[α,∞)[(sj )mj=0,�] and fulfills

∫
[α,∞) xmσS(dx) =

M . In particular, rank
∫
[α,∞) x

mσS(dx) = �.
Conversely, consider a function S ∈ Sm,q,[α,∞)[(sj )mj=0,�] with rank

∫
[α,∞) xm

σS(dx) = �. Then the Hermitian matrix M := ∫
[α,∞) xmσS(dx) fulfills sm −M ∈

C
q×q
� and rankM = �. Using Theorem 6.16, we can conclude furthermore am−1 �

M . Hence, M ∈M� and, according Proposition 13.18, there exists a pair (φ,ψ) ∈
Pq,α[Qm,M − am−1,=] such that �〈s〉m,�(〈(φ,ψ)〉) = S. ��
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14 Orthogonal Matrix Polynomials and Right α-Stieltjes
Parametrization

In this section we treat various aspects of orthogonal matrix polynomials related
to Problem M[[α,∞); (sj )mj=0,�]. To be more precise: Let α ∈ R, let (sj )

2κ+1
j=0 ∈

K�
q,2κ+1,α, and let the sequence (sα8j )2κj=0 be given by (4.6). Then we will construct

in recursive way two interrelated systems (ṙ�)κ�=0 and (ṫ�)κ�=0 of q × q matrix
polynomials such that (ṙ�)κ�=0 is a monic right orthogonal system with respect to
(sj )

2κ
j=0 and (ṫ�)κ�=0 is a monic right orthogonal system with respect to (sα8j )2κj=0

(see Proposition 14.7). A similar result will be obtained in Proposition 14.8 for
sequences (sj )2κj=0 ∈ K�

q,2κ,α.
The background for the concrete construction can be described as follows: Let

α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈ K�,e
q,m,α . Then we have seen in Theorem 13.1

and Corollary 13.2 that the 2q × 2q matrix polynomialV[α,(sj )
m
j=0] defined by (12.4)

and (12.3) yields a complete description of the set Sm,q,[α,∞)[(sj )mj=0,�] of
[α,∞)-Stieltjes transforms of non-negative Hermitian measures belonging to
M�

q [[α,∞); (sj )mj=0,�]. A closer look at the construction of V[α,(sj )
m
j=0] given

in (12.4) shows that this 2q × 2q matrix polynomial is a product of m + 1
linear 2q × 2q matrix polynomials. This means that there are recursions for the
q × q blocks of the block representation (12.5) of V[α,(sj )

m
j=0]. Now we are going

to discuss more carefully q × q matrix polynomials defined by recursions of this
type. Against to the background of Theorem 7.7 we choose the right α-Stieltjes
parametrization (Qj )

κ
j=0 of a given sequence (sj )κj=0 of complex q × q matrices as

coefficients in the construction of the concrete recurrence formulas in the following
notation.

Notation 14.1 Denote by ṗ0 and q̇0 the matrix polynomials given by

ṗ0(z) := Iq and q̇0(z) := 0q×q .

Let (sj )κj=0 be a sequence of complex q × q matrices with right α-Stieltjes
parametrization (Qj )

κ
j=0. Then let the matrix polynomials ṗ1 and q̇1 be defined

by

ṗ1(z) := (z− α)Iq and q̇1(z) := Q0.

In the case κ ≥ 1, let the matrix polynomials ṗk and q̇k for all k ∈ Z2,κ+1 be
recursively defined by

ṗ2�(z) := ṗ2�−1(z)− ṗ2�−2(z)Q
†
2�−2Q2�−1

and

q̇2�(z) := q̇2�−1(z)− q̇2�−2(z)Q
†
2�−2Q2�−1,
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if k = 2� with some � ∈ N, and by

ṗ2�+1(z) := (z − α)ṗ2�(z)− ṗ2�−1(z)Q
†
2�−1Q2�

and

q̇2�+1(z) := (z − α)q̇2�(z)− q̇2�−1(z)Q
†
2�−1Q2�,

if k = 2�+ 1 with some � ∈ N.

For each � ∈ N0 let ε2�, ε2�+1 : C→ C be defined by

ε2�(z) := z− α and ε2�+1(z) := 1. (14.1)

Remark 14.2 Suppose κ ≥ 1. Let (sj )κj=0 be a sequence of complex q × q matrices
with right α-Stieltjes parametrization (Qj )

κ
j=0 and let m ∈ Z1,κ . Then

ṗm+1 = εmṗm − ṗm−1Q
†
m−1Qm and q̇m+1 = εmq̇m − q̇m−1Q

†
m−1Qm.

In view of Remark 5.5, we obtain furthermore:

Remark 14.3 Let (sj )κj=0 be a sequence of complex q × q matrices with right α-
Stieltjes parametrization (Qj )

κ
j=0. For each k ∈ Z1,κ+1, the matrix polynomials ṗk

and q̇k are built only from the matrices Q0,Q1, . . . ,Qk−1 and thus only from the
matrices s0, s1, . . . , sk−1.

Using mathematical induction, we can easily conclude:

Remark 14.4 For each � ∈ N0 with 2� − 1 ≤ κ , the function ṗ2� is a complex
q × q matrix polynomial with degree � and leading coefficient Iq . For each � ∈ N0
with 2� ≤ κ , the function ṗ2�+1 is a complex q × q matrix polynomial with degree
�+ 1 and leading coefficient Iq , satisfying ṗ2�+1(α) = 0q×q .

Regarding Remark 14.4, we are able to define the following matrix polynomials:

Notation 14.5 Let (sj )κj=0 be a sequence of complex q × q matrices. For each � ∈
N0 with 2� − 1 ≤ κ let ṙ� := ṗ2�. For each � ∈ N0 with 2� ≤ κ denote by ṫ�
the uniquely determined complex q × q matrix polynomial, satisfying ṗ2�+1(z) =
(z− α)ṫ�(z) for all z ∈ C.

Lemma 14.6 Let (sj )κj=0 be a sequence of complex q × q matrices with right α-
Stieltjes parametrization (Qj )

κ
j=0. Using Notation 14.5, for all z ∈ C, then ṙ0(z) =

Iq and ṫ0(z) = Iq and, furthermore,

ṙ�(z) = (z− α)ṫ�−1(z)− ṙ�−1(z)Q
†
2�−2Q2�−1 for each � ∈ N with 2�− 1 ≤ κ
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and

ṫ�(z) = ṙ�(z)− ṫ�−1(z)Q
†
2�−1Q2� for each � ∈ N with 2� ≤ κ.

Proof Consider an arbitrary w ∈ C. We have ṙ0(w) = ṗ0(w) = Iq and (w −
α)ṫ0(w) = ṗ1(w) = (w − α)Iq . Now assume κ ≥ 1 and consider an arbitrary
� ∈ N with 2�− 1 ≤ κ . Then

ṙ�(w) = ṗ2�(w) = ṗ2�−1(w)− ṗ2�−2(w)Q
†
2�−2Q2�−1

= (w − α)ṫ�−1(w)− ṙ�−1(w)Q
†
2�−2Q2�−1.

Now assume κ ≥ 2 and consider an arbitrary � ∈ N with 2� ≤ κ . Then we have

(w − α)ṫ�(w) = ṗ2�+1(w) = (w − α)ṗ2�(w)− ṗ2�−1(w)Q
†
2�−1Q2�

= (w − α)ṙ�(w)− (w − α)ṫ�−1(w)Q
†
2�−1Q2�

= (w − α)
[
ṙ�(w)− ṫ�−1(w)Q

†
2�−1Q2�

]
.

Since w ∈ C was arbitrarily chosen, the assertion follows. ��

Now we consider the case of an α-Stieltjes non-negative definite sequence. Then
the following two propositions shed much light to the system of q × q matrix poly-
nomials introduced in Notation 14.1. Indeed, it will turn out that these q × q matrix
polynomials possess remarkable orthogonality properties.

Proposition 14.7 Let (sj )
2κ+1
j=0 ∈ K�

q,2κ+1,α with right α-Stieltjes parametrization

(Qj )
2κ+1
j=0 . In view of Notation 14.5, then (ṙ�)κ�=0 is a monic right orthogonal system

with respect to (sj )2κj=0 and (ṫ�)κ�=0 is a monic right orthogonal system with respect

to (sα8j )2κj=0, where (sα8j )2κj=0 is given in (4.6).

Proof The key instrument of our proof will be a twofold application of Propo-
sition D.5, namely once to (ṙ�)κ�=0 and (sj )2κj=0 and a second time to (ṫ�)κ�=0 and

(sα8j )2κj=0. We use mathematical induction. From Lemma 14.6 we see that ṙ0 and ṫ0
are both complex q × q matrix polynomials with degree 0 and leading coefficient
Iq . Now assume κ ≥ 1. Using Remark A.4, we can infer from Theorem 5.6(a) that
QjQ

†
jQj+1 = Qj+1 holds true for all j ∈ Z0,2κ−1. Observe that the sequences

(sj )
2κ
j=0 and (sα8j )2κj=0 both belong to H�

q,2κ . Hence, for all � ∈ Z1,κ , the matrices
H� and Hα8� are both non-negative Hermitian. Regarding Remark 4.1, we can
apply Lemma A.8 for all � ∈ Z1,κ to conclude R(y�,2�−1) ⊆ R(H�−1) and
N (H�−1) ⊆ N (z�,2�−1) as well as R(yα8�,2�−1) ⊆ R(Hα8�−1) and N (Hα8�−1) ⊆
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N (zα8�,2�−1). Taking into account
[

H�
z�+1,2�+1

] = [ z0,�
K�

]
and −αH� +K� = Hα8� =[

Hα8�−1 yα8�,2�−1∗ ∗
]

we obtain

([0�q×q, I�q, 0�q×q ] − α[I�q, 0�q×2q]
) [ H�

z�+1,2�+1

]

= [0�q×q, I�q , 0�q×q ]
[
z0,�

K�

]
− α[I�q, 0�q×2q]

[
H�

z�+1,2�+1

]

= [I�q, 0�q×q ](K� − αH�) = [Hα8�−1, yα8�,2�−1]

(14.2)

for all � ∈ Z1,κ . We are now going to show by mathematical induction that, for all
� ∈ Z1,κ , the following statement holds true:

(I�) The matrix polynomials ṙ� and ṫ� have degree � and leading coefficient Iq .
Furthermore,H�−1r� = y�,2�−1 and Hα8�−1t� = yα8�,2�−1, where r� and t� are
taken from the block representations Y�(ṙ�) =

[−r�
Iq

]
and Y�(ṫ�) =

[−t�
Iq

]
of

the matrices Y�(ṙ�) and Y�(ṫ�) given via Notation D.1.

According to Lemma 14.6, we have

ṙ1(z) = (z− α)ṫ0(z)− ṙ0(z)Q
†
0Q1 = (z− α)Iq −Q†

0Q1 = zIq − (αIq +Q†
0Q1)

and

ṫ1(z) = ṙ1(z)− ṫ0(z)Q
†
1Q2 = ṙ1(z)−Q†

1Q2

for all z ∈ C. Consequently, ṙ1 and ṫ1 are complex q × q matrix polynomials with
degree 1 and leading coefficient Iq and, furthermore, r1 = αIq + Q†

0Q1 and t1 =
r1 +Q†

1Q2 hold true. Because of (5.1) and Q0Q
†
0Q1 = Q1, we hence obtain

H0r1 = s0r1 = Q0(αIq +Q†
0Q1) = αQ0 +Q0Q

†
0Q1

= αQ0 +Q1 = αs0 + s1 − αs0 = s1 = y1,1.

Regarding R(y1,1) ⊆ R(H0) and N (H0) ⊆ N (z1,1), we can conclude from
Lemma A.9 in combination with Remark 5.4, then H1

[−r1
Iq

] = [ 0q×q
Q2

]
. Taking

additionally into account (5.1), (14.2), and Q1Q
†
1Q2 = Q2, we get

Hα80t1 = Hα80r1 +Hα80Q†
1Q2 = −[Hα80, yα81,1]

[−r1
Iq

]
+ yα81,1 + sα80Q†

1Q2

= −([0q×q, Iq , 0q×q ] − α[Iq , 0q×2q ]
) [H1

z2,3

] [−r1
Iq

]
+ yα81,1 +Q1Q

†
1Q2

= (
α[Iq , 0q×2q ] − [0q×q, Iq , 0q×q ]

)
⎡
⎣0q×q
Q2

∗

⎤
⎦+ yα81,1 +Q2 = yα81,1.
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Consequently, statement (I1) is valid.
Now assume κ ≥ 2 and suppose that (I�− 1) holds true for some � ∈ Z2,κ . By

virtue of Lemma 14.6, we have ṙ�(z) = (z− α)ṫ�−1(z)− ṙ�−1(z)Q
†
2�−2Q2�−1 and

ṫ�(z) = ṙ�(z) − ṫ�−1(z)Q
†
2�−1Q2� for all z ∈ C. In view of (I�− 1), then ṙ� und ṫ�

are complex q × q matrix polynomials with degree � and leading coefficient Iq and,
furthermore,

r� = −
[

0q×q
−t�−1

]
+ α

[−t�−1

Iq

]
+

[−r�−1

Iq

]
Q

†
2�−2Q2�−1,

and

t� = r� +
[−t�−1

Iq

]
Q

†
2�−1Q2�

hold true. Because of [H�−1, y�,2�−1] = [y0,�−1,K�−1], we have

H�−1

[
0q×q
−t�−1

]
= [H�−1, y�,2�−1]

⎡
⎣ 0q×q
−t�−1

Iq

⎤
⎦− y�,2�−1 = K�−1

[−t�−1

Iq

]
− y�,2�−1.

In view of R(y�−1,2�−3) ⊆ R(H�−2), N (H�−2) ⊆ N (z�−1,2�−3), and (I�− 1),
we can conclude from Lemma A.9 in combination with Remark 5.4, further-
more H�−1

[−r�−1
Iq

] = [ 0(�−1)q×q
Q2�−2

]
. Regarding R(yα8�−1,2�−3) ⊆ R(Hα8�−2),

N (Hα8�−2) ⊆ N (zα8�−1,2�−3), and (I�− 1), we get by Lemma A.9 and Remark 5.4

similarly Hα8�−1
[−t�−1

Iq

] = [ 0(�−1)q×q
Q2�−1

]
. Taking additionally into account Hα8�−1 =

−αH�−1 +K�−1 and Q2�−2Q
†
2�−2Q2�−1 = Q2�−1, we obtain then

H�−1r� = −H�−1

[
0q×q
−t�−1

]
+ αH�−1

[−t�−1

Iq

]
+H�−1

[−r�−1

Iq

]
Q

†
2�−2Q2�−1

= −K�−1

[−t�−1

Iq

]
+ y�,2�−1 + αH�−1

[−t�−1

Iq

]
+

[
0(�−1)q×q
Q2�−2

]
Q

†
2�−2Q2�−1

= −Hα8�−1

[−t�−1

Iq

]
+ y�,2�−1 +

[
0(�−1)q×q

Q2�−2Q
†
2�−2Q2�−1

]
= y�,2�−1.

Regarding R(y�,2�−1) ⊆ R(H�−1) and N (H�−1) ⊆ N (z�,2�−1), we can infer from
Lemma A.9 in combination with Remark 5.4, then H�

[−r�
Iq

] = [ 0�q×q
Q2�

]
. Taking
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additionally into account (14.2) and Q2�−1Q
†
2�−1Q2� = Q2�, we thus get

Hα8�−1t� = Hα8�−1r� +Hα8�−1

[−t�−1

Iq

]
Q

†
2�−1Q2�

= −[Hα8�−1, yα8�,2�−1]
[−r�
Iq

]
+ yα8�,2�−1 +

[
0(�−1)q×q
Q2�−1

]
Q

†
2�−1Q2�

= −([0�q×q, I�q, 0�q×q ] − α[I�q, 0�q×2q]
) [ H�

z�+1,2�+1

] [−r�
Iq

]

+ yα8�,2�−1 +
[

0(�−1)q×q
Q2�−1Q

†
2�−1Q2�

]

= (
α[I�q, 0�q×2q ] − [0�q×q, I�q , 0�q×q ]

)
⎡
⎣0�q×q
Q2�

∗

⎤
⎦+ yα8�,2�−1 +

[
0(�−1)q×q
Q2�

]

= yα8�,2�−1.

Consequently, statement (I�) is valid.
Hence, statement (I�) holds true for all � ∈ Z1,κ . Applying Proposition D.5 twice,

once to (sj )2κj=0 and (ṙ�)κ�=0 and a second time to (sα8j )2κj=0 and (ṫ�)κ�=0, completes
the proof. ��

The following result is the analogue to Proposition 14.7 for sequences (sj )2κj=0 of
odd length. It can be proved in a similar way. We omit the details.

Proposition 14.8 Suppose κ ≥ 1. Let (sj )2κj=0 ∈ K�
q,2κ,α with right α-Stieltjes

parametrization (Qj )
2κ
j=0. Using Notation 14.5, then (ṙ�)κ�=0 is a monic right

orthogonal system with respect to (sj )2κj=0 and (ṫ�)κ−1
�=0 is a monic right orthogonal

system with respect to (sα8j )2κ−2
j=0 , where (sα8j )2κ−2

j=0 is given via (4.6).

It should be mentioned that, in the particular case (sj )2κj=0 ∈ K$q,2κ,α, the left
version of Proposition 14.8 is equivalent to [3, Proposition 7.2].

For the case (sj )κj=0 ∈ K�,e
q,κ,α , some information on the localization of zeros of

the polynomials det ṙ� and det ṫ� will be given by Remark 15.5 below.
Now we are going to explain the role of the polynomials (q̇j )

κ+1
j=0 introduced

in Notation 14.1. It turns out that these q × q matrix polynomials are exactly
the second kind matrix polynomials of the sequence (ṗj )

κ+1
j=0 with respect to the

sequence (sj )κj=0.

Proposition 14.9 Let (sj )κj=0 ∈ K�
q,κ,α. In view of Notations 14.1 and E.2, for all

k ∈ Z0,κ+1, then q̇k = ṗ[[s]]k .
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Proof We use mathematical induction. Consider an arbitrary z ∈ C. We have
deg ṗ0 = 0. Hence, ṗ[[s]]0 (z) = 0q×q = q̇0(z). Observe that ṗ1(w) = (w − α)ṗ0(w)

holds true for all w ∈ C. Using Lemma E.5, we thus obtain ṗ[[s]]1 = s0ṗ0.

Consequently, by virtue of (5.1), then ṗ[[s]]1 (z) = Q0 = q̇1(z) follows.

Now assume κ ≥ 1 and suppose that q̇2�−2 = ṗ[[s]]2�−2 and q̇2�−1 = ṗ[[s]]2�−1 are valid
for some � ∈ N with 2� − 1 ≤ κ . Regarding Remark 14.4, we have deg ṗ2�−2 =
� − 1 ≤ κ + 1 and deg ṗ2�−1 = � ≤ κ + 1. Using Notation 14.1 and Remark E.3,
we can thus conclude

ṗ[[s]]2� = (ṗ2�−1 − ṗ2�−2Q
†
2�−2Q2�−1)

[[s]] = ṗ[[s]]2�−1 − ṗ[[s]]2�−2Q
†
2�−2Q2�−1

= q̇2�−1 − q̇2�−2Q
†
2�−2Q2�−1 = q̇2�.

(14.3)

It remains to consider the case 2� ≤ κ . In view of Remark 3.1, we have (sj )2�j=0 ∈
K�
q,2�,α. Taking into account Remark 14.3, then Proposition 14.8 shows that (ṙk)�k=0

is a monic right orthogonal system with respect to (sj )
2�
j=0. Consequently, the

matrix polynomial ṙ� has degree � and leading coefficient Iq . Observe that (sj )2�j=0

belongs to H�
q,2�. The combination of Lemma E.4 and Proposition D.5 thus yields

P [[s]](z) = zṙ[[s]]� (z), where the matrix polynomial P is given via P(w) := wṙ�(w).
Let the matrix polynomialQ be defined byQ(w) := wq̇2�(w). Because of ṙ� = ṗ2�
and (14.3), we obtain then P [[s]] = Q. Taking additionally into account

(z− α)ṗ2�(z) = zṗ2�(z)− αṗ2�(z) = zṙ�(z)− αṗ2�(z) = P(z)− αṗ2�(z),

(z− α)q̇2�(z) = zq̇2�(z)− αq̇2�(z) = Q(z)− αq̇2�(z),

and, furthermore, degP = � + 1 ≤ κ + 1 and deg ṗ2� = � ≤ κ + 1, we can infer
with Notation 14.1 and Remark E.3 therefore

ṗ[[s]]2�+1 = (P − αṗ2� − ṗ2�−1Q
†
2�−1Q2�)

[[s]] = P [[s]] − αṗ[[s]]2� − ṗ[[s]]2�−1Q
†
2�−1Q2�

= Q− αq̇2� − q̇2�−1Q
†
2�−1Q2� = q̇2�+1.

Consequently, the assertion is proved by mathematical induction. ��

15 Representation of the Resolvent Matrix of
Problem M[[α,∞); (sj )m

j=0,�] in Terms of Orthogonal
Matrix Polynomials

Our first goal in this section can be described as follows: Let α ∈ R, let m ∈
N0, and let (sj )mj=0 ∈ K�,e

q,m,α . Furthermore, let V[α,(sj )
m
j=0] be the resolvent matrix

for Problem M[[α,∞); (sj )mj=0,�], which was defined by (12.3) and (12.4). Then
we will have a closer look at the canonical q × q blocks of this 2q × 2q matrix
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polynomial. In particular, we will see that these q × q blocks are closely related
to the q × q matrix polynomials introduced in Notation 14.1. The combination of
Proposition 15.1 with Propositions 14.7 and 14.8 shows that the lower q × q blocks
of the resolvent matrix contain alternately right orthogonal matrix polynomials with
respect to the sequences (sj )κj=0 and (sα8j )κj=0, where the latter is introduced in (4.6)
and whereas the upper q × q blocks of the resolvent matrix turn out to be intimately
connected with the q × q matrix polynomials of the second kind (see Appendix E)
with respect to the sequence (sj )κj=0.

Proposition 15.1 Let (sj )κj=0 ∈ K�,e
q,κ,α with right α-Stieltjes parametrization

(Qj )
κ
j=0. For all z ∈ C and each n ∈ N0 with 2n ≤ κ , then

V
[α,(sj )2nj=0](z) = (z− α)n

[
−(z− α)q̇2n(z)Q

†
2n −q̇2n+1(z)

(z− α)ṗ2n(z)Q
†
2n ṗ2n+1(z)

]
.

For all z ∈ C and each n ∈ N0 with 2n+ 1 ≤ κ , furthermore

V
[α,(sj )2n+1

j=0 ](z) = (z− α)n+1

[
−q̇2n+1(z)Q

†
2n+1 −q̇2n+2(z)

ṗ2n+1(z)Q
†
2n+1 ṗ2n+2(z)

]
.

Proof Because of Theorem 7.7, we have Qj = s
[j,α]
0 for all j ∈ Z0,κ . We use

mathematical induction. Consider an arbitrary z ∈ C. Regarding s[0,α]0 = Q0 and
Notation 14.1, we see

V
[α,(sj )0j=0](z) = Vα,Q0(z)

=
[

0q×q −Q0

(z− α)Q†
0 (z− α)Iq

]
=

[
−(z− α)q̇0(z)Q

†
0 −q̇1(z)

(z − α)ṗ0(z)Q
†
0 ṗ1(z)

]
.

Now assume κ ≥ 1. In view of s[m,α]0 = Qm, we have V
[α,(sj )mj=0] =

V[α,(sj )
m−1
j=0 ]Vα,Qm for all m ∈ Z1,κ . Taking into account Notation 14.1, we have

then

V
[α,(sj )1j=0](z) = V

[α,(sj )0j=0](z)Vα,Q1(z)

=
[
−(z− α)q̇0(z)Q

†
0 −q̇1(z)

(z − α)ṗ0(z)Q
†
0 ṗ1(z)

][
0q×q −Q1

(z − α)Q†
1 (z − α)Iq

]

=
⎡
⎣−(z− α)q̇1(z)Q

†
1 (z− α)q̇0(z)Q

†
0Q1 − (z − α)q̇1(z)

(z− α)ṗ1(z)Q
†
1 −(z− α)ṗ0(z)Q

†
0Q1 + (z− α)ṗ1(z)

⎤
⎦

= (z − α)
[
−q̇1(z)Q

†
1 −q̇2(z)

ṗ1(z)Q
†
1 ṗ2(z)

]
.
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Now assume κ ≥ 2 and suppose that

V[α,(sj )
2�−1
j=0 ](z) = (z− α)�

[
−q̇2�−1(z)Q

†
2�−1 −q̇2�(z)

ṗ2�−1(z)Q
†
2�−1 ṗ2�(z)

]

holds true for some � ∈ N with 2� ≤ κ . Regarding V
[α,(sj )2�j=0] = V

[α,(sj )2�−1
j=0 ]Vα,Q2�

and Notation 14.1, we get then

V
[α,(sj )2�j=0](z)

= (z− α)�
[
−q̇2�−1(z)Q

†
2�−1 −q̇2�(z)

ṗ2�−1(z)Q
†
2�−1 ṗ2�(z)

][
0q×q −Q2�

(z− α)Q†
2� (z − α)Iq

]

= (z− α)�
⎡
⎣−(z− α)q̇2�(z)Q

†
2� q̇2�−1(z)Q

†
2�−1Q2� − (z− α)q̇2�(z)

(z− α)ṗ2�(z)Q
†
2� −ṗ2�−1(z)Q

†
2�−1Q2� + (z− α)ṗ2�(z)

⎤
⎦

= (z− α)�
[
−(z− α)q̇2�(z)Q

†
2� −q̇2�+1(z)

(z− α)ṗ2�(z)Q
†
2� ṗ2�+1(z)

]
.

It remains to consider the case 2� + 1 ≤ κ . Taking into account V[α,(sj )
2�+1
j=0 ] =

V
[α,(sj )2�j=0]Vα,Q2�+1 and Notation 14.1, we obtain similarly

V[α,(sj )
2�+1
j=0 ](z)

= (z− α)�
[
−(z− α)q̇2�(z)Q

†
2� −q̇2�+1(z)

(z− α)ṗ2�(z)Q
†
2� ṗ2�+1(z)

][
0q×q −Q2�+1

(z− α)Q†
2�+1 (z− α)Iq

]

= (z− α)�+1

⎡
⎣−q̇2�+1(z)Q

†
2�+1 q̇2�(z)Q

†
2�Q2�+1 − q̇2�+1(z)

ṗ2�+1(z)Q
†
2�+1 −ṗ2�(z)Q

†
2�Q2�+1 + ṗ2�+1(z)

⎤
⎦

= (z− α)�+1

[
−q̇2�+1(z)Q

†
2�+1 −q̇2�+2(z)

ṗ2�+1(z)Q
†
2�+1 ṗ2�+2(z)

]
.

Therefore, the assertion is proved by mathematical induction. ��

As direct consequences of Proposition 15.1, we obtain against to the background
of [21, Proposition 12.13, Theorem 13.1] now new representations for the solution
sets of the Problems M[[α,∞); (sj )mj=0,=] and M[[α,∞); (sj )mj=0,�].
Theorem 15.2 Let n ∈ N0 and let (sj )2nj=0 ∈ K�,e

q,2n,α:
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(a) Let G ∈ S9q,[α,∞)[Ln]. Then det[(z− α)ṗ2n(z)L
†
nG(z)+ ṗ2n+1(z)] �= 0 for all

z ∈ C \ [α,∞) and the matrix-valued function F : C \ [α,∞)→ C
q×q defined

by

F(z) = −
[
(z− α)q̇2n(z)L

†
nG(z)+ q̇2n+1(z)

]

×
[
(z− α)ṗ2n(z)L

†
nG(z)+ ṗ2n+1(z)

]−1
(15.1)

belongs to S2n,q,[α,∞)[(sj )2nj=0,=].
(b) For each F ∈ S2n,q,[α,∞)[(sj )2nj=0,=], there exists a unique G ∈ S9

q,[α,∞)[Ln]
such that (15.1) is fulfilled for all z ∈ C \ [α,∞).

Proof Let
[ w̃2n x̃2n
ỹ2n z̃2n

]
be the q × q block representation of the restriction of

V[α,(sj )
2n
j=0] ontoC\[α,∞). Denote by (Qj )

2n
j=0 the right α-Stieltjes parametrization

of (sj )2nj=0 and by (s
[2n,α]
j )0j=0 the 2n-th α-S-transform of (sj )2nj=0. Because of

Theorem 7.7 and Definition 5.1, we have s[2n,α]0 = Q2n = Ln.

(a) Taking into account G ∈ S9q,[α,∞)[s[2n,α]0 ], the application of [21, Proposi-
tion 12.13(a)] yields det[ỹ2n(z)G(z) + z̃2n(z)] �= 0 for all z ∈ C \ [α,∞).
Regarding G ∈ S9q,[α,∞)[Q2n], from [21, Theorem 13.1(a)] we can infer that

(w̃2nG + x̃2n)(ỹ2nG + z̃2n)
−1 belongs to S2n,q,[α,∞)[(sj )2nj=0,=]. By virtue of

Proposition 15.1, all assertions of part (a) follow.
(b) Taking into account Proposition 15.1, this is a consequence of [21, Theo-

rem 13.1(b)].
��

Theorem 15.3 Let n ∈ N0 and let (sj )
2n+1
j=0 ∈ K�,e

q,2n+1,α:

(a) Let G ∈ S9q,[α,∞)[Lα8n]. Then det[ṗ2n+1(z)L
†
α8nG(z) + ṗ2n+2(z)] �= 0 for all

z ∈ C \ [α,∞) and the matrix-valued function F : C \ [α,∞)→ C
q×q defined

by

F(z) = −
[
q̇2n+1(z)L

†
α8nG(z)+ q̇2n+2(z)

][
ṗ2n+1(z)L

†
α8nG(z)+ṗ2n+2(z)

]−1

(15.2)

belongs to S2n+1,q,[α,∞)[(sj )2n+1
j=0 ,=].

(b) For each F ∈ S2n+1,q,[α,∞)[(sj )2n+1
j=0 ,=], there exists a unique G ∈

S9q,[α,∞)[Lα8n] such that (15.2) is fulfilled for all z ∈ C \ [α,∞).
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Proof Let
[ w̃2n+1 x̃2n+1
ỹ2n+1 z̃2n+1

]
be the q × q block representation of the restriction of

V
[α,(sj )2n+1

j=0 ] onto C \ [α,∞). Denote by (Qj )
2n+1
j=0 the right α-Stieltjes parametriza-

tion of (sj )
2n+1
j=0 and by (s[2n+1,α]

j )0j=0 the (2n + 1)-th α-S-transform of (sj )
2n+1
j=0 .

Because of Theorem 7.7 and Definition 5.1, we have s[2n+1,α]
0 = Q2n+1 = Lα8n.

(a) Taking into account G ∈ S9q,[α,∞)[s[2n+1,α]
0 ], the application of [21, Proposi-

tion 12.13(a)] yields det[ỹ2n+1(z)G(z)+ z̃2n+1(z)] �= 0 for all z ∈ C \ [α,∞).
RegardingG ∈ S9q,[α,∞)[Q2n+1], we can infer from [21, Theorem 13.1(a)] that

(w̃2n+1G + x̃2n+1)(ỹ2n+1G + z̃2n+1)
−1 belongs to S2n+1,q,[α,∞)[(sj )2n+1

j=0 ,=].
By virtue of Proposition 15.1, all assertions of part (a) follow.

(b) Because of Proposition 15.1, this is a consequence of [21, Theorem 13.1(b)].

��

From Theorems 15.2 and 15.3 conclusions for the localization of the zeros of the
polynomials det ṗk can be obtained:

Corollary 15.4 Let (sj )κj=0 ∈ K�,e
q,κ,α. For all z ∈ C \ [α,∞) and each k ∈ Z0,κ+1,

then det ṗk(z) �= 0.

Proof From Notation 14.1 we see det ṗ0(z) = 1 �= 0 for all z ∈ C. Now consider
an arbitrary k ∈ Z1,κ+1. Using Remark 3.4, we can infer (sj )

k−1
j=0 ∈ K�,e

q,k−1,α. Let
G : C \ [α,∞)→ C

q×q be defined by G(z) := 0q×q . Obviously, G ∈ S9q,[α,∞)[A]
for all A ∈ C

q×q . Regarding Remark 14.3, we thus conclude from Theorems 15.2
and 15.3 that det ṗk(z) �= 0 for all z ∈ C \ [α,∞). ��

In view of Notation 14.5, we can infer from Corollary 15.4 immediately:

Remark 15.5 Let (sj )κj=0 ∈ K�,e
q,κ,α. Then det ṙ�(z) �= 0 for all z ∈ C \ [α,∞) and

each � ∈ N0 with 2�− 1 ≤ κ . Furthermore, det ṫ�(z) �= 0 for all z ∈ C \ [α,∞) and
each � ∈ N0 with 2� ≤ κ .

Theorem 15.6 Let n ∈ N0 and let (sj )2nj=0 ∈ K�,e
q,2n,α. Let p̃2n, q̃2n : C \ [α,∞)→

C
q×q be defined by

p̃2n(z) := (z− α)ṗ2n(z) and q̃2n(z) := (z− α)q̇2n(z).

Denote by p̃2n+1 and q̃2n+1 the restriction of ṗ2n+1 and q̇2n+1 onto C \ [α,∞),
resp.:

(a) Let � ∈ 〈Pq,α[Ln]〉 and let (G1,G2) ∈ �. Then det(p̃2nL
†
nG1+ p̃2n+1G2) does

not vanish identically in C \ [α,∞) and

F = −(q̃2nL
†
nG1 + q̃2n+1G2)(p̃2nL

†
nG1 + p̃2n+1G2)

−1 (15.3)
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belongs to S2n,q,[α,∞)[(sj )2nj=0,�].
(b) For each F ∈ S2n,q,[α,∞)[(sj )2nj=0,�], there exists a unique equivalence class

� ∈ 〈Pq,α[Ln]〉 such that (15.3) is fulfilled for each (G1,G2) ∈ �.

Proof Let
[ w̃2n x̃2n
ỹ2n z̃2n

]
be the q × q block representation of the restriction of

V
[α,(sj )2nj=0] ontoC\[α,∞). Denote by (Qj )

2n
j=0 the right α-Stieltjes parametrization

of (sj )2nj=0 and by (s
[2n,α]
j )0j=0 the 2n-th α-S-transform of (sj )2nj=0. Because of

Theorem 7.7 and Definition 5.1, we have s[2n,α]0 = Q2n = Ln.

(a) We have (G1,G2) ∈ Pq,α[s[2n,α]0 ]. Thus, we can apply Theorem 13.1(a) to see
that det(ỹ2nG1 + z̃2nG2) does not vanish identically in z ∈ C \ [α,∞) and that
(w̃2nG1 + x̃2nG2)(ỹ2nG1 + z̃2nG2)

−1 belongs to S2n,q,[α,∞)[(sj )2nj=0,�]. By
virtue of Proposition 15.1, all assertions of part (a) follow.

(b) In view of Proposition 15.1, this is a consequence of parts (b) and (c) of
Theorem 13.1.

��

Theorem 15.7 Let n ∈ N0 and let (sj )
2n+1
j=0 ∈ K�,e

q,2n+1,α. Denote by p̃2n+1, q̃2n+1,
p̃2n+2, and q̃2n+2 the restriction of ṗ2n+1, q̇2n+1, ṗ2n+2, and q̇2n+2 onto C\ [α,∞),
resp.:

(a) Let � ∈ 〈Pq,α[Lα8n]〉 and let (G1,G2) ∈ �. Then det(p̃2n+1L
†
α8nG1 +

ṗ2n+2G2) does not vanish identically in C \ [α,∞) and

F = −(q̃2n+1L
†
α8nG1 + q̃2n+2G2)(p̃2n+1L

†
α8nG1 + p̃2n+2G2)

−1 (15.4)

belongs to S2n+1,q,[α,∞)[(sj )2n+1
j=0 ,�].

(b) For each F ∈ S2n+1,q,[α,∞)[(sj )2n+1
j=0 ,�], there exists a unique equivalence

class � ∈ 〈Pq,α[Lα8n]〉 such that (15.4) is fulfilled for each (G1,G2) ∈ �.

Proof Let
[ w̃2n+1 x̃2n+1
ỹ2n+1 z̃2n+1

]
be the q × q block representation of the restriction of

V
[α,(sj )2n+1

j=0 ] onto C \ [α,∞). Denote by (Qj )
2n+1
j=0 the right α-Stieltjes parametriza-

tion of (sj )
2n+1
j=0 and by (s[2n+1,α]

j )0j=0 the (2n + 1)-th α-S-transform of (sj )
2n+1
j=0 .

Because of Theorem 7.7 and Definition 5.1, we have s[2n+1,α]
0 = Q2n+1 = Lα8n.

(a) We have (G1,G2) ∈ Pq,α[s[2n+1,α]
0 ]. Thus, we can apply Theorem 13.1(a)

to see that det(ỹ2n+1G1 + z̃2n+1G2) does not vanish identically in z ∈ C \
[α,∞) and that (w̃2n+1G1 + x̃2n+1G2)(ỹ2n+1G1 + z̃2n+1G2)

−1 belongs to
S2n+1,q,[α,∞)[(sj )2n+1

j=0 ,�]. By virtue of Proposition 15.1, all assertions of
part (a) follow.

(b) In view of Proposition 15.1, this is a consequence of parts (b) and (c) of
Theorem 13.1.

��
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16 Further Expressions for the Upper and Lower
Sq,[α,∞)-Functions Associated with a Sequence
(sj )m

j=0 ∈ K�,e
q,m,α

Against to the background of Proposition 13.8 and formula (12.5) the application of
Proposition 15.1 yields now interesting new representations for the upper and lower
Sq,[α,∞)-functions associated with a sequence (sj )κj=0 ∈ K�,e

q,κ,α.

Proposition 16.1 Let (sj )κj=0 ∈ K�,e
q,κ,α and let m ∈ Z0,κ . Denote by Sm and Sm

the upper and lower Sq,[α,∞)-functions associated with (sj )mj=0. Then:

(a) det ṗm(z) �= 0 and Sm(z) = −[q̇m(z)][ṗm(z)]−1 for all z ∈ C \ [α,∞).
(b) det ṗm+1(z) �= 0 and Sm(z) = −[q̇m+1(z)][ṗm+1(z)]−1 for all z ∈ C \ [α,∞).

Proof Using Remark 3.4, we can infer (sj )mj=0 ∈ K�,e
q,m,α . Consider an arbitrary

z ∈ C \ [α,∞).
(a) From Example 6.12 we can conclude S0(z) = 0q×q . Taking additionally

into account Notation 14.1, we obtain then det ṗ0(z) = 1 and S0(z) =
−[q̇0(z)][ṗ0(z)]−1. If m ≥ 1, then, regarding Remark 14.3, the all assertions
of part (a) follow by combining Propositions 13.8 and 15.1.

(b) Combine Propositions 13.8 and 15.1 and take into account Remark 14.3.
��

Corollary 16.2 Suppose κ ≥ 1. Let (sj )κj=0 ∈ K�,e
q,κ,α and let m ∈ Z1,κ . Denote

by Sm and Sm−1 the lower and the upper Sq,[α,∞)-function associated with (sj )mj=0

and with (sj )
m−1
j=0 , respectively. Then Sm = Sm−1.

Proof This is an immediate consequence of Proposition 16.1. ��

Corollary 16.3 Let (sj )κj=0 ∈ K�,e
q,κ,α and let m ∈ Z0,κ . Denote by Sm and Sm the

upper and lower Sq,[α,∞)-functions associated with (sj )mj=0. Then:

(a) det ṗm(z) �= 0 and Sm(z) = −[ṗm(z)]−∗[q̇m(z)]∗ for all z ∈ C \ [α,∞).
(b) det ṗm+1(z) �= 0 and Sm(z) = −[ṗm+1(z)]−∗[q̇m+1(z)]∗ for all z ∈ C\ [α,∞).

Proof In view of (9.4) and the definition of Sm and Sm as [α,∞)-Stieltjes
transforms, we obviously have [Sm(w)]∗ = Sm(w) and [Sm(w)]∗ = Sm(w) for
all w ∈ C \ [α,∞). The application of Proposition 16.1 completes the proof. ��
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17 Matricial Weyl Intervals Associated with
M�

q [[α,∞); (sj )m
j=0,�] and a Given Point x ∈ (−∞, α)

Our main goal in this section is the investigation of the following set of matrices
from C

q×q .

Notation 17.1 Let m ∈ N0 and let (sj )mj=0 ∈ K�
q,m,α. Then, for all x ∈ (−∞, α),

let I[α, x, (sj )mj=0;�] := {F(x) : F ∈ Sm,q,[α,∞)[(sj )mj=0,�]}.
Taking into account Definition 8.1, we infer that the set introduced in Nota-

tion 17.1 is contained in the set C
q×q
� . Our main result in this section is The-

orem 17.16, which shows that the set I[α, x, (sj )mj=0;�] is a closed bounded
matricial interval, the endpoints of which are given by the values of the particular
solutions Sm and Sm at the point x. Here Sm and Sm are the upper and lower
Sq,[α,∞)-functions associated with (sj )mj=0. For the construction of the functions

Sm and Sm, we refer to Sect, 13. In the so-called non-degenerate case of a
sequence (sj )mj=0 ∈ K$q,m,α , this result was obtained in the recent thesis [27]
of Benjamin Jeschke (see also [28]). B. Jeschke generalized the methods due to
Yu. M. Dyukarev [7], who considered the particular case α = 0. Our strategy of
proof is completely different of that used by Yu. M. Dyukarev and B. Jeschke. Our
proof is based on an inductive procedure. In the heart of our construction lies the
coupled pair of Schur–Stieltjes transforms introduced in Sect. 12.

Remark 17.2 Let α,ω ∈ R with ω ≤ α and let κ ∈ N0 ∪ {∞}. Then it is readily
checked that K�

q,κ,α ⊆ K�
q,κ,ω and K�,e

q,κ,α ⊆ K�,e
q,κ,ω.

Lemma 17.3 Let ω, x ∈ R with x < ω ≤ α, let m ∈ N0, and let (sj )mj=0 ∈ K�
q,m,α .

Then (sj )mj=0 ∈ K�
q,m,ω and I[α, x, (sj )mj=0;�] ⊆ I[ω, x, (sj )mj=0;�].

Proof From Remark 17.2 we obtain (sj )
m
j=0 ∈ K�

q,m,ω. In view of Theo-
rem 10.5, let F ∈ Sm,q,[α,∞)[(sj )mj=0,�] with [α,∞)-Stieltjes measure σF .

Regarding [α,∞) ⊆ [ω,∞), then μ : B[ω,∞) → C
q×q
� defined by μ(B) :=

σF (B ∩ [α,∞)) belongs to M�
q [[ω,∞); (sj )mj=0,�] and

∫
[ω,∞)(t − x)−1μ(dt) =∫

[α,∞)(t − x)−1σF (dt). Hence, the [ω,∞)-Stieltjes transform Sμ of μ belongs to
Sm,q,[ω,∞)[(sj )mj=0,�] and fulfills Sμ(x) = F(x). ��

Lemma 17.4 Let m ∈ N and let (sj )mj=0 ∈ K�,e
q,m,α with first α-S-transform

(tj )
m−1
j=0 . For all x ∈ (−∞, α), then I[α, x, (sj )mj=0;�] = {G[−,α,s0](x) : G ∈

Sm−1,q,[α,∞)[(tj )m−1
j=0 ,�]}.

Proof Let x ∈ (−∞, α) and let X ∈ I[α, x, (sj )mj=0;�]. Then there
is an F ∈ Sm,q,[α,∞)[(sj )mj=0,�] with X = F(x). According to The-
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orem 12.5, then the (α, s0)-Schur–Stieltjes transform G of F belongs to
Sm−1,q,[α,∞)[(tj )m−1

j=0 ,�]. Since (sj )
m−1
j=0 ∈ K�,e

q,m−1,α by virtue of Remark 3.4,

and F ∈ Sm−1,q,[α,∞)[(sj )m−1
j=0 ,=] because of Remark 10.4, the application of [21,

Corollary 9.12] yields G[−,α,s0] = F . In particular,X = F(x) = G[−,α,s0](x).
Conversely, for each G ∈ Sm−1,q,[α,∞)[(tj )m−1

j=0 ,�], we have G[−,α,s0] ∈
Sm,q,[α,∞)[(sj )mj=0,�] by virtue of [23, Theorem 10.5], and hence G[−,α,s0](x) ∈
I[α, x, (sj )mj=0;�]. ��

Remark 17.5 Letm ∈ N0, let (sj )mj=0 ∈ K�
q,m,α , and let F ∈ Sm,q,[α,∞)[(sj )mj=0,�].

In view of Definition 8.1, Proposition 10.7, and Notation 8.4, then F(x) ∈ C
q×q
�

for all x ∈ (−∞, α) and R(F (z)) ⊆ R(s0) for all z ∈ C \ [α,∞).
Lemma 17.6 Let m ∈ N, let (sj )mj=0 ∈ K�,e

q,m,α with first α-S-transform (tj )
m−1
j=0 ,

and let G ∈ Sm−1,q,[α,∞)[(tj )m−1
j=0 ,�].

(a) The inclusion R(G(z)) ⊆ R(s0), the inequality det((z− α)[s†
0G(z)+ Iq ]) �= 0,

and the equationG[−,α,s0](z) = −s0((z− α)[s†
0G(z)+ Iq ])−1 hold true for all

z ∈ C \ [α,∞).
(b) G[−,α,s0](x) = (α − x)−1s0[G(x)+ s0]†s0 for all x ∈ (−∞, α).

Proof Because of (sj )mj=0 ∈ K�,e
q,m,α , Remark 3.4 implies (sj )mj=0 ∈ K�

q,m,α .

Thus, Lemma 3.2 yields s0 ∈ C
q×q
� . Theorem 7.4 yields (tj )

m−1
j=0 ∈ K�,e

q,m−1,α.

According to Remark 17.5, we obtain then G(x) ∈ C
q×q
� for all x ∈ (−∞, α)

and R(G(z)) ⊆ R(t0) for all z ∈ C \ [α,∞). Since R(t0) ⊆ R(s0) holds true by
virtue of Definition 7.3, then R(G(z)) ⊆ R(s0) follows for all z ∈ C \ [α,∞). In
particular,G ∈ Sq,[α,∞)[s0]. Consequently, for all z ∈ C\[α,∞), then Lemma 12.3

and (12.3) yield G(z) ∈ Q[(z−α)s†
0,(z−α)Iq ] and G[−,α,s0](z) = S(q,q)

Vα,s0 (z)
(G(z)), i. e.,

det[(z− α)s†
0G(z)+ (z− α)Iq ] �= 0 and G[−,α,s0](z) = −s0[(z− α)s†

0G(z)+ (z−
α)Iq ]−1. Consider now an arbitrary x ∈ (−∞, α). Then we can apply Lemma A.7

with M = s0 and X = G(x) to obtain s0[s†
0G(x) + Iq ]−1 = s0[G(x) + s0]†s0.

Hence, G[−,α,s0](x) = (α − x)−1s0[G(x)+ s0]†s0. ��

Lemma 17.7 Let m ∈ N0 and let (sj )mj=0 ∈ K�,e
q,m,α with right α-Stieltjes

parametrization (Qj )
m
j=0. Let V[α,(sj )

m
j=0] be defined via (12.4) and (12.3) and

let (12.5) be the q × q block representation of V[α,(sj )
m
j=0]. Then:

(a) Let φ
m
,ψ

m
: C \ [α,∞)→ C

q×q be defined by φ
m
(z) := Qm and ψ

m
(z) :=

PN (Qm) where the matrix PN (Qm) is introduced in Remark A.2. For all z ∈
C \ [α,∞), then (φ

m
(z), ψ

m
(z)) ∈ Q̃

[v[α,(sj )
m
j=0 ]

21 (z),v
[α,(sj )mj=0]
22 (z)]

and Sm(z) =
S̃(q,q)
V
[α,(sj )mj=0](z)

((φ
m
(z), ψ

m
(z))).
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(b) Let φm,ψm : C \ [α,∞)→ C
q×q be defined by φm(z) := 0q×q and ψm(z) :=

Iq . For all z ∈ C \ [α,∞), then (φm(z), ψm(z)) ∈ Q̃
[v[α,(sj )

m
j=0]

21 (z),v
[α,(sj )mj=0]
22 (z)]

and Sm(z) = S̃(q,q)
V
[α,(sj )mj=0 ](z)

((φm(z), ψm(z))). For all z ∈ C \ [α,∞), further-

more φm(z) ∈ Q
[v[α,(sj )

m
j=0]

21 (z),v
[α,(sj )mj=0]
22 (z)]

and Sm(z) = S(q,q)
V
[α,(sj )mj=0](z)

(φm(z)).

Proof The assertions are an immediate consequence of Theorem 13.9. ��

The following notation turns out to be very useful what concerns a unique
presentation of subsequent results.

Notation 17.8 Let (sj )κj=0 ∈ K�,e
q,κ,α. Then, for all n ∈ N0 with 2n ≤ κ , let

S
〈s〉
−,2n,α := S2n and S〈s〉+,2n,α := S2n. Furthermore, for all n ∈ N0 with 2n + 1 ≤ κ ,

let S〈s〉−,2n+1,α := S2n+1 and S〈s〉+,2n+1,α := S2n+1.

In situations in which it is obvious which sequence (sj )κj=0 of complex matrices

is meant, we will also write S−,m,α instead of S〈s〉−,m,α and S+,m,α instead of S〈s〉+,m,α ,
m ∈ Z0,κ . Using Notation 17.8 we can rewrite Corollary 16.2 in the following way.

Lemma 17.9 If (sj )κj=0 ∈ K�,e
q,κ,α, then S−,2n,α = S−,2n−1,α for all n ∈ N with

2n ≤ κ and S+,2n+1,α = S+,2n,α for all n ∈ N0 with 2n+ 1 ≤ κ .

Proof This is an immediate consequence of Corollary 16.2 and Notation 17.8. ��

Remark 17.10 Let (sj )κj=0 ∈ K�,e
q,κ,α . In view of Notation 17.8, Lemma 17.7, (12.4),

(12.3), and (5.1), for all z ∈ C \ [α,∞), then S−,0,α(z) = 0q×q and S+,0,α(z) =
(α − z)−1s0.

Lemma 17.11 Let (sj )κj=0 ∈ K�,e
q,κ,α and let m ∈ Z0,κ . Then:

(a) Sm ∈ Sm,q,[α,∞)[(sj )mj=0,=] and Sm ∈ Sm,q,[α,∞)[(sj )mj=0,�]. If m ≥ 1,

furthermore Sm ∈ Sm−1,q,[α,∞)[(sj )m−1
j=0 ,=].

(b) Sm(x), Sm(x) ∈ C
q×q
� for all x ∈ (−∞, α).

(c) Let z ∈ C\ [α,∞). Then R(Sm(z)) = R(s0) and R(Sm(z)) ⊆ R(s0). Ifm ≥ 1,
furthermore R(Sm(z)) = R(s0).

Proof In view of Remarks 3.4 and 3.3, we have (sj )mj=0 ∈ K�,e
q,m,α ⊆ K�

q,m,α . Propo-

sition 6.13 yields σm ∈ M�
q [[α,∞); (sj )mj=0,=], whereas Proposition 6.14(a)

shows that σm ∈ M�
q [[α,∞); (sj )mj=0,�]. Hence, Sm ∈ Sm,q,[α,∞)[(sj )mj=0,=]

and Sm ∈ Sm,q,[α,∞)[(sj )mj=0,�]. If m ≥ 1, then Remark 10.4 yields Sm ∈
Sm−1,q,[α,∞)[(sj )m−1

j=0 ,=]. Thus, (a) is proved. In view of (a), parts (b) and (c) follow
from Definition 8.1, [21, Proposition 5.5], and Lemma A.17. ��
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Lemma 17.12 Suppose κ ≥ 1. Let (sj )κj=0 ∈ K�,e
q,κ,α with first α-S-transform

(tj )
κ−1
j=0 and let m ∈ Z1,κ . Then S〈s〉m = (S

〈t〉
m−1)

[−,α,s0]
and S

〈s〉
m = (S

〈t〉
m−1)

[−,α,s0]
.

In particular, S〈s〉−,m,α = (S〈t〉+,m−1,α)
[−,α,s0]

and S〈s〉+,m,α = (S〈t〉−,m−1,α)
[−,α,s0]

.

Proof Let z ∈ C \ [α,∞). From [20, Remark 7.3] we see that (tj )
m−1
j=0 is the

first α-S-transform of (sj )mj=0. Because of Remark 3.4, we have (sj )mj=0 ∈ K�,e
q,m,α .

Theorem 7.4 yields then

(tj )
m−1
j=0 ∈ K�,e

q,m−1,α. (17.1)

Denote by (Qj )
κ
j=0 the right α-Stieltjes parametrization of (sj )κj=0 and by (Pj )

κ−1
j=0

the right α-Stieltjes parametrization of (tj )
κ−1
j=0. According to Remark 5.5, then

(Qj )
m
j=0 is the right α-Stieltjes parametrization of (sj )mj=0 and (Pj )

m−1
j=0 the right α-

Stieltjes parametrization of (tj )
m−1
j=0 . From [20, Theorem 9.26] we get furthermore

Pm−1 = Qm. A twofold application of Lemma 17.7 yields then

S〈s〉m (z) = S̃(q,q)
V
[α,(sj )mj=0](z)

(
(Qm,PN (Qm))

)
, S

〈s〉
m (z) = S(q,q)

V
[α,(sj )mj=0](z)

(0q×q)

and

S
〈t〉
m−1(z) = S̃(q,q)

V
[α,(tj )m−1

j=0 ](z)

(
(Qm,PN (Qm))

)
, S
〈t〉
m−1(z) = S(q,q)

V
[α,(tj )m−1

j=0 ](z)
(0q×q).

Because of (sj )κj=0 ∈ K�,e
q,κ,α , Remark 3.4 implies (sj )

κ
j=0 ∈ K�

q,κ,α. Thus,

Lemma 3.2 yields s0 ∈ C
q×q
� . In view of (17.1), from parts (a) and (c) of

Lemma 17.11 we conclude that S〈t〉m−1 and S
〈t〉
m−1 both belong to the class Sq,[α,∞)

and that R(S〈t〉m−1(w)) ⊆ R(t0) and R(S〈t〉m−1(w)) ⊆ R(t0) hold true for all

w ∈ C\[α,∞). Since Definition 7.3 shows that R(t0) ⊆ R(s0), then S〈t〉m−1, S
〈t〉
m−1 ∈

Sq,[α,∞)[s0] follows. Consequently, Lemma 12.3 yields

(S
〈t〉
m−1)

[−,α,s0]
(z) = S(q,q)Vα,s0 (z)

(
S
〈t〉
m−1(z)

)

and

(S
〈t〉
m−1)

[−,α,s0]
(z) = S(q,q)Vα,s0 (z)

(
S
〈t〉
m−1(z)

)
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for all z ∈ C \ [α,∞). In view of Remark 12.2, we have V[α,(sj )
m
j=0] =

Vα,s0V
[α,(tj )m−1

j=0 ]. Thus, for each z ∈ C \ [α,∞), from Lemma 17.7 and Proposi-
tion C.4 we get

Sm(z) = S̃(q,q)
V
[α,(sj )mj=0](z)

(
(Qm,PN (Qm))

)

= S(q,q)Vα,s0 (z)

(
S̃(q,q)
V
[α,(tj )m−1

j=0 ](z)

(
(Qm,PN (Qm))

))

= S(q,q)Vα,s0 (z)

(
S
〈t〉
m−1(z)

)
= (S〈t〉m−1)

[−,α,s0]
(z)

and

Sm(z) = S(q,q)
V
[α,(sj )mj=0](z)

(0q×q) = S(q,q)Vα,s0 (z)

(
S(q,q)
V
[α,(tj )m−1

j=0 ](z)
(0q×q)

)

= S(q,q)Vα,s0 (z)

(
S
〈t〉
m−1(z)

)
= (S〈t〉m−1)

[−,α,s0]
(z).

��

Lemma 17.13 Let B ∈ C
q×q
H , let x ∈ (−∞, α), and let σ ∈ M�

q ([α,∞)) with
σ([α,∞)) � B. Then X := ∫

[α,∞)(t − x)−1σ(dt) fulfills 0q×q � X � (α− x)−1B

and R(X) = R(σ ([α,∞))).

Proof For all t ∈ [α,∞) we have 0 < α − x ≤ t − x and hence 0 < (t − x)−1 ≤
(α − x)−1. Thus, we obtain

0q×q �
∫
[α,∞)

1

t − x σ(dt) = X

�
∫
[α,∞)

1

α − x σ(dt) =
1

α − x σ([α,∞)) �
1

α − xB

and, according to [17, Lemma B.2(b)], furthermore R(X) = R(σ ([α,∞))). ��

Lemma 17.14 Let (sj )κj=0 ∈ K�,e
q,κ,α. Then:

(a) S+,2n,α ∈ S2n,q,[α,∞)[(sj )2nj=0,=] and S−,2n,α ∈ S2n,q,[α,∞)[(sj )2nj=0,�] for all
n ∈ N0 with 2n ≤ κ .

(b) S−,2n+1,α ∈ S2n+1,q,[α,∞)[(sj )2n+1
j=0 ,=] and S+,2n+1,α ∈ S2n+1,q,[α,∞)

[(sj )2n+1
j=0 ,�] ⊆ S2n,q,[α,∞)[(sj )2nj=0,=] for all n ∈ N0 with 2n+ 1 ≤ κ .
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(c) Let m ∈ Z0,κ . Then S+,m,α(x), S−,m,α(x) ∈ C
q×q
� for all x ∈ (−∞, α) and

R(S+,m,α(z)) = R(s0) and R(S−,m,α(z)) ⊆ R(s0) for all z ∈ C \ [α,∞). If
m ≥ 1, furthermore R(S−,m,α(z)) = R(s0) for all z ∈ C \ [α,∞).

Proof In view of Notation 17.8 and Remark 10.4, this is an immediate consequence
of Lemma 17.11. ��

Lemma 17.15 Let (sj )κj=0 ∈ K�,e
q,κ,α and let x ∈ (−∞, α). Then 0q×q =

S−,0,α(x) � S+,0,α(x) and I[α, x, (sj )0j=0;�] = [S−,0,α(x), S+,0,α(x)].

Proof Let η := (α−x)−1 and letM := s0. From Remark 17.10 we see S−,0,α(x) =
0q×q and S+,0,α(x) = ηM . Because of (sj )κj=0 ∈ K�,e

q,κ,α, we have M ∈ C
q×q
� .

Taking additionally into account η ∈ (0,∞), then Remark A.12 yields S+,0,α(x) ∈
C
q×q
� . Consequently, 0q×q = S−,0,α(x) � S+,0,α(x) holds true.

Consider now an arbitrary X ∈ I[α, x, (sj )0j=0;�]. Then there exists a function

F ∈ S0,q,[α,∞)[(sj )0j=0,�] with X = F(x). In particular, F ∈ S0,q,[α,∞) and the

[α,∞)-Stieltjes measure σF of F belongs to M�
q [[α,∞); (sj )0j=0,�] and fulfills

X = ∫
[α,∞)(t − x)−1σF (dt). Hence, σF ∈ M�

q ([α,∞)) and σF ([α,∞)) � M

hold true. According to Lemma 17.13, then 0q×q � X � ηM . Consequently, X ∈
[0q×q , ηM] by virtue of (A.3).

Conversely, consider now an arbitrary matrix X ∈ [0q×q, ηM]. By virtue
of (A.3), then X is Hermitian satisfying 0q×q � X � ηM . In view of η > 0 and
Remark A.12, the matrix N := η−1X belongs to C

q×q
� and fulfills N � M . Hence,

σ := δαN belongs to M�
q ([α,∞)) and fulfills σ([α,∞)) = N � M , where

δα denotes the Dirac measure defined on B[α,∞) with unit mass at α. Consequently,

σ ∈M�
q [[α,∞); (sj )0j=0,�]. Thus, the [α,∞)-Stieltjes transform Sσ of σ belongs

to S0,q,[α,∞)[(sj )0j=0,�]. Since furthermore Sσ (x) =
∫
[α,∞)(t − x)−1σ(dt) =

ηN = X holds true, then X ∈ I[α, x, (sj )0j=0;�]. ��

Now we are able to formulate and prove our main result in this section. Before
doing that, we explain the strategy and essential steps of our proof. The Schur
analysis approach in solving Problem M[[α,∞); (sj )mj=0,�] is the main reason
that our proof is based on mathematical induction. The beginning of the induction
is a consequence of Lemma 17.15, whereas the step of induction is realized by a
combination of Lemma 17.4 with Lemma 17.6(b). In view of Lemma 17.12, the
application of Proposition B.5 implies then that the set I[α, x, (sj )mj=0;�] is the
closed bounded matricial interval with the asserted endpoints.

Theorem 17.16 Let m ∈ N0, let (sj )mj=0 ∈ K�,e
q,m,α , and let x ∈ (−∞, α). In view

Notation 17.8, then 0q×q � S−,m,α(x) � S+,m,α(x) and I[α, x, (sj )mj=0;�] =[S−,m,α(x), S+,m,α(x)].
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Proof We use mathematical induction: In the case m = 0, the assertion follows
from Lemma 17.15. Now assume m ≥ 1 and suppose that, for all � ∈ Z0,m−1, the
following statement holds true:

(I) If (rj )�j=0 ∈ K�,e
q,�,α, then 0q×q � S

〈r〉
−,�,α(x) � S

〈r〉
+,�,α(x) and I[α, x, (rj )�j=0;�]

= [S〈r〉−,�,α(x), S〈r〉+,�,α(x)].
Denote by (tj )

m−1
j=0 the first α-S-transform of (sj )mj=0. Lemma 17.4 provides

I[α, x, (sj )mj=0;�] =
{
G[−,α,s0](x) : G ∈ Sm−1,q,[α,∞)[(tj )m−1

j=0 ,�]
}
. (17.2)

Let η := (α − x)−1, let M := s0, and let �η,M : Cq×q → C
q×q be defined by

�η,M(Z) := ηM(Z +M)†M . From Lemma 17.6(b) we can then conclude that

G[−,α,s0](x) = �η,M(G(x)) (17.3)

holds true for allG ∈ Sm−1,q,[α,∞)[(tj )m−1
j=0 ,�]. In view of (17.2) and Notation 17.1,

consequently

I[α, x, (sj )mj=0;�] =
{
�η,M(G(x)) : G ∈ Sm−1,q,[α,∞)[(tj )m−1

j=0 ,�]
}

=
{
�η,M(X) : X ∈ I[α, x, (tj )m−1

j=0 ;�]
}
= �η,M

(
I[α, x, (tj )m−1

j=0 ;�]
)
.

(17.4)

Because of (sj )mj=0 ∈ K�,e
q,m,α then Theorem 7.4 yields (tj )

m−1
j=0 ∈ K�,e

q,m−1,α.

Therefore, we can apply the induction hypothesis (I) to the sequence (tj )
m−1
j=0 to

obtain

0q×q � S
〈t〉
−,m−1,α(x) � S

〈t〉
+,m−1,α(x) (17.5)

and

I[α, x, (tj )m−1
j=0 ;�] =

[
S
〈t〉
−,m−1,α(x), S

〈t〉
+,m−1,α(x)

]
. (17.6)

From parts (a) and (b) of Lemma 17.14 we can conclude that S〈t〉−,m−1,α and

S
〈t〉
+,m−1,α both belong to Sm−1,q,[α,∞)[(tj )m−1

j=0 ,�]. Thus, Lemma 17.6(b) and (17.3)

provide (S〈t〉−,m−1,α)
[−,α,s0]

(x) = �η,M(S
〈t〉
−,m−1,α(x)) and (S〈t〉+,m−1,α)

[−,α,s0]
(x) =

�η,M(S
〈t〉
+,m−1,α(x)). Using Lemma 17.12, then

�η,M

(
S
〈t〉
−,m−1,α(x)

)
= S+,m,α(x) and �η,M

(
S
〈t〉
+,m−1,α(x)

)
= S−,m,α(x)

(17.7)
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follow. We have η ∈ (0,∞) and, by virtue of (sj )mj=0 ∈ K�,e
q,m,α , furthermore

M ∈ C
q×q
� . Let U := R(M). By virtue of Lemma 17.6(a) we can conclude then

R(S〈t〉+,m−1,α(x)) ⊆ U . Taking additionally into account (17.5) and (17.7), we can
infer from Proposition B.5 then 0q×q � S−,m,α(x) � S+,m,α(x) and

�η,M

([
S
〈t〉
−,m−1,α(x), S

〈t〉
+,m−1,α(x)

])
= [

S−,m,α(x), S+,m,α(x)
]
. (17.8)

Consequently, (17.4), (17.6), and (17.8) provide us

I[α, x, (sj )mj=0;�] = �η,M
(
I[α, x, (tj )m−1

j=0 ;�]
)

= �η,M
([
S
〈t〉
−,m−1,α(x), S

〈t〉
+,m−1,α(x)

])
= [

S−,m,α(x), S+,m,α(x)
]
.

��

The theme of Theorem 17.16 was opened by Yu. M. Dyukarev [7]. For the
particular case of a sequence (sj )mj=0 ∈ K$q,m,0 he proved in [7, Theorem 4(c)]
the inclusion

I[0, x, (sj )mj=0;�] ⊆
[
S−,m,0(x), S+,m,0(x)

]
. (17.9)

At the end of [7, Section 3] Yu. M. Dyukarev mentioned without proof that there is
even equality in (17.9). Guided by essential hints of Yu. M. Dyukarev, given during
his visit at Leipzig University in January 2017, a complete proof of Theorem 17.16
for the particular case of a sequence (sj )mj=0 ∈ K$q,m,α was given in the thesis [27]
B. Jeschke (see also [28, Satz 4.30]). Following Yu. M. Dyukarev [7, Section 3],
who considered the particular case of a sequence (sj )mj=0 ∈ K$q,m,α, we introduce as
a consequence of Theorem 17.16 the following notation.

Definition 17.17 Let m ∈ N0, let (sj )mj=0 ∈ K�,e
q,m,α , and let x ∈ (−∞, α). Then

the closed matricial interval [S−,m,α(x), S+,m,α(x)], where the functions S−,m,α
and S+,m,α are given via Notation 17.8, is called the Weyl interval associated with
(sj )

m
j=0 and x.

Proposition 17.18 Let ω, x ∈ R with x < ω ≤ α and let (sj )κj=0 ∈ K�,e
q,κ,α. Then

(sj )
κ
j=0 ∈ K�

q,κ,ω and S−,m,ω(x) � S−,m,α(x) � S+,m,α(x) � S+,m,ω(x) for all
m ∈ Z0,κ .

Proof Consider an arbitrary m ∈ Z0,κ . Using Remark 17.2, we infer

(sj )
κ
j=0 ∈ K�,e

q,κ,ω. From Remark 3.4 we conclude (sj )
m
j=0 ∈ K�,e

q,m,α

and (sj )
m
j=0 ∈ K�,e

q,m,ω. By virtue of Theorem 17.16, then S−,m,α(x) �
S+,m,α(x) and I[α, x, (sj )mj=0;�] = [S−,m,α(x), S+,m,α(x)] and furthermore
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I[ω, x, (sj )mj=0;�] = [S−,m,ω(x), S+,m,ω(x)]. In view of Lemma 17.3, we have
I[α, x, (sj )mj=0;�] ⊆ I[ω, x, (sj )mj=0;�]. Consequently, [S−,m,α(x), S+,m,α(x)] ⊆
[S−,m,ω(x), S+,m,ω(x)]. Because of (A.3), then S−,m,ω(x) � S−,m,α(x) and
S+,m,α(x) � S+,m,ω(x). ��

18 On the Relation between Consecutive Matricial Weyl
Intervals

In this section, we investigate relations between two consecutive closed matricial
Weyl intervals, which arise as a consequence of Theorem 17.16. We start with two
simple observations.

Remark 18.1 Suppose κ ≥ 1. Let (sj )κj=0 ∈ K�,e
q,κ,α, let x ∈ (−∞, α), and let m ∈

Z1,κ . Then Notation 17.1 shows that I[α, x, (sj )mj=0;�] ⊆ I[α, x, (sj )m−1
j=0 ;�].

Remark 18.2 Let (sj )κj=0 ∈ K�,e
q,κ,α and let m ∈ Z0,κ . Then Theorem 17.16 shows

that S−,m,α(x), S+,m,α(x) ∈ C
q×q
� for all x ∈ (−∞, α).

Combining Theorem 17.16, Remark 18.1, and Notation 17.8, we see that the
endpoints of the closed intervals are given in alternating way by the values Sm(x)
and Sm(x). The next result describes more precisely the relation between the
endpoints of two consecutive intervals.

Proposition 18.3 Suppose κ ≥ 1. Let (sj )κj=0 ∈ K�,e
q,κ,α and let x ∈ (−∞, α). In

view of Notation 17.8, then S−,m−1,α(x) � S−,m,α(x) � S+,m,α(x) � S+,m−1,α(x)

for all m ∈ Z1,κ .

Proof Consider an arbitrary m ∈ Z1,κ . Using Remark 3.4, we can infer

(sj )
m−1
j=0 ∈ K�,e

q,m−1,α and (sj )
m
j=0 ∈ K�,e

q,m,α . By virtue of Theorem 17.16,

then I[α, x, (sj )m−1
j=0 ;�] = [S−,m−1,α(x), S+,m−1,α(x)] and, furthermore,

S−,m,α(x) � S+,m,α(x) and I[α, x, (sj )mj=0;�] = [S−,m,α(x), S+,m,α(x)]. From

Remark 18.1 we infer I[α, x, (sj )mj=0;�] ⊆ I[α, x, (sj )m−1
j=0 ;�]. Consequently,

[S−,m,α(x), S+,m,α(x)] ⊆ [S−,m−1,α(x), S+,m−1,α(x)]. Because of (A.3), then
S−,m−1,α(x) � S−,m,α(x) and S+,m,α(x) � S+,m−1,α(x) follow. ��

Proposition 18.3 leads us to the consideration of the following functions.

Notation 18.4 Let (sj )κj=0 ∈ K�,e
q,κ,α. Then let lm := S+,m,α − S−,m,α for all m ∈

Z0,κ and, in the case κ ≥ 1, furthermore s−,m := S−,m,α − S−,m−1,α and s+,m :=
S+,m−1,α − S+,m,α for all m ∈ Z1,κ .
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Against to the background of Theorem 17.16 and Proposition 18.3 it becomes
clear that the behavior of the functions introduced in Notation 18.4 on the interval
(−∞, α) is of particular interest.

Remark 18.5 If κ ≥ 1 and (sj )
κ
j=0 ∈ K�,e

q,κ,α, then from Notation 18.4 we
immediately see that lm − lm+1 = s−,m+1 + s+,m+1 for all m ∈ Z0,κ−1.

From Notations 18.4 and 17.8, Corollary 16.2, and Lemma 17.9 we immediately
see:

Remark 18.6 Let (sj )κj=0 ∈ K�,e
q,κ,α and let z ∈ C \ [α,∞). Then:

(a) lm = (−1)m(Sm − Sm) for all m ∈ Z0,κ .
(b) lm − lm+1 = (−1)m(Sm+1 − Sm) for all m ∈ Z0,κ−1.
(c) s−,2n+1 = S2n+1−S2n and s+,2n+1(z) = 0q×q for all n ∈ N0 with 2n+ 1 � κ .
(d) s−,2n(z) = 0q×q and s+,2n = S2n−1 − S2n for all n ∈ N with 2n � κ

Remark 18.7 Suppose κ ≥ 1. Let (sj )κj=0 ∈ K�,e
q,κ,α . Then Remarks 18.5 and 18.6

show that l2n−1 − l2n = s+,2n for all n ∈ N with 2n � κ and l2n − l2n+1 = s−,2n+1
for all n ∈ N0 with 2n+ 1 ≤ κ .

In our next considerations the q × q matrix polynomials introduced in Nota-
tion 14.1 will play an essential role.

Lemma 18.8 Let (sj )κj=0 ∈ K�,e
q,κ,α with right α-Stieltjes parametrization (Qj )

κ
j=0.

Using Notation 14.1 for all m, � ∈ N0 with m + � ≤ κ + 1, let Am,� : C → C
q×q

be defined by

Am,�(z) := [ṗm(z)]∗[q̇m+�(z)]− [q̇m(z)]∗[ṗm+�(z)].

Then:

(a) Am,0(z) = 0q×q for each m ∈ Z0,κ+1 and all z ∈ C.
(b) Am,1(z) = Qm for each m ∈ Z0,κ and all z ∈ C.
(c) Am,� = εm+�−1Am,�−1 − Am,�−2Q

†
m+�−2Qm+�−1 for all m, � ∈ N0 with 2 ≤

m+ � ≤ κ + 1, where εm+�−1 is given via (14.1).

Proof

(a) Let m ∈ Z0,κ+1. Proposition 16.1 and Corollary 16.3 yield −[q̇m(z)][ṗm(z)]−1

= −[ṗm(z)]−∗[q̇m(z)]∗ for all z ∈ C\[α,∞). Consequently, [ṗm(z)]∗[q̇m(z)] =
[q̇m(z)]∗[ṗm(z)] for all z ∈ C \ [α,∞). Since ṗm and q̇m are complex matrix
polynomials, the last equality necessarily holds true for all z ∈ C. Thus,
Am,0(z) = 0q×q for all z ∈ C.
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(b) For each m ∈ Z0,κ , let Bm := Am,1. Taking into account Remark 14.2 and
part (a), we obtain the recurrence relation

Bm(z) = Am,1(z) = [ṗm(z)]∗[q̇m+1(z)] − [q̇m(z)]∗[ṗm+1(z)]
= [ṗm(z)]∗

[
εm(z)q̇m(z)− q̇m−1(z)Q

†
m−1Qm

]

− [q̇m(z)]∗
[
εm(z)ṗm(z)− ṗm−1(z)Q

†
m−1Qm

]

= εm(z)
(
[ṗm(z)]∗[q̇m(z)]− [q̇m(z)]∗[ṗm(z)]

)

+ (
[q̇m(z)]∗[ṗm−1(z)]− [ṗm(z)]∗[q̇m−1(z)]

)
Q

†
m−1Qm

= εm(z)Am,0(z)+
[
Am−1,1(z)

]∗
Q

†
m−1Qm

= εm(z) · 0q×q + [Bm−1(z)]∗Q†
m−1Qm = [Bm−1(z)]∗Q†

m−1Qm

for each m ∈ Z1,κ and all z ∈ C. Using Remark A.4, we can infer from
Theorem 5.6(b) that Q∗jQ

†
jQj+1 = Qj+1 holds true for all j ∈ Z0,κ−1. We

proceed by mathematical induction. From Notation 14.1 we immediately see
B0(z) = Q0 for all z ∈ C. Now assume κ ≥ 1 and suppose that Bk(w) = Qk

holds true for some k ∈ Z0,κ−1 and all w ∈ C. For all z ∈ C, we then obtain

Bk+1(z) = [Bk(z)]
∗Q†

kQk+1 = Q∗kQ†
kQk+1 = Qk+1.

Consequently, we have checked by mathematical induction that Bm(z) = Qm

holds true for each m ∈ Z0,κ and all z ∈ C. Thus, part (b) is proved.
(c) Suppose κ ≥ 1. Consider arbitrary m, � ∈ N0 satisfying 2 ≤ m + � ≤ κ + 1.

Using Remark 14.2, for all z ∈ C, we infer

Am,�(z) = [ṗm(z)]∗[q̇m+�(z)] − [q̇m(z)]∗[ṗm+�(z)]
= [ṗm(z)]∗

[
εm+�−1(z)q̇m+�−1(z)− q̇m+�−2(z)Q

†
m+�−2Qm+�−1

]

− [q̇m(z)]∗
[
εm+�−1(z)ṗm+�−1(z)− ṗm+�−2(z)Q

†
m+�−2Qm+�−1

]

= εm+�−1(z)
(
[ṗm(z)]∗[q̇m+�−1(z)]− [q̇m(z)]∗[ṗm+�−1(z)]

)

− (
[ṗm(z)]∗[q̇m+�−2(z)]− [q̇m(z)]∗[ṗm+�−2(z)]

)
Q

†
m+�−2Qm+�−1

= εm+�−1(z)Am,�−1(z)− Am,�−2(z)Q
†
m+�−2Qm+�−1. ��

Lemma 18.9 Let (sj )κj=0 ∈ K�,e
q,κ,α with right α-Stieltjes parametrization (Qj )

κ
j=0

and let z ∈ C. Then:

(a) [ṗm(z)]∗[q̇m(z)] − [q̇m(z)]∗[ṗm(z)] = 0q×q for each m ∈ Z0,κ+1.
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(b) [ṗm(z)]∗[q̇m+1(z)] − [q̇m(z)]∗[ṗm+1(z)] = Qm for each m ∈ Z0,κ .
(c) [ṗm(z)]∗[q̇m+2(z)] − [q̇m(z)]∗[ṗm+2(z)] = εm+1(z)Qm for each m ∈ Z0,κ−1.

Proof Use Lemma 18.8. ��

Lemma 18.10 Let (sj )
κ
j=0 ∈ K�,e

q,κ,α with right α-Stieltjes parametrization
(Qj )

κ
j=0 and let z ∈ C \ [α,∞). Then:

(a) Sm(z)− Sm(z) = [ṗm(z)]−∗Qm[ṗm+1(z)]−1 for all m ∈ Z0,κ .
(b) Sm(z)− Sm+1(z) = εm+1(z)[ṗm(z)]−∗Qm[ṗm+2(z)]−1 for all m ∈ Z0,κ−1.

Proof Use parts (b) and (c) of Lemma 18.9, Corollary 16.3(a), and Proposi-
tion 16.1(b). ��

Lemma 18.10 leads us now to an expression for the length of the matricial Weyl
interval in terms of the q × q matrix polynomials introduced in Notation 14.1.

Proposition 18.11 Let (sj )κj=0 ∈ K�,e
q,κ,α with right α-Stieltjes parametrization

(Qj )
κ
j=0 and let m ∈ Z0,κ . Then:

(a) lm(x) ∈ C
q×q
� for all x ∈ (−∞, α).

(b) lm(z) = (−1)m+1[ṗm(z)]−∗Qm[ṗm+1(z)]−1 for all z ∈ C \ [α,∞).
(c) The following statements are equivalent:

(i) (sj )mj=0 ∈ K$q,m,α .

(ii) Qm ∈ C
q×q$ .

(iii) detQm �= 0.
(iv) det lm(z) �= 0 for all z ∈ C \ [α,∞).
(v) There exists some z0 ∈ C \ [α,∞) with det lm(z0) �= 0.

(vi) lm(x) ∈ C
q×q$ for all x ∈ (−∞, α).

(vii) There exists some x0 ∈ (−∞, α) with lm(x0) ∈ C
q×q$ .

Proof

(a) In view of Notation 18.4, this is a consequence of Theorem 17.16.
(b) Combine Remark 18.6(a) and Lemma 18.10(a).
(c) The equivalence of (i)–(iii) is an immediate consequence of Corollary 5.7. In

view of part (b) we see that (iii) implies (iv). The implication “(iv)⇒(v)” is
trivial. From (v) and part (b) it follows (iii). Thus we have shown that (i)–(v)
are equivalent. In view of part (a) we see that (iv) implies (vi). The implication
“(vi)⇒(vii)” is trivial. If we assume (vii) then det lm(x0) �= 0, which implies (iv).
Thus part (c) is proved.

��
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Part (c) of Proposition 18.11 determines our next aim. Assuming (sj )
m
j=0 ∈

K$q,m,α we are going to derive an explicit expression for the function l−1
m .

Notation 18.12 Let (sj )κj=0 be a sequence of complex q × q matrices with right
α-Stieltjes parametrization (Qj )

κ
j=0 and let m ∈ Z0,κ . Then let Lm : C→ C

q×q be

defined by Lm(z) := (−1)m+1[ṗm+1(z)]Q†
m[ṗm(z)]∗.

From Remark 14.4 we easily see:

Remark 18.13 Let (sj )κj=0 be a sequence of complex q × q matrices with right
α-Stieltjes parametrization (Qj )

κ
j=0 and let m ∈ Z0,κ . Then Lm is a complex

q × q matrix polynomial with leading coefficient (−1)m+1Q
†
m and degLm ≤ m+1

satisfying Lm(α) = 0q×q .

Example 18.14 Let s0 ∈ C
q×q . In view of Notation 14.1, (14.1), and (5.1), for all

z ∈ C then

L0(z) = (−1)1ε0(z)[ṗ0(z)]Q
†
0[ṗ0(z)]∗ = (α − z)s†

0 .

Using Proposition 18.11, we obtain:

Remark 18.15 Let m ∈ N0, let (sj )mj=0 ∈ K$q,m,α and let z ∈ C \ [α,∞). Then

detLm(z) �= 0 and [Lm(z)]−1 = lm(z).

Lemma 18.16 Let m ∈ N0 and let (sj )mj=0 ∈ K$q,m,α with right α-Stieltjes
parametrization (Qj )

m
j=0. For all z ∈ C, then detQm �= 0 and Lm(z) =

(−1)m+1[ṗm(z)]Q−1
m [ṗm+1(z)]∗.

Proof Theorem 5.6(c) yields detQm �= 0. Let Rm : C → C
q×q be defined by

Rm(z) := (−1)m+1[ṗm(z)]Q−1
m [ṗm+1(z)]∗. From Remark 14.4 we infer then that

Rm is a complex q × q Matrix polynomial. Using Proposition 18.11(c) we see for
all x ∈ (−∞, α) that lm(x) is invertible and Hermitian with

[lm(x)]∗ = (−1)m+1[ṗm+1(x)]−∗Qm[ṗm(x)]−1

=
(
(−1)m+1[ṗm(x)]Q−1

m [ṗm+1(x)]∗
)−1

,

implying [lm(x)]−1 = Rm(x). In view of Remark 18.15, then Rm(x) = Lm(x)
follows for all x ∈ (−∞, α). Taking additionally into account Remark 18.13, we
can therefore infer Lm = Rm. ��

Lemma 18.17 Let m ∈ N and let (sj )mj=0 ∈ K$q,m,α with right α-Stieltjes
parametrization (Qj )

m
j=0. For all z ∈ C, then Lm(z) − Lm−1(z) =

(−1)m+1εm(z)[ṗm(z)]Q−1
m [ṗm(z)]∗.
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Proof According to Theorem 5.6(c) the matrices Qm and Qm−1 are invertible.
Consider an arbitrary z ∈ C. Using Notation 18.12, Lemma 18.16, and Remark 14.2,
we obtain

Lm(z)− Lm−1(z)

= (−1)m+1[ṗm+1(z)]Q−1
m [ṗm(z)]∗ − (−1)m[ṗm−1(z)]Q

−1
m−1[ṗm(z)]∗

= (−1)m+1
(

[ṗm+1(z)]+ [ṗm−1(z)]Q
−1
m−1Qm

)
Q−1
m [ṗm(z)]∗

= (−1)m+1εm(z)[ṗm(z)]Q−1
m [ṗm(z)]∗.

��

Example 18.18 Let s0 ∈ C
q×q$ . In view of Lemma 18.17, (14.1), Notation 14.1,

and (5.1), then L1(z)− L0(z) = (z− α)2s−1
α80 for all z ∈ C.

Proposition 18.19 Let m ∈ N0 and let (sj )mj=0 ∈ K$q,m,α with right α-Stieltjes

parametrization (Qj )
m
j=0. For all z ∈ C, then Lm(z) =∑m

k=0(−1)k+1εk(z)[ṗk(z)]
Q−1
k [ṗk(z)]∗.

Proof Consider an arbitrary z ∈ C. Clearly

Lm(z) =
m∑
k=1

[Lk(z)− Lk−1(z)]+ L0(z).

Now the application of Lemma 18.17 to the terms in the first sum and Example 18.14
to L0(z) completes the proof. ��

Corollary 18.20 Let m ∈ N0 and let (sj )
m
j=0 ∈ K$q,m,α with right α-

Stieltjes parametrization (Qj )
m
j=0. For all z ∈ C \ [α,∞), then lm(z) =

(
∑m

k=0(−1)k+1εk(z)[ṗk(z)]Q−1
k [ṗk(z)]∗)−1.

Proof In view of Remark 18.15, this is a consequence of Proposition 18.19. ��

Corollary 18.21 Let (sj )κj=0 ∈ K$q,κ,α and let z ∈ C. Then:

(a) L0(z) = −(z− α)[ṙ0(z)]L−1
0 [ṙ0(z)]∗.

(b) Let n ∈ N with 2n ≤ κ . Then

L2n(z) = (z− α)2
n−1∑
k=0

[
ṫk(z)

]
L−1
α8k

[
ṫk(z)

]∗ − (z − α)
n∑
k=0

[ṙk(z)]L
−1
k [ṙk(z)]∗.
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(c) Let n ∈ N0 with 2n+ 1 ≤ κ . Then

L2n+1(z) = (z− α)2
n∑
k=0

[
ṫk(z)

]
L−1
α8k

[
ṫk(z)

]∗ − (z− α)
n∑
k=0

[ṙk(z)]L−1
k [ṙk(z)]∗.

Proof In view of (14.1), Notation 14.5, and Definition 5.1, this is a consequence of
Proposition 18.19. ��

Lemma 18.22 Let (sj )κj=0 ∈ K$q,κ,α and let z ∈ C. Using Notation D.2, then:

(a) [ṙ0(z)]L−1
0 [ṙ0(z)]∗ = [E0(z)]H−1

0 [E0(z)]∗ and

[ṙn(z)]L−1
n [ṙn(z)]∗ = [En(z)]H−1

n [En(z)]∗ − [En−1(z)]H
−1
n−1[En−1(z)]∗

for all n ∈ N with 2n ≤ κ .
(b) If κ ≥ 1, then [ṫ0(z)]L−1

α80[ṫ0(z)]∗ = [E0(z)]H−1
α80[E0(z)]∗ and

[
ṫn(z)

]
L−1
α8n

[
ṫn(z)

]∗ = [En(z)]H−1
α8n[En(z)]∗ − [En−1(z)]H

−1
α8n−1[En−1(z)]∗

for all n ∈ N with 2n+ 1 ≤ κ .

Proof In view of (sj )κj=0 ∈ K$q,κ,α we have (sj )mj=0 ∈ K$q,m,α for all m ∈ Z0,κ and
the matricesHn andHα8n are invertible for all n ∈ N0 with 2n ≤ κ and 2n+ 1 ≤ κ ,
respectively.

(a) Because of Notations 14.5, 14.1 and D.2, we have ṙ0(w) = ṗ0(w) = Iq =
E0(w) for allw ∈ C. By virtue of (4.4) and (4.2), we see furthermoreL0 = s0 =
H0. Hence, [ṙ0(z)]L−1

0 [ṙ0(z)]∗ = [E0(z)]H−1
0 [E0(z)]∗ follows. Now suppose

κ ≥ 2 and consider an arbitrary n ∈ N with 2n ≤ κ . In view of Remarks 4.1
and 4.2, the invertibility of Hn and Hn−1, and a well-known formula for the
inverse of a block matrix (see, e. g. [5, Lemma 1.1.7(a)]), the Schur complement
Ln is invertible and

H−1
n = diag(H−1

n−1, 0q×q )+
[−H−1

n−1yn,2n−1

Iq

]
L−1
n [−zn,2n−1H

−1
n−1, Iq ].

(18.1)

In view of Remarks 14.3 and 14.5, we can conclude from Proposition 14.8
that (ṙk)nk=0 is a monic right orthogonal system with respect to (sj )

2n
j=0.

Taking additionally into account Proposition D.5, the invertibility of Hn−1,

and Remark D.3, then ṙn(z) = En(z)
[−H−1

n−1yn,2n−1

Iq

]
follows. In particular,

[ṙn(z)]∗ = [−zn,2n−1H
−1
n−1, Iq ][En(z)]∗, by virtue of Lemma 3.2. Multiply-

ing (18.1) with En(z) from the left and with [En(z)]∗ from the right and
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taking into account Notation D.2, we thus obtain [En(z)]H−1
n [En(z)]∗ =

[En−1(z)]H−1
n−1[En−1(z)]∗ + [ṙn(z)]L−1

n [ṙn(z)]∗.
(b) Suppose κ ≥ 1. Because of Notations 14.5, 14.1 and D.2, we have

ṫ0(w) = Iq = E0(w) for all w ∈ C. By virtue of (4.7), (4.4), and (4.2),
we see furthermore Lα80 = sα80 = Hα80. Hence, [ṫ0(z)]L−1

α80[ṫ0(z)]∗ =
[E0(z)]H−1

α80[E0(z)]∗ follows. Now suppose κ ≥ 3 and consider an arbitrary
n ∈ N with 2n+1 ≤ κ . In view of (4.7), Remarks 4.1 and 4.2, the invertibility of
Hα8n and Hα8n−1, and a well-known formula for the inverse of a block matrix
(see, e. g. [5, Lemma 1.1.7(a)]), the Schur complement Lα8n is invertible and

H−1
α8n = diag(H−1

α8n−1, 0q×q)

+
[−H−1

α8n−1yα8n,2n−1

Iq

]
L−1
α8n[−zα8n,2n−1H

−1
α8n−1, Iq ]. (18.2)

In view of Remarks 14.3 and 14.5, we can conclude from Proposition 14.7
that (ṫk)nk=0 is a monic right orthogonal system with respect to (sα8j )2nj=0.
Taking additionally into account Proposition D.5, the invertibility of Hα8n−1,

and Remark D.3, then ṫn(z) = En(z)
[−H−1

α8n−1yα8n,2n−1

Iq

]
follows. In particular,

[ṫn(z)]∗ = [−zα8n,2n−1H
−1
α8n−1, Iq ][En(z)]∗, by virtue of Lemma 3.2. Multi-

plying (18.2) with En(z) from the left and with [En(z)]∗ from the right and
taking into account Notation D.2, we thus obtain [En(z)]H−1

α8n[En(z)]∗ =
[En−1(z)]H−1

α8n−1[En−1(z)]∗ + [ṫn(z)]L−1
α8n[ṫn(z)]∗.

��

Now we are able to formulate and prove a result due to Yu. M. Dyukarev [7,
Theorem 4] in the case α = 0 and B. Jeschke [28, Satz 4.27(c)] for arbitrary α ∈ R

who proved it in a different way.

Proposition 18.23 Let (sj )κj=0 ∈ K$q,κ,α and let z ∈ C. Using Notation D.2,
then:

(a) L0(z) = −(z− α)[E0(z)]H−1
0 [E0(z)]∗.

(b) Let n ∈ N with 2n ≤ κ . Then

L2n(z) = (z−α)2[En−1(z)]H
−1
α8n−1[En−1(z)]

∗ − (z−α)[En(z)]H−1
n [En(z)]

∗.

(c) Let n ∈ N0 with 2n+ 1 ≤ κ . Then

L2n+1(z) = (z − α)2[En(z)]H−1
α8n[En(z)]∗ − (z− α)[En(z)]H−1

n [En(z)]∗.

Proof Combine Corollary 18.21 and Lemma 18.22. ��
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It should be mentioned that in the particular case (sj )
m
j=0 ∈ K$q,m,0

Yu. M. Dyukarev [7, Theorem 4] obtained useful algebraic expressions for
the rational q × q matrix-valued function l−1

m . This result was generalized by
B. Jeschke [28, Satz 4.27(c)] (see also [27]) to sequences (sj )mj=0 ∈ K$q,m,α with
arbitrary real α.

Lemma 18.24 Suppose κ ≥ 1. Let (sj )κj=0 ∈ K�,e
q,κ,α with right α-Stieltjes

parametrization (Qj )
κ
j=0. Then:

(a) s−,m(x) ∈ C
q×q
� and s+,m(x) ∈ C

q×q
� for all x ∈ (−∞, α) and all m ∈ Z1,κ .

(b) Let n ∈ N0 with 2n+ 1 � κ and let z ∈ C \ [α,∞). Then s+,2n+1(z) = 0q×q
and

s−,2n+1(z) = −[ṗ2n(z)]−∗Q2n[ṗ2n+2(z)]−1 = −[ṙn(z)]−∗Ln[ṙn+1(z)]−1.

In particular, rank s−,2n+1(z) = rankQ2n = rankLn.
(c) Let n ∈ N with 2n � κ and let z ∈ C \ [α,∞). Then s−,2n(z) = 0q×q and

s+,2n(z) = (z− α)[ṗ2n−1(z)]
−∗Q2n−1[ṗ2n+1(z)]

−1

= 1

z− α
[
ṫn−1(z)

]−∗
Lα8n−1

[
ṫn(z)

]−1
.

In particular, rank s+,2n(z) = rankQ2n−1 = rankLα8n−1.

Proof

(a) In view of Notation 18.4, this is a consequence of Proposition 18.3.
(b) Combine Remark 18.6(c) and Lemma 18.10(b) and use (14.1) and Nota-

tion 14.5.
(c) Apply Remark 18.6(d) and Lemma 18.10(b) and use (14.1) and Notation 14.5.

��

Proposition 18.25 Suppose κ ≥ 1. Let (sj )κj=0 ∈ K�,e
q,κ,α with right α-Stieltjes

parametrization (Qj )
κ
j=0 and let m ∈ Z0,κ−1. Then:

(a) lm(x) � lm+1(x) for all x ∈ (−∞, α).
(b) lm(z) − lm+1(z) = (−1)m+1εm+1(z)[ṗm(z)]−∗Qm[ṗm+2(z)]−1 and

rank[lm(z)− lm+1(z)] = rankQm for all z ∈ C \ [α,∞).

Proof

(a) Combine Remark 18.7 with Lemma 18.24(a).
(b) Apply Remark 18.6(b) with Lemma 18.10(b).

��
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Corollary 18.26 Let (sj )κj=0 ∈ K�,e
q,κ,α with right α-Stieltjes parametrization

(Qj )
κ
j=0. Then

(a) Let m ∈ Z0,κ . Then rank lm(z) = rank lm(w) = rankQm for all z,w ∈ C \
[α,∞).

(b) Suppose κ ≥ 1 and letm ∈ Z0,κ−1. Then rank[lm(z)−lm+1(z)] = rank[lm(w)−
lm+1(w)] = rankQm for all z,w ∈ C \ [α,∞).

(c) Suppose κ ≥ 1 and let m ∈ Z1,κ . Then rank s−,m(z) = rank s−,m(w) and
rank s+,m(z) = rank s+,m(w) for all z,w ∈ C \ [α,∞).

Proof

(a) Use Proposition 18.11(b).
(b) Apply Proposition 18.25(b).
(c) Use parts (b) and (c) of Lemma 18.24. ��

19 Some Remarks on Limit Matricial Weyl Intervals

Considering the case of a sequence (sj )∞j=0 ∈ K$q,∞,0 Yu. M. Dyukarev studied
in [7] the limit behavior of the matricial Weyl intervals associated with the finite
sections (sj )mj=0. Our results obtained in Sect. 18 lead us to generalizations of some
of Yu. M. Dyukarev’s corresponding results to the most general case. The detailed
treatment of this facts determines the context of this section. Now we are going to
study the asymptotic behavior of the functions introduced in Notation 18.4.

Proposition 19.1 Let (sj )∞j=0 ∈ K�
q,∞,α . For each x ∈ (−∞, α), then the

sequences (S−,j,α(x))∞j=0, (S+,j,α(x))∞j=0, and (lj (x))∞j=0 are convergent.

Proof In view of Propositions 18.3, 18.11(a), and 18.25(a), all sequences in
question are bounded monotone sequences of matrices belonging to C

q×q
� . This

implies all assertions. ��

Notation 19.2 Let (sj )∞j=0 ∈ K�
q,∞,α . For each x ∈ (−∞, α), let S−,∞,α(x) :=

limj→∞ S−,j,α(x), let S+,∞,α(x) := limj→∞ S+,j,α(x), and let l∞(x) :=
limj→∞ lj (x).

Proposition 19.3 Let (sj )∞j=0 ∈ K�
q,∞,α with right α-Stieltjes parametrization

(Qj )
∞
j=0 and let x ∈ (−∞, α). Then

lim
m→∞(−1)m+1[ṗm(x)]−∗Qm[ṗm+1(x)]−1 = l∞(x) = S+,∞,α(x)− S−,∞,α(x).
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Furthermore, limj→∞ s−,j (x) = 0q×q and limj→∞ s+,j (x) = 0q×q .
In particular, limn→∞[ṙn(x)]−∗Ln[ṙn+1(x)]−1 = 0q×q and limn→∞(x −
α)−1[ṫn(x)]−∗Lα8n[ṫn+1(x)]−1 = 0q×q .

Proof In view of Proposition 19.1 and Notation 19.2, Proposition 18.11(b)
yields l∞(x) = limm→∞ lm(x) = limm→∞(−1)m+1[ṗm(x)]−∗Qm[ṗm+1(x)]−1,
whereas Notation 18.4 provides S+,∞,α(x) − S−,∞,α(x) = limj→∞ S+,j,α(x) −
limj→∞ S−,j,α(x) = limj→∞[S+,j,α(x) − S−,j,α(x)] = limj→∞ lj (x) =
l∞(x). Using Remark 18.7, we can conclude furthermore 0q×q = l∞(x) −
l∞(x) = limn→∞ l2n(x) − limn→∞ l2n+1(x) = limn→∞[l2n(x) − l2n+1(x)] =
limn→∞ s−,2n+1(x) and 0q×q = l∞(x) − l∞(x) = limn→∞ l2n−1(x) −
limn→∞ l2n(x) = limn→∞[l2n−1(x) − l2n(x)] = limn→∞ s+,2n(x). Taking
additionally into account that, by virtue of Remark 18.6, we have s−,2n(x) = 0q×q
and s+,2n+1(x) = 0q×q for all n ∈ N, then limj→∞ s−,j (x) = 0q×q and
limj→∞ s+,j (x) = 0q×q follow. In view of Lemma 18.24, the proof is complete.

��

Proposition 19.4 Let (sj )∞j=0 ∈ K�
q,∞,α and let x ∈ (−∞, α). Then

0q×q = S−,0,α(x) � S−,1,α(x) = S−,2,α(x) � S−,3,α(x)

= S−,4,α(x) � · · · � S−,∞,α(x) � S+,∞,α(x) � · · · � S+,5,α(x)

= S+,4,α(x) � S+,3,α(x) = S+,2,α(x) � S+,1,α(x) = S+,0,α(x) = 1

α − x s0

and

1

α − x s0 = l0(x) � l1(x) � l2(x) � l3(x) � · · · � l∞(x) � 0q×q .

In particular, [S−,∞,α(x), S+,∞,α(x)] =⋂∞
m=0[S−,m,α(x), S+,m,α(x)].

Proof For the first chain of inequalities, use Remark 17.10, Proposition 18.3,
Lemma 17.9, and Notation 19.2. The second one follows from Notation 18.4,
Remark 17.10, Propositions 18.25(a), 18.11(a), and Notation 19.2. ��

Notation 19.5 Let (sj )
∞
j=0 ∈ K�

q,∞,α . Then, for all x ∈ (−∞, α), let
I[α, x, (sj )∞j=0; =] := {F(x) : F ∈ S∞,q,[α,∞)[(sj )∞j=0,=]}.
Lemma 19.6 Let (sj )∞j=0 ∈ K�

q,∞,α and let x ∈ (−∞, α). Then I[α, x, (sj )∞j=0; =]
=⋂∞

m=0 I[α, x, (sj )mj=0;�].

Proof First consider an arbitrary X ∈ I[α, x, (sj )∞j=0; =]. Then there exists
a function F ∈ S∞,q,[α,∞)[(sj )∞j=0,=] with X = F(x). Consequently, F
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belongs to S0,q,[α,∞) and the [α,∞)-Stieltjes measure σF of F belongs to

M�
q [[α,∞); (sj )∞j=0,=]. In particular, we have σF ∈ M�

q [[α,∞); (sj )mj=0,=]
implying σF ∈ M�

q [[α,∞); (sj )mj=0,�] for all m ∈ N0. Hence, F ∈
Sm,q,[α,∞)[(sj )mj=0,�] for all m ∈ N0. According to Notation 17.1, then
X ∈ I[α, x, (sj )mj=0; =] for all m ∈ N0 follows.

Conversely, consider now an arbitrary X ∈ ⋂∞
m=0 I[α, x, (sj )mj=0;�]. Consider

an arbitrary m ∈ Z3,∞. Then X ∈ I[α, x, (sj )mj=0;�]. Consequently, there exists
a function Fm ∈ Sm,q,[α,∞)[(sj )mj=0,�] with X = Fm(x). Hence, Fm ∈ S0,q,[α,∞)
and the [α,∞)-Stieltjes measure σm of Fm belongs to M�

q [[α,∞); (sj )mj=0,�]
and fulfills X = ∫

[α,∞) f dσm, where f : [α,∞) → (0,∞) is defined by f (t) :=
(t − x)−1. In particular, σm ∈ M�

q [[α,∞); (sj )m−1
j=0 ,=]. Similar to the scalar

case, which was studied in [1, Chapter 2, Paragraph 1], the application of the
matricial version of the Helly–Prohorov theorem (see [13, Satz 9]) yields the
existence of a subsequence (σm�)

∞
�=1 of (σm)∞m=3 and of a non-negative Hermitian

measure σ ∈ M�
q [[α,∞); (sj )∞j=0,=] such that (σm�)

∞
�=1 converges weakly to σ .

According to Theorem 10.3, then the [α,∞)-Stieltjes transform F of σ belongs
to S∞,q,[α,∞)[(sj )∞j=0,=]. Furthermore, F(x) = ∫

[α,∞) f dσ . Regarding x ∈
(−∞, α), we have, for all t ∈ [α,∞), obviously 0 < (t − x)−1 ≤ (α− x)−1. Thus,
the function f is continuous and bounded. Therefore, lim�→∞

∫
[α,∞) f dσm� =∫

[α,∞) f dσ follows by the weak convergence, implying F(x) = X. Consequently,
X belongs to I[α, x, (sj )∞j=0; =]. ��

Now we are able to prove an analogous result to Theorem 17.16 for the case that
an infinite sequence (sj )∞j=0 of matrix moments is given.

Theorem 19.7 Let (sj )∞j=0 ∈ K�
q,∞,α and let x ∈ (−∞, α). Then S−,∞,α(x) �

S+,∞,α(x) and I[α, x, (sj )∞j=0; =] = [S−,∞,α(x), S+,∞,α(x)].

Proof From Proposition 19.4 we obtain S−,∞,α(x) � S+,∞,α(x) and
[S−,∞,α(x), S+,∞,α(x)] = ⋂∞

m=0[S−,m,α(x), S+,m,α(x)]. Obviously, (sj )mj=0 ∈
K�,e
q,m,α for all m ∈ N0. According to Theorem 17.16, thus I[α, x, (sj )mj=0;�] =
[S−,m,α(x), S+,m,α(x)] for allm ∈ N0. Lemma 19.6 provides I[α, x, (sj )∞j=0; =] =⋂∞
m=0 I[α, x, (sj )mj=0;�], completing the proof. ��

Corollary 19.8 Let (sj )∞j=0 ∈ K�
q,∞,α with right α-Stieltjes parametrization

(Qj )
∞
j=0. Suppose that Problem M[[α,∞); (sj )∞j=0,=] is determinate, i. e., the set

M�
q [[α,∞); (sj )∞j=0,=] consists of exactly one element. Then l∞(x) = 0q×q for

all x ∈ (−∞, α). In particular, limm→∞(−1)m+1[ṗm(x)]−∗Qm[ṗm+1(x)]−1 =
0q×q for all x ∈ (−∞, α).
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Proof By virtue of Theorem 10.3, the set S∞,q,[α,∞)[(sj )∞j=0,=] consists
of exactly one element. Consider an arbitrary x ∈ (−∞, α). According
to Notation 19.5, then the set I[α, x, (sj )∞j=0; =] consists of exactly one
element. Using Theorem 19.7, we can thus conclude that the matricial interval
[S−,∞,α(x), S+,∞,α(x)] consists of exactly one element. Regarding (A.3), then
S−,∞,α(x) = S+,∞,α(x) easily follows. From Proposition 19.3, we can infer then
limm→∞(−1)m+1[ṗm(x)]−∗Qm[ṗm+1(x)]−1 = l∞(x) = 0q×q . ��

It should be mentioned that considering the particular case (sj )∞j=0 ∈ K$q,∞,0
Yu. M. Dyukarev [7, Theorem 5] obtained the inclusion

I[0, x, (sj )∞j=0; =] ⊆
[
S−,∞,0(x), S+,∞,0(x)

]
.

In a short remark he added that it can be also shown that the reverse inclusion is
true. Given a sequence (sj )∞j=0 ∈ K$q,∞,0 he called the matricial Stieltjes moment
problem M[[0,∞); (sj )∞j=0,=] indeterminate if for all x ∈ (−∞, 0) the relations

S+,∞,0(x)− S−,∞,0(x) ∈ C
q×q$

hold true. In [7, Lemma 3] he proved that for indeterminacy it is indeed sufficient
that there exists some point x0 ∈ (−∞, 0) with

S+,∞,0(x0)− S−,∞,0(x0) ∈ C
q×q$ .

Furthermore, Yu. M. Dyukarev [7, Theorem 8] found a Stieltjes-type criterion
for indeterminacy of the problem M[[0,∞); (sj )∞j=0,=]. In this case, he studied
analytic properties of the resolvent matrix [7, Section 7] and found via [0,∞)-
Stieltjes transform a parametrization of the set of solutions via a linear fractional
transformation [7, Section 8].

Appendix A: Some Facts from Matrix Theory

In this appendix we summarize some facts from matrix theory which are used in
this paper.

Remark A.1 Let n ∈ N and letA1, A2, . . . , An ∈ C
p×q . For all η1, η2, . . . , ηn ∈ C,

then R(
∑n

j=1 ηjAj ) ⊆
∑n

j=1 R(Aj ) and
⋂n
j=1 N (Aj ) ⊆ N (

∑n
j=1 ηjAj ).

Remark A.2 Let U be a linear subspace of the unitary space C
q . Then PU is the

unique complex q × q matrix satisfying P
2
U = PU P

∗
U = PU , and R(PU ) = U .

Furthermore, N (PU ) = U⊥.
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Remark A.3 Let U be a linear subspace of the unitary space C
q with dimension

d := dimU fulfilling d ≥ 1. Let (u1, u2, . . . , ud) be an orthonormal basis of U and
let U := [u1, u2, . . . , ud ]. Then U∗U = Id and UU∗ = PU .

Remark A.4 Let A ∈ C
p×q . Then, the following statements hold true:

(a) (A†)† = A, (A†)∗ = (A∗)†, N (A†) = N (A∗), R(A†) = R(A∗), and
rank(AA†) = rankA.

(b) Let r ∈ N and B ∈ C
p×r . Then R(B) ⊆ R(A) if and only if AA†B = B.

(c) Let s ∈ N and B ∈ C
s×q . Then N (A) ⊆ N (C) if and only if CA†A = C.

Proposition A.5 Let A ∈ C
p×q and let G ∈ C

q×p. Then G = A† if and only if
AG = PR(A) and GA = PR(G) hold true. In particular, PN (A) = Iq − A†A.

A proof of Proposition A.5 is given, e. g., in [5, Theorem 1.1.1, p. 15].

Remark A.6 Let A ∈ C
q×q . Then A†A = AA† if and only if R(A∗) = R(A).

Lemma A.7 Let M,X ∈ C
q×q
� with R(X) ⊆ R(M). Then det(M†X + Iq) �= 0

and M(M†X + Iq)−1 = M(X +M)†M .

Proof In view of R(X) ⊆ R(M), Remark A.4(b) implies MM†X = X.
Consequently,

X +M = MM†X +M = M(M†X + Iq). (A.1)

Thus, (A.1) implies

R(X +M) ⊆ R(M) and N (M†X + Iq) ⊆ N (X +M). (A.2)

Since X and M are both non-negative Hermitian, we have N (X+M) ⊆ [N (X)] ∩
[N (M)]. Thus, from (A.1) we get N (M†X + Iq) ⊆ N (X). For each v ∈ N (X),
we see that v = M†Xv + v = (M†X + Iq)v = 0q×1. Hence, det(M†X + Iq) �= 0.
Therefore, from (A.1) we infer rank(X +M) = rankM . Combining this with the
first relation in (A.2), we get R(X +M) = R(M). Consequently, Proposition A.5
yields (X + M)(X + M)† = MM†. From Remark A.6 we conclude then (X +
M)†(X +M) = M†M . Combining this with (A.1) yields

(X +M)†M(M†X + Iq) = (X +M)†(X +M) = M†M.

Thus, since M†X+ Iq is non-singular, we get (X+M)†M = M†M(M†X+ Iq)−1

and hence

M(X +M)†M = MM†M(M†X + Iq)−1 = M(M†X + Iq)−1.

��
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Lemma A.8 (cf. [2, 12] or [5, Lemmas 1.1.9 and 1.1.10]) Let (4.8) be the block
representation of a complex (p + q)× (p + q)matrixM with p × p blockA. Then
M is non-negative Hermitian if and only if A and M/A are both non-negative
Hermitian and furthermore R(B) ⊆ R(A) and C = B∗.
Lemma A.9 Let (4.8) be the block representation of a complex (p + q)× (r + s)
matrix M with p × r Block A. Suppose that R(B) ⊆ R(A) and N (A) ⊆ N (C)

are fulfilled. Then M
[−X
Is

] = [ 0p×s
M/A

]
for all X ∈ C

r×s with AX = B. Furthermore,

[−Z, Iq ]M = [0q×r ,M/A] for all Z ∈ C
q×p with ZA = C.

Proof Consider arbitraryX ∈ C
r×s and Z ∈ C

q×p satisfying AX = B and ZA =
C. Observe that AA†B = B and CA†A = C hold true, by virtue of Remark A.4.
Taking additionally into account (4.8) and (4.9), we obtain then

M

[−X
Is

]
=

[
A B

C D

] [−X
Is

]
=

[
B − AX
D − CX

]

=
[

B − AX
D − CA†AX

]
=

[
B − B

D − CA†B

]
=

[
0p×s
M/A

]

and analogously [−Z, Iq ]M = [0q×r ,M/A]. ��

Denote by C
q×q
H := {A ∈ C

q×q : A∗ = A} the set of Hermitian q × q matrices.

Remark A.10 The set Cq×qH is an R-vector space.

Remark A.11 Let A ∈ C
q×q
H and let X ∈ C

q×p. Then X∗AX ∈ C
p×p
H .

Denote by C
q×q
� := {A ∈ C

q×q : v∗Av ≥ 0 for all v ∈ C
q} the set of

non-negative Hermitian q × q matrices and by C
q×q$ := {A ∈ C

q×q : v∗Av >

0 for all v ∈ C
q with v �= 0q×1} the set of positive Hermitian q × q matrices.

Remark A.12 The set Cq×q� is a convex cone in the R-vector space Cq×qH .

Remark A.13 Let A ∈ C
q×q
� and let X ∈ C

q×p. Then X∗AX ∈ C
p×p
� .

Remark A.14 If A ∈ C
q×q
� , then R(

√
A) = R(A) and N (

√
A) = N (A).

Remark A.15 If A ∈ C
q×q
� , then A† ∈ C

q×q
� and

√
A† = √A†

.

We use the Löwner semi-ordering in the set of Hermitian matrices, i. e., we write
A � B or B � A (resp., A ≺ B or B $ A) in order to indicate that A and B
are Hermitian matrices of equal size such that the matrix A − B is non-negative
Hermitian (resp., positive Hermitian).

From Remarks A.11 and A.13, we obtain immediately:
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Remark A.16 Let A,B ∈ C
q×q
H with A � B and let X ∈ C

q×p . Then X∗AX �
X∗BX.

Lemma A.17 (cf. [14, Lemma A.13]) Let A,B ∈ C
q×q
H with 0q×q � A � B.

Then R(A) ⊆ R(B) and N (B) ⊆ N (A). Furthermore, 0q×q � PR(A)B
†
PR(A) �

A†.

For every choice of Hermitian complex q × q matrices A and B, let

[A,B] := {X ∈ C
q×q
H : A � X � B}. (A.3)

If A � B, then {A,B} ⊆ [A,B]. As an immediate consequence of Remark A.12,
we obtain:

Remark A.18 If A,B ∈ C
q×q
� , then [A,B] ⊆ C

q×q
� .

For each linear subspace U of Cq , let Cq×q�,U := {Z ∈ C
q×q
� : R(Z) = U}. As an

immediate consequence of Remark A.12 and Lemma A.17, we obtain:

Remark A.19 Let U be a linear subspace of C
q and let A,B ∈ C

q×q
�,U . Then

[A,B] ⊆ C
q×q
�,U .

Lemma A.20 Let s0 ∈ C
q×q
H and M ∈ C

q×q
� be such that s0 − M ∈ C

q×q
� and

rank s0 = rankM are satisfied. Then:

(a) s0 ∈ C
q×q
� , R(s0) = R(M), s0s

†
0 = MM†, and s†

0s0 = M†M .

(b) s0M†(s0 −M) = (s0 −M)∗M†(s0 −M)∗ + s0 −M , s0M†(s0 −M) ∈ C
q×q
� ,

and s0[s0 + s0M†(s0 −M)]†s0 = M .
(c) s0M†(s0 −M) = 0q×q if and only if M = s0.

Proof

(a) In view of {s0 −M,M} ⊆ C
q×q
� , Lemma A.17 yields s0 ∈ C

q×q
� and R(M) ⊆

R(s0). Because of rankM = rank s0, this implies R(M) = R(s0). Thus, from
Proposition A.5 we get s0s

†
0 = MM†. By virtue of s0 ∈ C

q×q
H and M ∈ C

q×q
� ,

Remark A.6 yields s0s
†
0 = s

†
0s0 and MM† = M†M . Consequently, s†

0s0 =
M†M .

(b) Using s0s
†
0 = MM†, we infer

s0M
†(s0 −M) = [(s0 −M)+M]M†(s0 −M)

= (s0 −M)M†(s0 −M)+MM†(s0 −M)

= (s0 −M)M†(s0 −M)+MM†s0 −M
= (s0 −M)∗M†(s0 −M)∗ + s0 −M.

(A.4)
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In view of M ∈ C
q×q
� , Remark A.15 provides us M† ∈ C

q×q
� and, hence,

(s0−M)∗M†(s0−M) ∈ C
q×q
� . Combining this with s0−M ∈ C

q×q
� , and (A.4),

we conclude s0M†(s0 −M) ∈ C
q×q
� . Using s†

0s0 = M†M , we obtain

s0+s0M†(s0−M) = s0+s0M†s0−s0M†M = s0+s0M†s0−s0s†
0s0 = s0M†s0.

Taking s0s
†
0 = MM† and s†

0s0 = M†M into account, this implies

s0

[
s0 + s0M†(s0 −M)

]†
s0 = s0(s0M†s0)

†s0

= s0s†
0s0s

†
0s0(s0M

†s0)
†s0s

†
0s0s

†
0s0 = MM†MM†s0(s0M

†s0)
†s0M

†MM†M

= Ms
†
0s0M

†s0(s0M
†s0)

†s0M
†s0s

†
0M =Ms

†
0s0M

†s0s
†
0M

= MM†MM†MM†M =M.

(c) This follows from (A.4), s0 −M ∈ C
q×q
� , and (s0 −M)∗M†(s0 −M) ∈ C

q×q
� .
��

Appendix B: Some Monotonicity Properties for Hermitian
Matrices

This appendix contains an investigation of the behavior of closed matricial intervals
under special transformations mapping the set Cq×q into itself. These are just those
transformations the composition of which describes the elementary step of our
Schur–Stieltjes algorithm. The main result is Proposition B.5 which provides the
key result for the proof of Theorem 17.16.

We consider the following four transformations: For arbitrarily given η ∈ C and
M ∈ C

q×q , let �M,�,�M,�η : Cq×q → C
q×q be defined by

�M(Z) := Z +M, �(Z) := Z†, �M(Z) := MZM, and �η(Z) := ηZ.
(B.1)

Lemma B.1 Let M ∈ C
q×q , let U := R(M), and let �M : Cq×q → C

q×q be
defined by �M(Z) := Z +M . Then:

(a) �M : Cq×q → C
q×q is bijective with inverse �(−M).

(b) If M ∈ C
q×q
� , then �M(Z) ∈ C

q×q
�,U for all Z ∈ C

q×q
� with R(Z) ⊆ U .

(c) If M ∈ C
q×q
H , then �M(X1) � �M(X2) for all X1,X2 ∈ C

q×q
H with X1 � X2.
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(d) IfM ∈ C
q×q
H , then�M([A,B]) = [�M(A),�M(B)] for allA,B ∈ C

q×q
H with

A � B.

Proof

(a) is obvious.
(b) Assume M ∈ C

q×q
� . Consider an arbitrary Z ∈ C

q×q
� satisfying R(Z) ⊆ U .

In view of Remark A.12, then Z +M ∈ C
q×q
� . By virtue of M ∈ C

q×q
� and

(Z + M) − M = Z ∈ C
q×q
� , we have 0q×q � M � Z + M . Hence, the

application of Lemma A.17 yields R(M) ⊆ R(Z+M). From Remark A.1, we
can conclude R(Z +M) ⊆ R(Z) + R(M). Taking additionally into account
R(Z) ⊆ U = R(M), we thus obtain R(M) ⊆ R(Z+M) ⊆ R(Z)+R(M) ⊆
R(M) +R(M) = R(M), implying R(Z +M) = R(M). Consequently, Z +
M ∈ C

q×q
�,U .

(c) Assume M ∈ C
q×q
H . Consider arbitrary X1,X2 ∈ C

q×q
H with X1 � X2. Then

X2 − X1 ∈ C
q×q
� . In view of M ∈ C

q×q
H and Remark A.10, we have X1 +

M,X2 +M ∈ C
q×q
H . Furthermore (X2 +M) − (X1 +M) = X2 − X1. Thus,

(X2 +M)− (X1 +M) ∈ C
q×q
� . Consequently,X1 +M � X2 +M .

(d) Assume M ∈ C
q×q
H . Let A,B ∈ C

q×q
H with A � B. Consider an arbitrary

X ∈ [A,B]. Then X ∈ C
q×q
H with A � X � B. By virtue of part (c), therefore

A + M � X + M and X + M � B + M . Consequently, X + M ∈ C
q×q
H

with A + M � X + M � B + M , i. e. X + M ∈ [A + M,B + M].
Hence, we have shown �M([A,B]) ⊆ [�M(A),�M(B)]. Since part (c)
yields �M(A) � �M(B), we can apply the same reasoning to the matrices
�M(A) and �M(B) and the Hermitian matrix −M instead of A, B, and M
to obtain �(−M)([�M(A),�M(B)]) ⊆ [�(−M)(�M(A)),�(−M)(�M(B))].
According to part (a), hence �(−M)([�M(A),�M(B)]) ⊆ [A,B]. Taking
again into account part (a), the application of �M to this inclusion yields
[�M(A),�M(B)] ⊆ �M([A,B]).

��

Lemma B.2 Let U be a linear subspace of Cq and let � : Cq×q → C
q×q be

defined by �(Z) := Z†. Then:

(a) � : Cq×q → C
q×q is bijective with inverse � .

(b) �(Z) ∈ C
q×q
�,U for all Z ∈ C

q×q
�,U .

(c) �(X2) � �(X1) for all X1,X2 ∈ C
q×q
�,U with X1 � X2.

(d) �([A,B]) = [�(B),�(A)] for all A,B ∈ C
q×q
�,U with A � B.

Proof

(a) follows from Remark A.4(a).
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(b) For each Z ∈ C
q×q
�,U , we have Z† ∈ C

q×q
� according to Remark A.15 and,

furthermore, R(Z†) = R(Z∗) = R(Z) = U by virtue of Remark A.4(a).
(c) Consider arbitrary X1,X2 ∈ C

q×q
�,U with X1 � X2. Then X1,X2 ∈ C

q×q
H with

0q×q � X1 � X2 and R(X1) = U = R(X2). Because of Proposition A.5
and Remark A.6, we have then PR(X1) = PR(X2) = X2X

†
2 = X

†
2X2, whereas

Lemma A.17 yields 0q×q � PR(X1)X
†
2PR(X1) � X

†
1. Consequently, X†

2 � X
†
1

follows.
(d) Let A,B ∈ C

q×q
�,U with A � B. Consider an arbitrary X ∈ [A,B]. Then X ∈

C
q×q
H and A � X � B and furthermoreX ∈ C

q×q
�,U , according to Remark A.19.

Thus, part (c) yields X† � A† and B† � X†. Consequently, X† ∈ C
q×q
H with

B† � X† � A†, i. e. X ∈ [A†, B†]. Hence, we have shown �([A,B]) ⊆
[�(B),�(A)]. Since parts (b) and (c) yield �(B),�(A) ∈ C

q×q
�,U and �(B) �

�(A), we can apply the same reasoning to the matrices�(B) and�(A) instead
ofA andB to obtain�([�(B),�(A)]) ⊆ [�(�(A)),�(�(B))]. According to
part (a), hence �([�(B),�(A)]) ⊆ [A,B]. Taking again into account part (a),
the application of � to this inclusion yields [�(B),�(A)] ⊆ �([A,B]).

��

Lemma B.3 Let M ∈ C
q×q
H , let U := R(M), and let �M : Cq×q → C

q×q be
defined by �M(Z) := MZM . Then:

(a) (�M† ◦�M)(Z) = Z and (�M ◦�M†)(Z) = Z for all Z ∈ C
q×q
�,U .

(b) �M(Z) ∈ C
q×q
�,U for all Z ∈ C

q×q
�,U .

(c) �M(X1) � �M(X2) for all X1,X2 ∈ C
q×q
H with X1 � X2.

(d) �M([A,B]) = [�M(A),�M(B)] for all A,B ∈ C
q×q
�,U with A � B.

Proof

(a) Let Z ∈ C
q×q
�,U . Then Z∗ = Z and R(Z) = U = R(M). Consequently, using

Remark A.6 and Proposition A.5, we get Z†Z = ZZ† = PU = MM† = M†M .
Thus, M†MZMM† = MM†ZM†M = Z follows. Hence, �(M†)(�M(Z)) =
�M(�(M†)(Z)) = Z.

(b) Consider now an arbitrary Z ∈ C
q×q
�,U . Then Z ∈ C

q×q
� and R(Z) = R(M).

From Remark A.13 we can conclude MZM ∈ C
q×q
� . Using Remark A.14,

we infer furthermore R(MZM) = R((M
√
Z)(M

√
Z)∗) = R(M

√
Z) =

MR(
√
Z) = MR(Z) = MR(M) =MR(M∗) = R(MM∗) = R(M) = U .

(c) Use Remark A.16.
(d) Let A,B ∈ C

q×q
�,U with A � B. Consider an arbitrary X ∈ [A,B].

Then X ∈ C
q×q
H with A � X � B. By virtue of part (c), therefore

MAM � MXM and MXM � MBM . Consequently, MXM ∈ C
q×q
H

with MAM � MXM � MBM , i. e., MXM ∈ [MAM,MBM]. Hence,
we have shown �M([A,B]) ⊆ [�M(A),�M(B)]. From Remark A.4(a)
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we can conclude (M†)∗ = (M∗)† = M† and R(M†) = R(M∗) =
R(M) = U , whereas parts (b) and (c) yield �M(A),�M(B) ∈ C

q×q
�,U

and �M(A) � �M(B). Thus, we can apply the same reasoning to the
matrices �M(A) and �M(B) and the Hermitian matrix M† instead of A, B,
and M to obtain �M†([�M(A),�M(B)]) ⊆ [�M†(�M(A)),�M†(�M(B))].
According to part (a), hence �M†([�M(A),�M(B)]) ⊆ [A,B]. Remark A.19
provides [�M(A),�M(B)] ⊆ C

q×q
�,U . Taking into account part (a), the appli-

cation of �M to the inclusion �M†([�M(A),�M(B)]) ⊆ [A,B] thus yields
[�M(A),�M(B)] ⊆ �M([A,B]).

��

Lemma B.4 Let η ∈ C and let �η : Cq×q → C
q×q be defined by �η(Z) := ηZ.

Then:

(a) If η �= 0, then �η : Cq×q → C
q×q is bijective with inverse �1/η.

(b) If η ∈ [0,∞), then �η(X1) � �η(X2) for all X1,X2 ∈ C
q×q
� with X1 � X2.

(c) If η ∈ (0,∞), then �η([A,B]) = [�η(A),�η(B)] for all A,B ∈ C
q×q
� with

A � B.

Proof

(a) is obvious.
(b) Assume η ∈ [0,∞). Consider arbitrary X1,X2 ∈ C

q×q
� with X1 � X2. Then

X1,X2 ∈ C
q×q
H and X2 − X1 ∈ C

q×q
� . In view of η ∈ R and Remark A.10,

hence ηX1, ηX2 ∈ C
q×q
H . Because of η ≥ 0 and Remark A.12, furthermore

η(X2 −X1) ∈ C
q×q
� . Thus, ηX2 − ηX1 ∈ C

q×q
� . Consequently, ηX1 � ηX2.

(c) Assume η ∈ (0,∞). Let A,B ∈ C
q×q
� with A � B. Consider an arbitrary

X ∈ [A,B]. Then X ∈ C
q×q
H with A � X � B and furthermore

X ∈ C
q×q
� , according to Remark A.18. Thus, part (b) yields ηA � ηX

and ηX � ηB. Consequently, ηX ∈ C
q×q
H with ηA � ηX � ηB, i. e.

X ∈ [ηA, ηB]. Hence, we have shown �η([A,B]) ⊆ [�η(A),�η(B)]. Since
part (b) yields �η(A) � �η(B) and, in view of �η(0q×q) = 0q×q , furthermore
�η(A),�η(B) ∈ C

q×q
� , we can apply the same reasoning to the matrices

�η(A) and�η(B) and the positive number 1/η instead of A, B, and η to obtain
�1/η([�η(A),�η(B)]) ⊆ [�1/η(�η(A)),�1/η(�η(B))]. According to part (a),
hence �1/η([�η(A),�η(B)]) ⊆ [A,B]. Taking again into account part (a), the
application of �η to this inclusion yields [�η(A),�η(B)] ⊆ �η([A,B]).

��

Proposition B.5 Let η ∈ (0,∞), let M ∈ C
q×q
� , let U := R(M), let

�η,M : Cq×q → C
q×q be defined by �η,M(Z) := ηM(Z +M)†M , and let A,B ∈

C
q×q
H with R(B) ⊆ U and 0q×q � A � B. Then 0q×q � �η,M(B) � �η,M(A) and

�η,M([A,B]) = [�η,M(B), �η,M(A)].



486 B. Fritzsche et al.

Proof Using Lemma A.17, we can conclude R(A) ⊆ R(B) ⊆ U . Now observe
that �η,M = �η ◦ �M ◦ � ◦ �M with the notation given in (B.1) and combine
Lemmas B.1, B.2, B.3, and B.4. ��

Appendix C: On Linear Fractional Transformations of
Matrices

In this appendix, we summarize some basic facts on linear fractional transformations
of matrices. A systematic treatment of this topic was handled by V. P. Potapov in [38]
(see also [5, Section 1.6]). We slightly extend the concept developed by V. P. Potapov
by studying the more general version of linear fractional transformations of pairs
of complex matrices. It should be mentioned that V. P. Potapov [38, pp. 80–81]
observed that sometimes there are situations where linear fractional transformations
of pairs of complex matrices arise, but not treated this case. We did not succeed
in finding a convenient hint in the public literature. That’s why we state the
corresponding results.

Notation C.1 Let E ∈ C
(p+q)×(p+q) and let

E =
[
a b

c d

]
(C.1)

be the block partition of E with p × p block a. If rank[c, d] = q , then the linear
fractional transformations S(p,q)E : Q[c,d] → C

p×q and S̃(p,q)E : Q̃[c,d] → C
p×q are

defined by

S(p,q)E (x) := (ax + b)(cx + d)−1 and S̃(p,q)E ((x, y)) := (ax + by)(cx + dy)−1.

Lemma C.2 Let c ∈ C
q×p and d ∈ C

q×q . Then the following statements are
equivalent:

(i) The set Q[c,d] := {x ∈ C
p×q : det(cx + d) �= 0} is non-empty.

(ii) The set Q̃[c,d] := {(x, y) ∈ C
p×q ×C

q×q : det(cx + dy) �= 0} is non-empty.
(iii) rank[c, d] = q .

Furthermore, Q̃[c,d] is a subset of the set Qp×q of all pairs (x, y) ∈ C
p×q × C

q×q
which fulfill rank

[
x
y

] = q .

A proof of Lemma C.2, e. g., in [5, Lemma 1.6.1, p. 52] and [23, Lemma D.2].
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Proposition C.3 Let a1, a2 ∈ C
p×p, let b1, b2 ∈ C

p×q , let c1, c2 ∈ C
q×p, and let

d1, d2 ∈ C
q×q be such that rank[c1, d1] = rank[c2, d2] = q . Furthermore, let

E1 :=
[
a1 b1

c1 d1

]
, E2 :=

[
a2 b2

c2 d2

]
, (C.2)

let E := E2E1, and let (C.1) be the block representation of E with p × p block
a. Then Q := {x ∈ Q[c1,d1] : S(p,q)E1

(x) ∈ Q[c2,d2]} is a nonempty subset of the set

Q[c,d] and S(p,q)E2
(S(p,q)E1

(x)) = S(p,q)E (x) holds true for all x ∈ Q.

A proof of Proposition C.3 is stated, e. g., in [5, Proposition 1.6.3].

Proposition C.4 ([23, Proposition D.4]) Let E1, E2 ∈ C
(p+q)×(p+q) and let the

block partitions of E1 and E2 with p × p blocks a1 and a2 be given by (C.2).
Let E := E2E1 and let (C.1) be the block partition of E with p × p block a.
Suppose that rank[c1, d1] = q and rank[c2, d2] = q hold true. Let Q̃ := {(x, y) ∈
Q̃[c1,d1] : S̃(p,q)E1

((x, y)) ∈ Q[c2,d2]}. Then Q̃[c,d] ∩ Q̃[c1,d1] = Q̃. Furthermore,

if Q̃[c,d] ∩ Q̃[c1,d1] �= ∅, then S(p,q)E2
(S̃(p,q)E1

((x, y))) = S̃(p,q)E ((x, y)) for all

(x, y) ∈ Q̃[c,d] ∩ Q̃[c1,d1].

Appendix D: Orthogonal Matrix Polynomials

We start with some notation.

Notation D.1 Let P be a complex p × q matrix polynomial. For each n ∈ N0,
let Yn(P ) := col(Aj )nj=0, where (Aj )∞j=0 is the uniquely determined sequence of

complex p × q matrices, such that P(w) = ∑∞
j=0 w

jAj holds true for all w ∈ C.
Denote by degP := sup{j ∈ N0 : Aj �= 0p×q} the degree of P . If k := degP ≥ 0,
then the matrix Ak is called the leading coefficient of P .

In particular, we have degP = −∞, if P(z) = 0p×q for all z ∈ C.

Notation D.2 For each n ∈ N0, let En : C→ C
q×(n+1)q be defined by

En(z) := [z0Iq, z
1Iq , z

2Iq , . . . , z
nIq ].

Remark D.3 If P is a complex q × q matrix polynomial, then P = EnYn(P ) for
all n ∈ N0 with n ≥ degP .

In this appendix we treat monic right orthogonal systems of q × q matrix
polynomials with respect to a given sequence (sj )2κj=0 from C

q×q . For a detailed
treatment of this topic under the view of the purposes of this paper we refer the
reader to [15, Section 5].

Now we turn our attention to a well-known notion.
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Definition D.4 Let (sj )2κj=0 be a sequence of complex q × q matrices. A sequence
(Pk)

κ
k=0 of complex q × q matrix polynomials is called monic right orthogonal

system with respect to (sj )2κj=0, if it satisfies the following conditions:

(I) For each k ∈ Z0,κ , the matrix polynomial Pk has degree k and leading
coefficient Iq .

(II) [Yn(Pj )]∗Hn[Yn(Pk)] = 0q×q for all j, k ∈ Z0,κ with j �= k, where n :=
max{j, k} and Hn is given by (4.2).

In this paper, our main interest is directed to the case (sj )2κj=0 ∈ H�
q,2κ .

Using Remark D.3, we can conclude from [15, Propositions 5.8(a1) and 5.9(a)]
furthermore:

Proposition D.5 Let (sj )2κj=0 ∈ H�
q,2κ and let (Pk)κk=0 be a sequence of complex

q × q matrix polynomials, satisfying condition (I) of Definition D.4. Then (Pk)κk=0
is a monic right orthogonal system with respect to (sj )2κj=0 if and only if Hk−1Xk =
yk,2k−1 for all k ∈ Z1,κ , where Xk is taken from the block representation Yk(Pk) =[−Xk
Iq

]
and where Hk−1 and yk,2k−1 are given by (4.2) and (4.1), respectively.

Appendix E: Matrix Polynomials of the Second Kind

This appendix contains the algebraic description of the construction of the so-called
matrix polynomials of second kind, which are often used in the framework of
orthogonal matrix polynomials. For a detailed exposition of this topic under the
view of the purposes of this paper, we refer the reader to [3, Section 4].

Remark E.1 Let (sj )κj=0 be a sequence of complex p × q matrices. For all m ∈
Z1,κ , then the block Toeplitz matrix

Sm :=

⎡
⎢⎢⎢⎢⎢⎣

s0 s1 s2 . . . sm

0 s0 s1 . . . sm−1

0 0 s0 . . . sm−2
...
...
...
. . .

...

0 0 0 . . . s0

⎤
⎥⎥⎥⎥⎥⎦
.

admits the block representation Sm =
[ s0 z1,m

0mp×q Sm−1

]
.

Notation E.2 Let (sj )κj=0 be a sequence of complex q × q matrices and let P be
a complex q × q matrix polynomial with degree k := degP satisfying k ≤ κ +
1. Then let P [[s]] : C → C

q×q be defined by P [[s]](z) = 0q×q if k ≤ 0 and by
P [[s]](z) := Ek−1(z)[0kq×q,Sk−1]Yk(P ) if k ≥ 1.
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Remark E.3 Let P and Q be two complex q × q matrix polynomials, each having
degree at most κ + 1. Then (P +Q)[[s]] = P [[s]] +Q[[s]]. Furthermore, (PA)[[s]] =
P [[s]]A for all A ∈ C

q×q and (ηP )[[s]] = ηP [[s]] for all η ∈ C.

For each m ∈ N, let �q,0,m := Imq . Furthermore, for all �,m ∈ N, let �q,�,m :=[ Imq
0�q×mq

]
. The following result should be compared with Proposition D.5:

Lemma E.4 Let (sj )κj=0 be a sequence of complex q × q matrices, let k ∈ N with
2k − 1 ≤ κ , and let P be a complex q × q matrix polynomial with degree k and
leading coefficient Iq , satisfying Hk−1X = yk,2k−1, where the matrix X is taken

from the block representation Yk(P ) =
[−X
Iq

]
. Let the matrix polynomial Q be

defined by Q(w) := wP(w). For all z ∈ C, then Q[[s]](z) = zP [[s]](z).

Proof We have degQ = k + 1 ≤ 2k ≤ κ + 1. According to Notation E.2, thus
Q[[s]](z) = Ek(z)[0(k+1)q×q,Sk]Yk+1(Q) for all z ∈ C. In view of Notations D.2
and D.1, hence degQ[[s]] ≤ k and Yk(Q[[s]]) = [0(k+1)q×q,Sk]Yk+1(Q). Observe

that Yk+1(Q) =
[ 0q×q
Yk(P )

]
, by the definition of Q. Consequently, Yk(Q[[s]]) =

SkYk(P ). From Remark E.1, (4.1), (4.2), and (4.3) we infer

Sk =
[

s0 z1,k

0kq×q Sk−1

]

and

[s0, z1,k] = �∗q,k−1,1[y0,k−1,Kk−1] = �∗q,k−1,1[Hk−1, yk,2k−1].

Because of Hk−1X = yk,2k−1, the latter identity implies [s0, z1,k]
[−X
Iq

] = 0q×q .
Thus, we obtain

Yk(Q
[[s]]) = SkYk(P ) =

[
s0 z1,k

0kq×q Sk−1

] [−X
Iq

]
=

[
0q×q

[0kq×q,Sk−1]Yk(P )
]
.

According to Notation E.2 and degP = k ≤ 2k ≤ κ + 1, we have P [[s]](z) =
Ek−1(z)[0kq×q,Sk−1]Yk(P ) for all z ∈ C. Taking into account degQ[[s]] ≤ k, we
can conclude with Remark D.3 and Notation D.2, for all z ∈ C, then

Q[[s]](z) = Ek(z)Yk(Q[[s]]) =
[
Iq, zEk−1(z)

] [ 0q×q
[0kq×q,Sk−1]Yk(P )

]
= zP [[s]](z).

��

The following result can be proved completely similar to [3, Lemma 9.1]:

Lemma E.5 Let α ∈ C, let (sj )κj=0 be a sequence of complex q × q matrices, and
let P be a complex q × q matrix polynomial with degree k := degP satisfying
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k ≤ κ . Let the matrix polynomial Q be given by Q(z) := (z − α)P (z). Then
Q[[s]] = s0P if k ≤ 0 andQ[[s]] = P [[a]] + s0P if k ≥ 1, where the sequence (aj )

κ−1
j=0

is given via (4.6).
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Gos. Univ. Uč. Zap. 34 = Zap. Mat. Otd. Fiz.-Mat. Fak. i Har′kov. Mat. Obšč. (4), 22:95–113
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1 Introduction

A linear relation H in a Hilbert space H is said to be accretive if Re (h′, h) ≥ 0,
{h, h′} ∈ H . Note that the closure of an accretive relation is also accretive. An
accretive relation H in H is said to be maximal accretive if the existence of an
accretive relation H ′ in H with H ⊂ H ′ implies H ′ = H . A maximal accretive
relation is automatically closed. In a similar way, a linear relation H in a Hilbert
space H is said to be sectorial with vertex at the origin and semi-angle α, α ∈
[0, π/2), if

|Im (h′, h)| ≤ (tanα)Re (h′, h), {h, h′} ∈ H. (1.1)

The closure of a sectorial relation is also sectorial. A sectorial relationH in a Hilbert
space H is said to be maximal sectorial if the existence of a sectorial relation H ′ in
H with H ⊂ H ′ implies H ′ = H . A maximal sectorial relation is automatically
closed. Note that a sectorial relation is maximal sectorial if and only if it is maximal
as an accretive relation; for more information, see [2, 6].

A sesquilinear form t = t[·, ·] in a Hilbert space H is a mapping from dom t ⊂ H
to C which is linear in its first entry and antilinear in its second entry. The adjoint t∗
is defined by t∗[h, k] = t[k, h], h, k ∈ dom t; for the diagonal of t the notation t[·]
will be used. A (sesquilinear) form is said to be sectorial with vertex at the origin
and semi-angle α, α ∈ [0, π/2), if

|ti[h]| ≤ (tan α) tr[h], h ∈ dom t, (1.2)

where the real part tr and the imaginary part ti are defined by

tr = t+ t∗

2
, ti = t− t∗

2i
, dom tr = dom ti = dom t. (1.3)

A sesquilinear form will be called a form in the rest of this note. Observe that the
form tr is nonnegative and that the form ti is symmetric, while t = tr + i ti. A
sectorial form t is said to be closed if

hn→ h, t[hn − hm] → 0 ⇒ h ∈ dom t and t[hn − h] → 0.

A sectorial form t is closed if and only if its real part tr is closed; see [7].
The connection between maximal sectorial relations and closed sectorial forms

is given in the so-called first representation theorem; cf. [1, 4, 7–9].

Theorem 1.1 Let t be a closed sectorial form in a Hilbert space H with vertex at
the origin and semi-angle α, α ∈ [0, π/2). Then there exists a unique maximal
sectorial relation H in H with vertex at the origin and semi-angle α in H such that

domH ⊂ dom t, (1.4)
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and for every {h, h′} ∈ H and k ∈ dom t one has

t[h, k] = (h′, k). (1.5)

Conversely, for every maximal sectorial relation H with vertex at the origin and
semi-angle α, α ∈ [0, π/2), there exists a unique closed sectorial form t such
that (1.4) and (1.5) are satisfied.

This result contains as a special case the connection between nonnegative
selfadjoint relations and closed nonnegative forms. The nonnegative selfadjoint
relation Hr corresponding to the real part tr of the form t is called the real part
of H ; this notion should not to be confused with the real part introduced in [6].

In the theory of sectorial operators one encounters expressions T ∗(I + iB)T

where T is a linear operator from a Hilbert space H to a Hilbert space K and B ∈
B(K) is a selfadjoint operator. In the context of sectorial relations the operator T
may be replaced by a linear relation T . A frequently used observation is that when
T is a closed linear relation and the multivalued part mulT is invariant underB, then
the product is a maximal sectorial relation; cf. [4]. However, in fact, the relation

T ∗(I + iB)T (1.6)

is maximal sectorial for any closed linear relation T . This will be shown in this note
via a matrix decomposition of B with respect to the orthogonal decomposition H =
domT ∗⊕mulT . In addition the closed sectorial form corresponding to T ∗(I+iB)T
will be determined. The main argument consists of a reduction to the case where T
is an operator. For the convenience of the reader the arguments in the operator case
are included. Note that if T is not closed, then T ∗(I + iB)T is a sectorial relation
which may have maximal sectorial extensions, such as T ∗(I + iB)T ∗∗ and some of
these extensions have been determined in [5]; cf. [10].

It is clear that the sum of two sectorial relations is a sectorial relation and
there will be maximal sectorial extensions. In [5] the Friedrichs extension has
been determined in general, while the Kreı̆n extension has been determined only
under additional conditions. As an application of the above results for the relation
in (1.6) the Kreı̆n extension and, in fact, all extremal maximal sectorial extensions
of the sum of two sectorial relations will be characterized in general. With this
characterization one can determine when the form sum extension is extremal.

2 A Preliminary Result

The first case to be considered is the linear relation T ∗(I + iB)T , where T a
closed linear operator, which is not necessarily densely defined, and B ∈ B(K)
is selfadjoint. In this case one can write down a natural closed sectorial form and
verify that T ∗(I + iB)T is the maximal sectorial relation corresponding to the form
via Theorem 1.1.
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Theorem 2.1 Let T be a closed linear operator from a Hilbert space H to a Hilbert
space K and let the operator B ∈ B(K) be selfadjoint. Then the form t in H defined
by

t[h, k] = ((I + iB)T h, T k), h, k ∈ dom t = domT , (2.1)

is closed and sectorial with vertex at the origin and semi-angle α ≤ arctan ‖B‖ and
the maximal sectorial relation H corresponding to the form t is given by

H = T ∗(I + iB)T , (2.2)

with mulH = mulT ∗ = (domT )⊥. A subset of dom t = domT is a core of
the form t if and only if it is a core of the operator T . Moreover, the nonnegative
selfadjoint relation Hr corresponding to the real part (tH)r of the form t is given by

Hr = T ∗T . (2.3)

Proof It is straightforward to check that t in (2.1) is a closed sectorial form as
indicated, since

tr [h, k] = (T h, T k), ti[h, k] = (BT h, T k).

Therefore, |ti[h]| = |(BT h, T h)| ≤ ‖B‖‖T h‖2 = ‖B‖tr [h], so that t is closed and
sectorial with vertex at the origin and semi-angle α ≤ arctan ‖B‖. Moreover, since
T is closed, it is clear that tr and hence t is closed.

Now let {h, h′} ∈ T ∗(I + iB)T , then there exists ϕ ∈ K such that

{h, ϕ} ∈ T , {(I + iB)ϕ, h′} ∈ T ∗,

from which it follows that

(h′, h) = (ϕ, ϕ)+ i(Bϕ, ϕ).

Consequently, one sees that

|Im (h′h)| = |(Bϕ, ϕ)| ≤ ‖B‖ ‖ϕ‖2 = ‖B‖Re (h′, h),

which implies that T ∗(I + iB)T is a sectorial relation with vertex at the origin and
semi-angle α ≤ arctan ‖B‖. Furthermore, observe that the above calculation also
shows that mulT ∗(I + iB)T = mulT ∗.

To see that T ∗(I + iB)T is closed, let {hn, h′n} ∈ T ∗(I + iB)T converge to
{h, h′}. Then there exist ϕn ∈ K such that

{hn, ϕn} ∈ T , {(I + iB)ϕn, h′n} ∈ T ∗,
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and the identity Re (h′n, hn) = ‖ϕn‖2 shows that (ϕn) is a Cauchy sequence in K, so
that ϕn→ ϕ with ϕ ∈ K. Thus

{hn, ϕn} → {h, ϕ}, {(I + iB)ϕn, h′n} → {(I + iB)ϕ, h′}.

Since T and T ∗ are closed, one concludes that {h, ϕ} ∈ T and {(I + iB)ϕ, h′} ∈ T ∗,
which implies that {h, h′} ∈ T ∗(I + iB)T . Hence T ∗(I + iB)T is closed.

Now let H be the maximal sectorial relation corresponding to t in (2.1). Assume
that {h, h′} ∈ H , then for all k ∈ dom t = domT

t[h, k] = (h′, k) or ((I + iB)T h, T k) = (h′, k),

which implies that

{(I + iB)T h, h′} ∈ T ∗ or {h, h′} ∈ T ∗(I + iB)T .

Consequently, it follows that H ⊂ T ∗(I + iB)T . Since T ∗(I + iB)T is sectorial
and H is maximal sectorial, it follows that H = T ∗(I + iB)T . In particular, one
sees that the closed relation T ∗(I + iB)T is maximal sectorial. ��

With the closed linear operator T from H to K and the selfadjoint operator B ∈
B(K), consider the following matrix decomposition of B

B =
(
Baa Bab

B∗ba Bbb

)
:
(

kerT ∗
ran T

)
→

(
kerT ∗
ran T

)
. (2.4)

Then it is clear that

t[h, k] = ((I + iB)T h, T k) = ((I + iBbb)T h, T k), h, h ∈ dom t = domT ,

(2.5)

which shows that only the compression of B to ran T plays a role in (2.1). In
applications involving Theorem 2.1, it is therefore useful to recall the following
corollary.

Corollary 2.2 Let T ′ be a closed linear operator from the Hilbert space H to a
Hilbert space K′ and let the operator B ′ ∈ B(K′) be selfadjoint. Assume that the
form t in Theorem 2.1 is also given by

t[h, k] = ((I + iB ′)T ′h, T ′k), h, k ∈ dom t = domT ′.

Then there is a unitary mapping U from ran T onto ran T ′, such that

T ′ = UT, B ′bb = UBbbU∗,
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where Bbb and B ′bb stand for the compressions of B and B ′ to ran T and ran T ′,
respectively.

Proof By assumption ((I+iB ′)T ′h, T ′k) = ((I+iB)T h, T k) for all h, k ∈ dom t.
This leads to

(T ′h, T ′k) = (T h, T k) and (B ′T ′h, T ′k) = (BT h, T k)

for all h, k ∈ dom t. Hence the mapping T h 
→ T ′h is unitary, and denote it by U .
Then T ′ = UT and it follows that (B ′T ′h, T ′k) = (BU∗T ′h,U∗T ′k). ��

3 A Matrix Decomposition for T ∗(I + iB)T

To construct a useful expressions for the product relation T ∗(I + iB)T some basic
properties of linear relations, their adjoints, and operator parts are used; see [2] for
details. Let T be a linear relation from H to K which is closed; observe that then the
subspace mulT is closed. The adjoint T ∗ of T is the set of all {h, h′} ∈ K × H for
which

(h′, f ) = (h, f ′) for all {f, f ′} ∈ T .

Hence, the definition of T ∗ depends on the Hilbert spaces H and K in which T is
assumed to act. Let K have the orthogonal decomposition

K = domT ∗ ⊕mulT , (3.1)

and let P be the orthogonal projection onto domT ∗. Observe that PT ⊂ T , since
{0} × mulT ⊂ T . Therefore T ∗ ⊂ (PT )∗ = T ∗P , where the last equality holds
since P ∈ B(K). Then one has

(PT )∗ = T ∗⊕̂ (mulT × {0}). (3.2)

The orthogonal operator part Ts of T is defined as Ts = PT . Hence Ts is an operator
from the Hilbert space H to the Hilbert space K and Ts ⊂ T . Note that ran Ts ⊂
domT ∗ = K � mulT . Thus one may interpret Ts as an operator from the Hilbert
space H to the Hilbert space domT ∗ and one may also consider the adjoint (Ts)

×
of Ts with respect to these spaces. It is not difficult to see the connection between
these adjoints: if {h, h′} ∈ K× H, then

{h, h′} ∈ T ∗ ⇔ {h, h′} ∈ (Ts)
×. (3.3)

The identity (3.2) shows the difference between (Ts)
∗ and (Ts)

×.
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Let T be a closed linear relation from a Hilbert space H to a Hilbert space K and
let B ∈ B(K) be selfadjoint. In order to study the linear relation

T ∗(I + iB)T ,

decompose the Hilbert space K as in (3.1) and decompose the selfadjoint operator
B ∈ B(K) accordingly:

B =
(
B11 B12

B∗12 B22

)
:
(

domT ∗
mulT

)
→

(
domT ∗
mulT

)
. (3.4)

Here the operators B11 ∈ B(domT ∗) and B22 ∈ B(mulT ) are selfadjoint, while
B12 ∈ B(mulT , domT ∗) and B∗12 ∈ B(domT ∗,mul T ).

By means of the decomposition (3.4) the following auxiliary operators will be
introduced. First, define the operator C0 ∈ B(domT ∗) by

C0 = I + B12(I + B2
22)
−1B∗12. (3.5)

Observe that C0 ≥ I and that (C0)
−1 belongs to B(domT ∗) and is a nonnegative

operator. Next, define the operator C ∈ B(domT ∗) by

C = C−
1
2

0

[
B11 − B12(I + B2

22)
− 1

2B22(I + B2
22)
− 1

2B∗12

]
C
− 1

2
0 , (3.6)

which is clearly selfadjoint.

Lemma 3.1 Let T be a closed linear relation from a Hilbert space H to a Hilbert
space K, let Ts be the orthogonal operator part of T , and let the selfadjoint operator
B ∈ B(K) be decomposed as in (3.4). Let the operatorsC0 and C be defined by (3.5)
and (3.6). Then

T ∗(I + iB)T = (Ts)
×C1/2

0 (I + iC)C1/2
0 Ts, (3.7)

and, consequently, T ∗(I + iB)T is maximal sectorial and

mulT ∗(I + iB)T = mulT ∗ = mul (Ts)
×. (3.8)

Proof In order to prove the equality in (3.7), assume that {h, h′} ∈ T ∗(I + iB)T .
This means that

{h, ϕ} ∈ T and {(I + iB)ϕ, h′} ∈ T ∗ (3.9)

for some ϕ ∈ K. Decompose the element ϕ as

ϕ = ϕ1 + ϕ2, ϕ1 ∈ domT ∗, ϕ2 ∈ mulT . (3.10)
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Since {0, ϕ2} ∈ T , it is clear that

{h, ϕ} ∈ T ⇔ {h, ϕ1} ∈ Ts. (3.11)

Using (3.10) and the above decomposition (3.4) of B, one observes that

{(I + iB)ϕ, h′} =
{(
(I + iB11)ϕ1 + iB12ϕ2

iB∗12ϕ1 + (I + iB22)ϕ2

)
, h′

}
,

which implies that the condition {(I + iB)ϕ, h′} ∈ T ∗ is equivalent to

{ {(I + iB11)ϕ1 + iB12ϕ2, h
′} ∈ T ∗,

iB∗12ϕ1 + (I + iB22)ϕ2 = 0,

or, what is the same thing,

{ {[I + iB11 + B12(I + iB22)
−1B∗12]ϕ1, h

′} ∈ T ∗,
ϕ2 = −i(I + iB22)

−1B∗12ϕ1.
(3.12)

Due to the definitions (3.5) and (3.6) and the identity

(I + iB22)
−1 = (I + B2

22)
− 1

2 (I − iB22)(I + B2
22)
− 1

2 ,

observe that

I + iB11 + B12(I + iB22)
−1B∗12

= C0 + i[B11 − B12(I + B2
22)
− 1

2B22(I + B2
22)
− 1

2B∗12]
= C1/2

0 (I + iC)C1/2
0 .

Therefore, it follows from (3.12), via the equivalence in (3.3), that

{(I + iB)ϕ, h′} ∈ T ∗ ⇔
{
{C1/2

0 (I + iC)C1/2
0 ϕ1, h

′} ∈ (Ts)×,
ϕ2 = −i(I + iB22)

−1B∗12ϕ1.
(3.13)

Combining (3.11) and (3.13), one sees that

{h, h′} ∈ (Ts)
×C1/2

0 (I + iC)C1/2
0 Ts.

Conversely, if this inclusion holds, then there exists ϕ1 ∈ domT ∗, such that

{h, ϕ1} ∈ Ts and {C1/2
0 (I + iC)C1/2

0 ϕ1, h
′} ∈ (Ts)

×.
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Then define ϕ2 = −i(I + iB22)
−1B∗12ϕ1, so that ϕ2 ∈ mulT . Furthermore, define

ϕ = ϕ1 + ϕ2. Hence {h, ϕ} ∈ T , and it follows from (3.13) that

{h, h′} ∈ T ∗(I + iB)T .

Therefore one can rewrite T ∗(I + iB)T in the form (3.7).

Observe that C
1
2
0 Ts is a closed linear operator from the Hilbert space H to the

Hilbert space domT ∗ whose adjoint is given by

(C
1/2
0 Ts)

× = (Ts)
× C1/2

0 . (3.14)

Hence, by Theorem 2.1 (Ts)
×C1/2

0 (I + iC)C1/2
0 Ts is a maximal sectorial relation in

H and by the identity (3.7) the same is true for T ∗(I + iB)T .
The statement in (3.8) follows by tracing the above equivalences for an element

{0, h′}. ��

Remark 3.2 Let ϕ = ϕ1 + ϕ2 ∈ K be decomposed as in (3.10). Then one has the
following equivalence:

(I + iB)ϕ ∈ domT ∗ ⇔ (I + iB)ϕ = C1/2
0 (I + iC)C1/2

0 ϕ1.

To see this, let η = (I + iB)ϕ. Then η ∈ domT ∗ if and only if

(
I + iB11 iB12

iB∗12 I + iB22

)(
ϕ1

ϕ2

)
=

(
η

0

)
,

where domT ∗ is interpreted as the subspace domT ∗ × {0} of K. Now apply (3.13).

4 A Class of Maximal Sectorial Relations and Associated
Forms

The linear relation T ∗(I + iB)T is maximal sectorial for any selfadjoint B ∈ B(K)
and any closed linear relation T from H to K. Now the corresponding closed
sectorial form will be determined. This gives the appropriate version of Theorem 2.1
in terms of relations. In fact, the general result is based on a reduction via Lemma 3.1
to Theorem 2.1.

Theorem 4.1 Let T be a closed linear relation from a Hilbert space H to a Hilbert
space K and let the selfadjoint operator B ∈ B(K) be decomposed as in (3.4). Let
the operators C0 and C be defined by (3.5) and (3.6). Then the form t defined by

t[h, k] = ((I + iC) C
1
2
0 Ts h,C

1
2

0 Ts k), h, k ∈ dom t = domT , (4.1)
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is closed and sectorial with vertex at the origin and semi-angle γ ≤ arctan ‖C‖.
Moreover, the maximal sectorial relation H corresponding to the form t is given by

H = (Ts)
× C1/2

0 (I + iC)C1/2
0 Ts = T ∗(I + iB)T . (4.2)

A subset of dom t = domT is a core of the form t if and only if it is a core of the
operator Ts. Moreover, the nonnegative selfadjoint relationHr corresponding to the
real part (tH)r of the form t is given by

Hr = (Ts)
×C0Ts.

Proof SinceC
1
2

0 Ts is a closed linear operator from the Hilbert space H to the Hilbert

space domT ∗, Theorem 2.1 (with K replaced by domT ∗, B by C, and T by C1/2
0 Ts)

shows that the form t in (4.1) is closed and sectorial with vertex at the origin and
semi-angle γ ≤ arctan ‖C‖. Moreover, the maximal sectorial relation associated
with the form t is given by

(C
1/2
0 Ts)

×(I + iC)C1/2
0 Ts = (Ts)

×C1/2
0 (I + iC)C1/2

0 Ts,

cf. (2.1), (2.2), and (3.14). The identities in (4.2) are clear from Lemma 3.1. The
assertion concerning the core holds, since the factor C0 is bounded with bounded
inverse. The formula (4.2) shows that

(tH)r [h, k] = (C
1
2
0 Tsh,C

1
2
0 Tsk), h, k ∈ dom t = domT ,

and hence Hr = (C1/2
0 Ts)

×C1/2
0 Ts = (Ts)

×C0Ts (cf. the discussion above). ��

Recall that if {h, h′} ∈ T ∗(I + iB)T , then {h, ϕ} ∈ T and {(I + iB)ϕ, h′} ∈ T ∗.
The last inclusion implies the condition (I + iB)ϕ ∈ domT ∗ ⊂ domT ∗, giving rise
to ϕ2 = −i(I + iB22)

−1B∗12ϕ1. Thus, for instance, when B = diag (B11, B22),
it follows that ϕ2 = 0, so that it is immediately clear that γ ≤ arctan ‖B11‖,
independent of B22. Note that the following assertions are equivalent:

(i) B = diag (B11, B22);
(ii) B12 = 0;

(iii) C0 = I ;
(iv) mulT is invariant under B,

in which case C = B11. Hence, if mulT is invariant under B, i.e., if any of the
assertions (i)–(iv) hold, then Theorem 4.1 gives the following corollary, which
coincides with [4, Theorem 5.1]. In the case where mulT = {0} the corollary
reduces to Theorem 2.1.

Corollary 4.2 Let T be a closed linear relation from a Hilbert space H to a Hilbert
space K, let Ts be the orthogonal operator part of T , and let mulT be invariant
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under the selfadjoint operator B ∈ B(K), so that B = diag (B11, B22). Then the
form t defined by

t[h, k] = ((I + iB11)Tsh, Tsk), h, k ∈ dom t = domT ,

is closed and sectorial with vertex at the origin and semi-angle γ ≤ arctan ‖B11‖.
Moreover, the maximal sectorial relation H corresponding to the form t is given by

H = (Ts)
×(I + iB11)Ts = T ∗(I + iB)T .

In the case that mulT is not invariant under B, one has C0 �= I , and the formulas
are different: for instance, the real part (tH)r in Theorem 4.1 is of the form

(tH)r [h, k] = (C
1
2
0 Tsh,C

1
2

0 Tsk), h, k ∈ dom t = domTs = domT .

Example 4.3 Assume that B11 �= 0 and

B11 = B12(I + B2
22)
− 1

2B22(I + B2
22)
− 1

2B∗12,

so that C = 0. In this case the maximal sectorial relation H = T ∗(I + iB)T in
Theorem 4.1 is selfadjoint, i.e., H = Hr and the associated form t is nonnegative.
On the other hand, with such a choice of B the operator part of T determines the
maximal sectorial relation (Ts)

∗(I+iB)Ts with semi-angle arctan ‖B11‖ > 0, while
T ∗(I + iB)T has semi-angle γ = 0.

5 Maximal Sectorial Relations and Their Representations

Let H be a maximal sectorial relation in H and let the closed sectorial form tH
correspond toH ; cf. Theorem 1.1. Since the closed form tH is sectorial, one has the
inequality

|(tH)i[h]| ≤ (tan α)(tH)r[h], h ∈ dom t, (5.1)

and in this situation the real part (tH)r is a closed nonnegative form. Hence by the
first representation theorem there exists a nonnegative selfadjoint relation Hr, the
so-called real part of H , such that domHr ⊂ dom (tH)r = dom tH and

(tH)r[h, k] = (h′, k), {h, h′} ∈ Hr, k ∈ dom (tH)r = dom tH .

This real part Hr, not to be confused with the real part introduced in [6], will play
an important role in formulating the second representation theorem below. First the
case where H is a maximal sectorial operator will be considered, in which case H
is automatically densely defined; see [7].
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Lemma 5.1 Let H be an maximal sectorial operator in H, let the closed sectorial
form tH correspond to H via Theorem 1.1, and let Hr be the real part of H . Then
there exists a unique selfadjoint operatorG ∈ B(H) with ‖G‖ = tanα, of the form

G =
(

0 0
0 Gbb

)
:
(

kerHr

ranHr

)
→

(
kerHr

ranHr

)
, (5.2)

such that

tH [h, k] = ((I + iG)(Hr) 1
2 h, (Hr)

1
2 k), h, k ∈ dom tH = domH

1
2
r . (5.3)

Moreover, the corresponding maximal sectorial relation H is given by

H = (Hr)
1
2 (I + iG)(Hr)

1
2 ,

with mulH = mulHr.

Proof The inequality

|(tH)i[h, k]|2 ≤ Ctr[h]tr[k] = C‖H
1
2

r h‖‖H
1
2

r k‖, h, k ∈ dom ,

shows the existence of a selfadjoint operatorG in H� kerH such that

(tH)i[h, k] = (G(Hr)
1
2 h, (Hr)

1
2 k), h, k ∈ dom (Hr)

1
2 . (5.4)

Extend G to all of H in a trivial way, so that the same formula remains valid; see
Corollary 2.2. It follows from the decomposition t = tr + iti, cf. (1.3), and the
identities (5.5) and (5.4), that

tH = (tH)r + i(tH)i,

so that

tH = [h, k] = ((Hr)
1
2
s h, (Hr)

1
2
s k)+ i(G(Hr)

1
2
s h, (Hr)

1
2
s k).

This last identity immediately gives (5.3). The rest follows from Corollary 4.2. ��

Now let H be a maximal sectorial relation, let Hr be its real part, and let (Hr)s
be its orthogonal operator part. Then one obtains the representation

(tH)r[h, k] = (((Hr))
1
2
s h, ((Hr)s)

1
2 k), h, k ∈ dom (tH)r = dom ((Hr)s)

1
2 ,

(5.5)

cf. Theorem 2.1. Now apply Corollary 4.2 and therefore one may formulate the
second representation theorem as follows.
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Theorem 5.2 Let H be a maximal sectorial relation in H, let the closed sectorial
form tH correspond to H via Theorem 1.1, and let Hr be the real part of H . Then
there exists a selfadjoint operator G ∈ B(H) with ‖G‖ = tanα, such that G is
trivial on kerHr ⊕mulHr, and

tH [h, k] = ((I + iG)((Hr)s)
1
2 h, ((Hr)s)

1
2 k), h, k ∈ dom tH = domH

1
2

r .

(5.6)

Moreover, the maximal sectorial relation H is given by

H = (((Hr)s)
1
2 )×(I + iG)((Hr)s)

1
2 , (5.7)

with mulH = mulHr.

Next, it is assumed that H is a maximal sectorial relation of the form H =
T ∗(I + iB)T , where T is a closed linear relation from a Hilbert space H to a Hilbert
space K and the operator B ∈ B(K) is selfadjoint. Let the operators C0 and C be
defined by (3.5) and (3.6), then

H = (Ts)
× C1/2

0 (I + iC)C1/2
0 Ts,

while the corresponding closed sectorial form is given

t[h, k] = ((I + iC) C
1
2
0 Ts h,C

1
2

0 Ts k), h, k ∈ dom t = domT .

To compare these expressions with (5.6) and (5.7), observe that

( C
1
2
0 Ts h,C

1
2
0 Ts k) = ((Hr)s) 1

2 h, ((Hr)s)
1
2 k)

and

(C C
1
2
0 Ts h,C

1
2

0 Ts k) = (G((Hr)s) 1
2 h, ((Hr)s)

1
2 k).

It is clear from (4.1) that only the (selfadjoint) compression of C to ranC1/2
0 Ts

contributes to the form (4.2), so that it is straightforward to set up a unitary mapping;
cf. Corollary 2.2.

6 Extremal Maximal Sectorial Extensions of Sums
of Maximal Sectorial Relations

Let H1 and H2 be maximal sectorial relations in a Hilbert space H. Then the sum
H1 +H2 is a sectorial relation in H with

dom (H1 +H2) = domH1 ∩ domH2,
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so that the sum is not necessarily densely defined. In particular, H1 + H2 and its
closure need not be operators, since

mul (H1 +H2) = mulH1 +mulH2. (6.1)

To describe the class of extremal maximal sectorial extensions of H1 + H2 some
basic notations are recalled from [5], together with the description of the Friedrichs
and Kreı̆n extensions

(H1 +H2)F and (H1 +H2)K

ofH1+H2, respectively. In order to describe the whole class of extremal extensions
of H1 + H2 and the corresponding closed forms a proper description of the closed
sectorial form tK is essential. The results in Sects. 3 and 4 allow a general treatment
that will relax the additional conditions in [5].

6.1 Basic Notions

Let H1 and H2 be maximal sectorial relations and decompose them as follows

Hj = A
1
2
j (I + iBj )A

1
2
j , 1 ≤ j ≤ 2, (6.2)

where Aj (the real part of Hj ), 1 ≤ j ≤ 2, are nonnegative selfadjoint relations in
H and Bj , 1 ≤ j ≤ 2, are bounded selfadjoint operators in H which are trivial on
kerAj ⊕mulAj ; cf. Theorem 5.2. Furthermore, if A1 and A2 are decomposed as

Aj = Ajs ⊕ Aj∞, 1 ≤ j ≤ 2,

where Aj∞ = {0} × mulAj , 1 ≤ j ≤ 2, and Ajs, 1 ≤ j ≤ 2, are densely defined
nonnegative selfadjoint operators (defined as orthogonal complements in the graph
sense), then the uniquely determined square roots of Aj , 1 ≤ j ≤ 2 are given by

A
1
2
j = A

1
2
js ⊕Aj∞, 1 ≤ j ≤ 2.

Associated with H1 and H2 is the relation � from H×H to H, defined by

� =
{ {{f1, f2}, f ′1 + f ′2

} : {fj , f ′j } ∈ A
1
2
j , 1 ≤ j ≤ 2

}
. (6.3)

Clearly, � is a relation whose domain and multivalued part are given by

dom� = domA
1
2
1 × domA

1
2
2 , mul� = mulH1 +mulH2.
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The relation � is not necessarily densely defined in H× H, so that in general �∗ is
a relation as mul�∗ = (dom�)⊥. Furthermore, the adjoint �∗ of � is the relation
from H to H× H, given by

�∗ =
{{
h, {h′1, h′2}

} : {h, h′j } ∈ A
1
2
j , 1 ≤ j ≤ 2

}
. (6.4)

The identity (6.4) shows that the (orthogonal) operator part (�∗)s of �∗ is given by:

(�∗)s =
{{
h, {h′1, h′2}

} : {h, h′j } ∈ A
1
2
js, 1 ≤ j ≤ 2

}
(6.5)

=
{{
h, {A

1
2
1sh,A

1
2
2sh}

}
: h ∈ domA

1
2
1 ∩ domA

1
2
2

}
.

The identities (6.4) and (6.5) show that

dom�∗ = domA
1
2
1 ∩ domA

1
2
2 , mul�∗ = mulH1 ×mulH2, ran (�∗)s = F0,

where the subspace F0 ⊂ H×H is defined by

F0 =
{{
A

1
2
1sh,A

1
2
2sh

}
: h ∈ domA

1
2
1 ∩ domA

1
2
2

}
. (6.6)

The closure of F0 in H × H will be denoted by F. Define the relation � from H to
H× H by

� =
{{

h,

{
A

1
2
1sh,A

1
2
2sh

}}
: h ∈ domH1 ∩ domH2

}
⊂ H× (H×H). (6.7)

It follows from this definition that

dom� = domH1 ∩ domH2, mul� = {0}, ran� = E0,

where the space E0 ⊂ H×H is defined by

E0 =
{{

A
1
2
1sf,A

1
2
2sf

}
: f ∈ domH1 ∩ domH2

}
. (6.8)

Observe that E0 ⊂ F0. The closure of E0 in H× H will be denoted by E. Hence,

E ⊂ F. (6.9)
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Comparison of (6.5) and (6.7) shows

� ⊂ (�∗)s, (6.10)

and thus the operator � is closable and �∗∗ ⊂ (�∗)s. It follows from dom�∗ =
(mul�∗∗)⊥ and mul�∗ = (dom�)⊥, that

dom�∗ = H, mul�∗ = (domH1 ∩ domH2)
⊥.

Next, define the relation K from H×H to H by

K = {{{(I + iB1)A
1
2
1sf, (I + iB2)A

1
2
2sf }, f ′1 + f ′2} : (6.11)

{(I + iB1)A
1
2
1sf, f

′
1} ∈ A

1
2
1 , {(I + iB2)A

1
2
2sf, f

′
2} ∈ A

1
2
2

}
⊂ (H× H)×H.

Clearly, the domain and multivalued part of K are given by

domK = D0, mulK = mul (H1 +H2),

where

D0 =
{
{(I + iB1)A

1/2
1s f, (I + iB2)A

1/2
2s f } : f ∈ domH1 ∩ domH2

}
.

(6.12)
The closure of D0 in H×H will be denoted by D.

Lemma 6.1 The relations K , �, and � satisfy the following inclusions:

K ⊂ � ⊂ �∗, � ⊂ �∗ ⊂ K∗. (6.13)

Proof To see this note thatK ⊂ � follows from (6.3) and (6.11), and that� ⊂ �∗
follows from (6.4) and (6.7). Therefore, also �∗ ⊂ K∗ and � ⊂ �∗∗ ⊂ �∗. ��

6.2 The Friedrichs and the Kreı̆n Extensions of H1 + H2

The descriptions of the Friedrichs extension and the Kreı̆n extension (H1+H2)F and
(H1 +H2)K of H1 +H2 are now recalled from [5]. For this, define the orthogonal
sum of the operators B1 and B2 in H×H by

B⊕ := B1 ⊕ B2 =
(
B1 0
0 B2

)
.
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The descriptions of (H1 +H2)F and (H1 +H2)K incorporate the initial data on the
factorizations (6.2) of H1 and H2 via the mappings �, � , and K in Sect. 6.1. The
construction of the Friedrichs extension was given in [5, Theorem 3.2], where some
further details and a proof of the following result can be found. The new additions
in the next theorem are the second representations for (H1 +H2)F and tF that will
be needed in the rest of this paper.

Theorem 6.2 Let H1 and H2 be maximal sectorial and let � be defined by (6.7).
Then the Friedrichs extension of H1 +H2 has the expression

(H1 +H2)F = �∗(I + iB⊕)�∗∗ = �∗C1/2
0 (I + iC)C1/2

0 PD(�
∗∗)s. (6.14)

The closed sectorial form tF associated with (H1 +H2)F is given by

tF [f, g] = ((I + iB⊕)�∗∗f,�∗∗g) = (C1/2
0 (I + iC)C1/2

0 PD(�
∗∗)sf, PD(�∗∗)sg),

(6.15)

for all f, g ∈ dom tF = dom�∗∗.

Proof As indicated the first expressions for (H1 +H2)F in (6.14) and tF in (6.15)
have been proved in [5, Theorem 3.2] and, hence, it suffices to derive the second
expressions in (6.14) and (6.15).

By definition, one has ran� = E0 (see (6.7), (6.8)), and by Lemma 6.1 one has
� ⊂ �∗∗ ⊂ K∗, which after projection onto D = domK yields

PD�
∗∗ ⊂ PDK∗ = (K∗)s.

Notice that D0 = domK = (I + iB⊕)E0 (see (6.8), (6.12)). Since the operator
I + iB⊕ is bounded with bounded inverse, one has the equality

D = (I + iB⊕)E. (6.16)

It follows that the range of (I + iB⊕)�∗∗ belongs to D = domK . Now by
Remark 3.2 this implies that for all f ∈ dom�∗∗ one has the equality

(I + B⊕)(�∗∗)sf = C1/2
0 (I + iC)C1/2

0 PD(�
∗∗)sf. (6.17)

This leads to

�∗(I + iB⊕)�∗∗ = �∗C1/2
0 (I + iC)C1/2

0 PD(�
∗∗)s,

which proves (6.14). Similarly by substituting (6.17) into the first formula for tF
and noting that PDC

1/2
0 = PD, one obtains the second formula in (6.15). ��

Also the construction of the Kreı̆n extension for the sum H1 + H2 can be
found in [5, Theorem 3.2]. However, the corresponding form tK was described only
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under additional conditions to prevent the difficulty that appears by the fact that
the multivalued part of (H1 + H2)K is in general not invariant under the mapping
B⊕. Theorem 4.1 allows a removal of these additional conditions and leads to a
description of the form tK in the general situation.

For this purpose, decompose the Hilbert space H× H as follows

H×H = domK ⊕mulK∗, (6.18)

and let P be the orthogonal projection onto domK . Moreover, decompose the
selfadjoint operator B⊕ ∈ B(H×H) accordingly:

B⊕ =
(
B11 B12

B∗12 B22

)
:
(

domK

mulK∗
)
→

(
domK

mulK∗
)
. (6.19)

Next define the operator C0 ∈ B(domK∗) by

C0 = I + B12(I + B2
22)
−1B∗12, (6.20)

and the operator C ∈ B(domK∗) by

C = C−
1
2

0

[
B11 − B12(I + B2

22)
− 1

2B22(I + B2
22)
− 1

2B∗12

]
C
− 1

2
0 , (6.21)

which is clearly selfadjoint.

Theorem 6.3 Let H1 and H2 be maximal sectorial relations in a Hilbert space
H, let K be defined by (6.11), and let C0 and C be given by (6.20) and (6.21),
respectively. Then the Kreı̆n extension of H1 +H2 has the expression

(H1 +H2)K = K∗∗(I + iB⊕)K∗ = ((K∗)s)× C1/2
0 (I + iC)C1/2

0 (K∗)s.

The closed sectorial form tK associated with (H1 +H2)K is given by

tK [f, g] = ((I + iC)C1/2
0 (K∗)sf,C1/2

0 (K∗)sg), f, g ∈ dom tK = domK∗.

Proof The first equality in the first statement is proved in [5, Theorem 3.2].
The second equality is obtained by applying Theorem 4.1 to the sectorial relation
K∗∗(I + iB⊕)K∗.

The statement concerning the form tK is a consequence of this second represen-
tation of (H1+H2)K , since C1/2

0 (K∗)s is a closed operator and hence one can apply
Theorem 2.1 to get the desired expression for the corresponding form tK . ��

The form tK described in Theorem 6.3 can be used to give a complete description
of all extremal maximal sectorial extensions of the sum H1 + H2. Namely, a
maximal sectorial extension H̃ of a sectorial relation S is extremal precisely when
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the corresponding closed sectorial form tH̃ is a restriction of the closed sectorial
form tK generated by the Kreı̆n extension SK of S; see e.g. [4, Definition 7.7,
Theorems 8.2, 8.4, 8.5]. Therefore, Theorem 6.3 implies the following description
of all extremal maximal sectorial extensions of H1 +H2.

Theorem 6.4 Let H1 and H2 be maximal sectorial relations in H, let � and K be
defined by (6.7) and (6.11), respectively, and let PD be the orthogonal projection
from H×H onto D = domK . Then the following statements are equivalent:

(i) H̃ is an extremal maximal sectorial extension of H1 +H2;
(ii) H̃ = R∗(I + iC)R, where R is a closed linear operator satisfying

C
1/2
0 PD�

∗∗ ⊂ R ⊂ C1/2
0 (K∗)s.

Proof For comparison with the abstract results this statement will be proved by
means of the constructions used in [4]. Let S = H1 +H2 then the sectorial relation
S gives rise to a Hilbert space HS and a selfadjoint operator BS ∈ B(HS) such that
the Friedrichs extension SF and the Kreı̆n extension SK of S are given by

SF = Q∗(I + iBS)Q∗∗, tF = J ∗∗(I + iBS)J ∗,

with corresponding forms

tF [f, g] = ((I + iBS)Q∗∗f,Q∗∗g), f, g ∈ domQ∗∗,

and

tK [f, g] = ((I + iBS)J ∗f, J ∗g), f, g ∈ domJ ∗;

see [4, Theorem 8.3]. Here Q : H → HS is an operator and J : HS → H is a
densely defined linear relation such that

J ⊂ Q∗, Q ⊂ J ∗;

in particular, the adjoint J ∗ is an operator.
Recall from Theorem 6.3 that

tK [f, g] = ((I + iC)C1/2
0 (K∗)sf,C1/2

0 (K∗)sg),

while Theorem 6.2 gives

tF [f, g] = ((I + iB⊕)�∗∗f,�∗∗g) = (C1/2
0 (I + iC)C1/2

0 PD(�
∗∗)sf, PD(�∗∗)sg).

Now apply [4, Theorem 8.4] and Corollary 2.2. ��
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6.3 The Form Sum Construction

The maximal sectorial relations H1 and H2 generate the following closed sectorial
form

((I + iB1)A
1
2
1sh,A

1
2
1sk)+ ((I + iB2)A

1
2
2sh,A

1
2
2sk), h, k ∈ domA

1
2
1 ∩ domA

1
2
2 .

(6.22)

Observe that the restriction of this form to dom�∗∗ is equal to

(�∗∗h,�∗∗k) = ((I + iB1)A
1
2
1sh,A

1
2
1sk)+ ((I + iB2)A

1
2
2sh,A

1
2
2sk), h, k ∈ dom�∗∗,

(6.23)

since �∗∗ ⊂ (�∗)s, cf. (6.5). Thus, the form in (6.22) has a natural domain which
is in general larger than dom�∗∗.

Theorem 6.5 Let H1 and H2 be maximal sectorial relations in H, let � be given
by (6.3), and let E = closE0 and F = closF0 be defined by (6.8) amd (6.6). Then
the maximal sectorial relation

�∗∗(I + iB⊕)�∗

is an extension of the relation H1 + H2, which corresponds to the closed sectorial
form in (6.22).

Moreover, the following statements are equivalent:

(i) �∗∗(I + iB⊕)�∗ is extremal;
(ii) E = F.

Proof The first statement is proved in [5, Theorem 3.5]. For the proof of the
equivalence of (i) and (ii) appropriate modifications are needed in the arguments
used in the proof of [5, Theorem 3.5]. The special case treated there was based
on the additional assumption that D = E, where D = domK; a condition which
implies the invariance of mulK∗ under the operator B⊕. In the present general case
such an invariance property cannot be assumed. Now for simplicity denote the form
sum extension of H1 +H2 briefly by Ĥ = �∗∗(I + iB⊕)�∗.

(i)⇒ (ii) Assume that Ĥ is extremal. Since E ⊂ F by (6.9), it is enough to prove
the inclusion F ⊂ E. By Theorem 6.4 and mul�∗ = mulH1 ×mulH2 one sees

Ĥ = ((�∗)s)∗(I + iB⊕)(�∗)s = R∗(I + iC)R, (6.24)

for some closed operator R satisfying

C
1/2
0 PD�

∗∗ ⊂ R ⊂ C1/2
0 (K∗)s, (6.25)
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where PD is the orthogonal projection of H × H onto D = domK . Recall that
(�∗)s ⊂ �∗ ⊂ K∗ and hence PD(�∗)s ⊂ PDK

∗ = (K∗)s. Moreover, one has
domPD(�

∗)s = dom (�∗)s = domR, since by assumption these two domains
coincide with the corresponding joint form domain. Denoting R̂ = C

−1/2
0 R, one

has dom R̂ = domPD(�
∗)s and (6.24) can be rewritten as

Ĥ = ((�∗)s)∗(I + iB⊕)(�∗)s = R̂∗C1/2
0 (I + iC)C1/2

0 R̂, (6.26)

where R̂ satisfies PD�∗∗ ⊂ R̂ ⊂ (K∗)s. One concludes that PD(�∗)s = R̂, since
both operators are restrictions of (K∗)s, and thus

((�∗)s)∗PD = R̂∗. (6.27)

Now one obtains from (6.26) the equalities

((�∗)s)∗(I + iB⊕)(�∗)s = R̂∗C1/2
0 (I + iC)C1/2

0 R̂

= ((�∗)s)∗PDC1/2
0 (I + iC)C1/2

0 R̂

= ((�∗)s)∗C1/2
0 (I + iC)C1/2

0 R̂.

Hence, for every f ∈ dom Ĥ one has

(I + iB⊕)(�∗)sf − C1/2
0 (I + iC)C1/2

0 R̂f ∈ ker ((�∗)s)∗.

Here C1/2
0 (I + iC)C

1/2
0 R̂f ∈ D = domK and D = domK = (I + iB⊕)E;

see (6.16). Therefore, there exists ϕ ∈ E such that

C
1/2
0 (I + iC)C1/2

0 R̂f = (I + iB⊕)ϕ.

On the other hand, (�∗)sf ∈ F = ran (�∗)s = (ker ((�∗)s)∗)⊥, see (6.5), (6.6).
Since ϕ ∈ E ⊂ F, this yields

(
(I + iB⊕)((�∗)sf − ϕ), (�∗)sf − ϕ

) = 0,

and thus (�∗)sf − ϕ = 0. Consequently, for all f ∈ dom Ĥ one has

(�∗)sf ∈ E.

Since dom Ĥ is a core for the corresponding closed form, or equivalently, the closure
of (�∗)s	 dom Ĥ is equal to (�∗)s, the claim follows: F = ran (�∗)s ⊂ E.

(ii) ⇒ (i) Assume that E = F. Then F0 = ran (�∗)s ⊂ E and hence for all
f ∈ dom (�∗)s one has (I + B⊕)(�∗)sf ∈ domK . By Remark 3.2 this implies
that

(I + B⊕)(�∗)sf = C1/2
0 (I + iC)C1/2

0 PD(�
∗)sf. (6.28)
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On the other hand, as shown above PD(�∗)s ⊂ PDK
∗ = (K∗)s. Let R̂ be the

closure of (K∗)s	 dom (�∗)s. Then R̂∗ satisfies the identity (6.27). Since �∗∗ ⊂
(�∗)s (see (6.10)) one obtains PD�∗∗ ⊂ R̂. The identities (6.27) and (6.28) imply
that for all f ∈ dom Ĥ the equalities

((�∗)s)∗(I + B⊕)(�∗)sf = ((�∗)s)∗PDC1/2
0 (I + iC)C1/2

0 PD(�
∗)sf

= R̂∗C1/2
0 (I + iC)C1/2

0 R̂f

hold. Then the closed operator R = C1/2
0 R̂ satisfies the inclusions (6.25) as well as

the desired identity ((�∗)s)∗(I+B⊕)(�∗)s = R∗(I+iC)R, and thus Ĥ is extremal,
cf. Theorem 6.4. ��

Theorem 6.5 is a generalization of [5, Theorem 3.5], where an additional
invariance of mulK∗ under the operator B⊕ was used. Moreover, Theorem 6.5
generalizes a corresponding result for the form sum of two closed nonnegative forms
established earlier in [3, Theorem 4.1].

The present result relies on Theorem 4.1, where the description of the closed
sectorial form generated by a general maximal sectorial relation of the form H =
T ∗(I + iB)T where T is a closed relation. This generality implies that with special
choices of B the relation H can be taken to be nonnegative and selfadjoint, i.e., the
corresponding closed form t becomes nonnegative; see Example 4.3.
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Abstract Selfadjoint relations in Pontryagin spaces do not possess a spectral family
completely characterizing them in the way that selfadjoint relations in Hilbert spaces
do. Here it is shown that a combination of a factorization of generalized Nevanlinna
functions with the standard spectral family of selfadjoint relations in Hilbert spaces
can function as a spectral family for selfadjoint relations in Pontryagin spaces. By
this technique additive decompositions are established for generalized Nevanlinna
functions and selfadjoint relations in Pontryagin spaces.
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1 Introduction

It is well known that the class of generalized Nevanlinna functions can be realized
by means of selfadjoint relations in Pontryagin spaces (cf. Sect. 2.2 below). In [16]
it has been shown that there is a strong connection between the factorization result
for scalar generalized Nevanlinna functions and the invariant subspace properties
of selfadjoint relations in Pontryagin spaces. Here that approach is extended to the
case of operator-valued generalized Nevanlinna functions whose values are bounded
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operators on a Hilbert space H; in what follows this class is denoted by Nκ(H),
where κ ∈ N refers to the number of negative squares of the associated Nevanlinna
kernel; see [11, 12]. More precisely, by combining the multiplicative factorization
for operator-valued generalized Nevanlinna functions established in [14] with the
well-known spectral family results for selfadjoint operators in Hilbert spaces the
following additive decomposition is obtained.

Theorem 1.1 Let F ∈ Nκ (H) and let � be a measurable subset of R ∪ {∞} or a
closed symmetric subset of C \R. Then F can be written as F� + FR , where

(i) σ(F�) ⊆ clos� and int� ⊆ ρ(FR);
(ii) F� ∈ Nκ�(H), FR ∈ NκR (H) and κ� + κR ≥ κ .

If ∂�∩GPNT (F ) = (clos (�) \ int (�))∩GPNT (F ) = ∅, then the decomposition
may be chosen such that F� and FR do not have a generalized pole in common. In
this case, κ� + κR = κ .

In Theorem 1.1 ρ(F ) denotes the set of holomorphy of F ∈ Nκ(H) in C ∪ {∞}
and σ(F ) stands for its complement in C ∪ {∞}. For the definition of generalized
poles and generalized poles not of positive type (GPNTs), see Sect. 2.2 below. It
should be mentioned that Theorem 1.1 generalizes a result obtained for matrix-
valued generalized Nevanlinna functions by K. Daho and H. Langer in [2, Prop. 3.3].

For the proof of Theorem 1.1 spectral families for Pontryagin space selfadjoint
relations are replaced by factorizations of generalized Nevanlinna functions in
combination with the standard spectral decompositions of selfadjoint Hilbert space
operators (or relations); this is the main contribution of this paper. Such an approach
is needed because spectral families for Pontryagin space selfadjoint relations do not
exist in an appropriate form to establish Theorem 1.1; cf. [13]. This approach can
be extended to decompose for instance definitizable functions (and operators) in a
Kreı̆n space setting. Starting from the essentially multiplicative representation of an
definitizable function F in [10, Thm. 3.6] one can for example show that F can
be written as the sum of two definitizable functions F+ and F−, where F+ has no
points of negative type and F− has no points of positive type.

The intimate connection between generalized Nevanlinna functions and self-
adjoint relations in Pontryagin spaces, see e.g. Sect. 2.2 below, means that the
following analogue of Theorem 1.1 holds for selfadjoint relations in Pontryagin
spaces. For the notation ENT (A) in the following theorem, see Sect. 2.1 below.

Theorem 1.2 Let A be a selfadjoint relation in a Pontryagin space {�, [·, ·]} with
ρ(A) �= ∅ and let� be either a measurable subset of R∪{∞} or a closed symmetric
subset of C \ R. Then there exists a selfadjoint relation Ae in a Pontryagin space
{�e, [·, ·]e}with gr(A) ⊆ gr(Ae) and a decomposition��[+]�R of�e such that

(i) {��, [·, ·]} and {�R, [·, ·]} are Pontryagin spaces;
(ii) �� and �R are Ae-invariant;

(iii) σ(Ae 	��) ⊆ clos� and int� ⊆ ρ(Ae 	�R).
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If ∂� ∩ ENT (A) = ∅, then Ae and �e can be taken to be A and �, respectively,
and the decomposition can be taken such that

σp(A 	��) ∩ σp(A 	�R) = ∅.

In the particular case that � is a closed symmetric subset of C \R the decom-
position in Theorem 1.2 is readily obtained by means of Riesz projection operators;
see e.g. [1, Ch. 2: Thm 2.20 & Cor. 3.12]. However, Theorem 1.2 cannot always
be established by means of spectral families of selfadjoint relations in Pontryagin
spaces if ∂�∩ENT (A) �= ∅. Indeed the eigenspaces of ENTs can be neutral or even
degenerate; in such cases the corresponding eigenvalues are critical points and the
spectral family might not be extendable to sets having these points as their endpoints;
cf. [13, Comments following Thm. 5.7].

To mention another example of decompositions included in Theorem 1.2 con-
sider � = (−∞, a) ∪ (b,∞) ∪ {∞}, where a, b ∈ R \ ENT (A) and a < b.
Then Theorem 1.2 says that a selfadjoint relation in a Pontryagin spaces can be
decomposed into the sum of an unbounded selfadjoint relation in a Pontryagin space
and a bounded selfadjoint operator in a Pontryagin space; for selfadjoint operators
this last result can be found in [11]; see also the references therein. Note that
intervals� of the given type naturally arise in connection with rational functions; for
instance when considering definitizable operators or the products of (generalized)
Nevanlinna functions with rational functions, see e.g. [8].

Finally the contents of the paper are shortly outlined. The first half of Sect. 2
consists of an introduction to selfadjoint relations (multi-valued operators) in
Pontryagin spaces together with a short overview of minimal operator realizations
of (operator-valued) generalized Nevanlinna functions. In the latter half of this
section we recall some results about how non-minimal realizations can be reduced
to minimal ones and also consider the (minimality of the) realization for the sum
of generalized Nevanlinna functions. In Sect. 3 we first establish the connection
between a factorization of a generalized Nevanlinna function and the spectral
properties of its operator realization. This result is a key tool for using the
factorization of generalized Nevanlinna functions as a replacement for a spectral
decomposition of selfadjoint relations in Pontryagin spaces. Finally, in the second
and third subsections of Sect. 3 Theorems 1.1 and 1.2 are proven, respectively.

2 Preliminaries

The first two subsections contain introductions to (unbounded) operators or, more
generally, linear relations in Pontryagin spaces and (minimal) operator realizations
for generalized Nevanlinna functions, respectively. In the third subsection it is
shown how non-minimal realizations may be reduced to minimal ones. Finally, in
the fourth subsection the sum of generalized Nevanlinna functions is considered.
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2.1 Linear Relations in Pontryagin Spaces

A linear space� together with a sesqui-linear form [·, ·] defined on it is a Pontryagin
space if there exists an orthogonal decomposition �+ + �− of � such that
{�+, [·, ·} and {�−,−[·, ·]} are Hilbert spaces either of which is finite-dimensional;
here orthogonal means that [f+, f−] = 0 for all f+ ∈ �+ and f− ∈ �−. For
our purposes it suffices to consider only Pontryagin spaces for which �− is finite-
dimensional; its dimension (which is independent of the orthogonal decomposition
�+ +�−) is the negative index of �.

A (linear) relation H in {�, [·, ·]} is a multi-valued (linear) operator whose
domain is a linear subspace of �, denoted by domH , and which linearly maps each
element x ∈ domH to a subset Hx := H(x) of �. (Graphs of) linear relations on
� can be identified with subspaces of�×�; in what follows this identification will
tacitly be used. The linear subspace H(0) is called the multi-valued part of H and
is denoted by mulH .

A relation H is closed if (the graph of) H is a closed subspace of � × �. For
any relation H in {�, [·, ·]}, its adjoint, denoted as H [∗], is defined via its graph:

gr(H [∗]) = {{f, f ′} ∈ �×� : [f, g′] = [f ′, g], ∀{g, g′} ∈ gr(H)}.

A relation A in {�, [·, ·]} is symmetric if A ⊆ A[∗] and selfadjoint if A = A[∗].
An operator V from (a Pontryagin space) {�1, [·, ·]1} to (a Pontryagin space)
{�2, [·, ·]2} is isometric if [f, g]1 = [Vf, Vg]2 for all f, g ∈ domV . An isometric
operator U from {�1, [·, ·]1} to {�2, [·, ·]2} is a standard unitary operator if
domU = �1 and ranU = �2.

For a closed relation H in {�, [·, ·]}, the resolvent set, ρ(H), and the spectrum,
σ(H), are defined as usual:

ρ(H) = {z ∈ C : ker (H−z) = {0}, ran (H−z) = �} and σ(H) = C\ρ(H).

Moreover, the point spectrum σp(H) is defined as the set

σp(H) = {z ∈ C ∪ {∞} : ∃ x ( �= 0) ∈ � s.t. {x, zx} ∈ gr(H)}.

These sets have the normal properties, see e.g. [4]. Below we also use the convention
that∞ ∈ σp(H) if and only if mulH �= {0} or, equivalently, 0 ∈ σp(H−1), where
H−1 stands for the inverse (linear relation) of H . Similarly,∞ ∈ ρ(H) means that
0 ∈ ρ(H−1) or, equivalently, that H is a bounded everywhere defined operator, i.e.,
H ∈ B(�).

A subspace L of � is said to be invariant under a relation H with ρ(H) �= ∅, or
H -invariant for short, if

(H − z)−1L ⊆ L, ∀z ∈ ρ(H).
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Here (H − z)−1 ∈ B(�) is defined via its graph as

gr((H − z)−1) = {{f ′ − zf, f } ∈ �×� : {f, f ′} ∈ gr(H)}.

Recall that the spectrum and resolvent set σ(A) and ρ(A) of a selfadjoint relation
A in a Pontryagin space are symmetric with respect to the real line:

ρ(A) = ρ(A), σ (A) = σ(A) and σp(A) = σp(A). (2.1)

Moreover, if ρ(A) �= ∅, then ρ(A) contains C \ R except finitely many points;
see [4].

Finally, α ∈ C∪ {∞} is an eigenvalue not of positive type, or ENT for short, of a
selfadjoint relation A in a Pontryagin space, if there exists a non-trivial non-positive
A-invariant subspace L such that σ(A 	L) = α. Recall that selfadjoint relations in
Pontryagin spaces possess at most finitely many ENTs, see e.g. [9, Thm. 12.1’]. The
set of all ENTs of a selfadjoint relation A in C ∪ {∞} is denoted by ENT (A).

2.2 Minimal Realizations of Generalized Nevanlinna
Functions

The concept of an operator-valued generalized Nevanlinna function has been
introduced and studied by M. G. Kreı̆n and H. Langer; see [11, 12]. In particular,
with some additional analytic assumptions, operator-valued generalized Nevanlinna
functions were described as so-called Q-functions of symmetric operators in a
Pontryagin space. Those additional conditions were removed by allowing selfadjoint
relations in model spaces; cf. [3] for the case of matrix functions and [7] for operator-
valued functions.

If A is a selfadjoint relation in (a Pontryagin space) {�, [·, ·]} with a nonempty
resolvent set ρ(A), C is a bounded selfadjoint operator in a Hilbert space {H, (·, ·)}
and � is an everywhere defined operator from H to �, then F defined by

F(z) = C + z0�
[∗]� + (z− z0)�

[∗] (I + (z− z0)(A− z)−1
)
�, z, z0 ∈ ρ(A),

(2.2)

is a generalized Nevanlinna function. Conversely, if F is a generalized Nevanlinna
function, then there existA = A[∗] with ρ(A) �= ∅, � and C as above such that (2.2)
holds; in this case C + z0�

[∗]� = F(z0)
∗ = F(z0).

If (2.2) holds for some generalized Nevanlinna function F , then the pair {A,�}
realizes F (at z0). In particular, in the term realization the realizing space {�, [·, ·]}
is suppressed; also the selection of the arbitrarily fixed point z0 is suppressed when
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it doesn’t play a role. With a realizing pair {A,�} (at z0) we associate a bounded
operator-valued function �z, called the γ -field associated with {A,�}, via

�z :=
(
I + (z− z0)(A− z)−1

)
�, z ∈ ρ(A). (2.3)

Using the γ -field and the resolvent identity, (2.2) can be rewritten into a symmetric
form:

F(z)− F(w)∗
z−w = �[∗]w �z, z,w ∈ ρ(A). (2.4)

The pair {A,�} is said to realize F (as in (2.2)) minimally if

� = c.l.s. {�zh : z ∈ ρ(A), h ∈ H}.

For the existence of a minimal realization for any generalized Nevanlinna function
see e.g. [7, Thm. 4.2].

By means of a minimal realization the index of a generalized Nevanlinna
function can be characterized: F is a generalized Nevanlinna function with index
κ , F ∈ Nκ(H), if the negative index of the realizing (Pontryagin) space for any
minimal realization is κ . In fact, all minimal realizations are connected by means of
(standard) unitary operators.

Proposition 2.1 ([7, Thm. 3.2]) Let {Ai, �i} realize F ∈ Nκ (H) minimally
for i = 1, 2. Then there exists a standard unitary operator from {�1, [·, ·]1} to
{�2, [·, ·]2} such that A2 = UA1U

−1 and �2 = U�1.

For a generalized Nevanlinna function F the notation ρ(F ) and σ(F ) is used to
denote the domain of holomorphy of F in C∪{∞} and its complement (in C∪{∞}),
respectively. In particular, (2.2) implies that

ρ(A) ⊆ ρ(F ) and σ(F ) ⊆ σ(A). (2.5)

For minimal realizations the reverse inclusions also hold.

Theorem 2.2 ([11, Satz 4.4]) Let F ∈ Nκ(H) be minimally realized by {A,�}.
Then ρ(A) = ρ(F ).

Finally, α ∈ C ∪ {∞} is a generalized pole of a generalized Nevanlinna function
F if α ∈ σp(A) for any minimal realization {A,�} of F . Furthermore, the set of
generalized poles of not of positive type of F, GPNT (F ), is defined to be ENT (A)
for any minimal realization {A,Γ } of F (see Sect. 2.1). Note that Proposition 2.1
guarantees that these concepts are well-defined.
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2.3 Reduction of Non-minimal Realizations

Realizations for a generalized Nevanlinna function need not be minimal. For
instance, if the negative index of the realizing Pontryagin space is greater than
the negative index of a generalized Nevanlinna function, then the realization is not
minimal. Even if the negative index of the realizing space is equal to the negative
index of a generalized Nevanlinna function, then the realization might still be non-
minimal; cf. Sect. 2.4 below. The following operator-valued analog of [16, Prop. 2.2]
shows how non-minimal realizations can be reduced to minimal ones; see also [11]
and [7, Section 2].

Proposition 2.3 Let {A,�} realize F ∈ Nκ (H) and let κm denote the negative
index of the realizing Pontryagin space {�, [·, ·]}. Moreover, with

M := span {
(
I + (z− z0)(A− z)−1

)
�h : z ∈ ρ(A), h ∈ H},

define L, �s and �r as

L = (closM) ∩M[⊥], �s = (closM)/L and �r =M[⊥]/L.

Then the following statements hold:

(i) L is an A-invariant neutral subspace of {�, [·, ·]} with κL := dimL ≤ κm;
(ii) As and Ar , defined via

grAs = {{f + [L], f ′ + [L]} : {f, f ′} ∈ grA ∩ (�s ×�s)};
grAr = {{f + [L], f ′ + [L]} : {f, f ′} ∈ grA ∩ (�r ×�r)},

are selfadjoint relations in the Pontryagin spaces {�s, [·, ·]} and {�r, [·, ·]}
with negative index κ and κm − κ − κL, respectively;

(iii) {As, � + [L]} realizes f minimally;
(iv) M[⊥] is the largest A-invariant subspace contained in ker�[∗].

Proof

(i) Let M be as in the statement, then (A− ξ)−1M ⊆ M for every ξ ∈ ρ(A) by
the resolvent identity. From the preceding inclusion it follows by elementary

arguments that
(
(A− ξ)−1

)[∗]
M[⊥] ⊆ M[⊥] or, equivalently, using the

selfadjointness of A that (A − ξ)−1M[⊥] ⊆ M[⊥]. Another application of
the same argument yields that (A − ξ)−1closM ⊆ closM. Since ρ(A) is
symmetric with respect to the real line for selfadjoint relations, see (2.1), M,
closM and M[⊥] are A-invariant and, hence, L is A-invariant too.

(ii) Since L is neutral in a Pontryagin space, it is a finite-dimensional (closed)
subspace. Therefore {L[⊥]/L, [·, ·]} is a Pontryagin space with negative index
κm − κL, see [1, Ch. 1: Cor. 9.14]. A calculation, using the A-invariance and
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neutrality of L, shows that AL, defined via

gr(AL)=
{
{f + [L], f ′ + [L]} ∈ L[⊥]/L × L[⊥]/L : {f, f ′} ∈ gr(A) ∩ (L[⊥] × L[⊥])

}

is a symmetric linear relation in the introduced quotient space. To establish that
A is selfadjoint, it suffices by Dijksma and de Snoo [4, Thm. 4.6] to show that

ρ(A) ⊆ ρ(AL). (2.6)

Let z ∈ ρ(A) be arbitrary. Since L is A-invariant (see (i)), L[⊥] is also A-
invariant and L[⊥] ⊆ ran (A − z), because z ∈ ρ(A) by assumption. Thus
for every g ∈ L[⊥] there exists {f, f ′} ∈ A, such that g = f ′ − zf . Now
the A-invariance of L[⊥] implies that f = (A − z)−1g ∈ L[⊥] and thus also
f ′ ∈ L[⊥]. Therefore,

L[⊥] ⊆ { f ′ − zf : {f, f ′} ∈ gr(A) ∩ (L[⊥] × L[⊥])}.

Consequently, ran (AL − z) = L[⊥]/L and this implies that z ∈ ρ(AL). Since
z ∈ ρ(A) was arbitrary, the above argument shows that (2.6) holds.
Now �L, defined via �Lh := �h + [L] for h ∈ H, is an everywhere defined
mapping from H to L[⊥]/L. Using �L and AL define the subspace ML of
L[⊥]/L as

ML := span {
(
I + (z− z0)(AL − z)−1

)
�Lh : z ∈ ρ(AL), h ∈ H}.

(2.7)

By means of ML introduce in {L[⊥]/L, [·, ·]} the subspaces �s := closML

and �r := �
[⊥]L
s ; here [⊥]L denotes the orthogonal complement in

{L[⊥]/L, [·, ·]}. Then clearly �s = clos (M)/L and �r = M[⊥]/L. Since
L = clos (M) ∩M[⊥], �s and �r are non-degenerate. Therefore {�s, [·, ·]}
and {�r, [·, ·]} are Pontryagin spaces, see [1, Ch. 1: Thm. 7.16 & Thm. 9.9].
The same arguments used in (i) yield

(AL − ξ)−1�s ⊆ �s and (AL − ξ)−1�r ⊆ �r, ξ ∈ ρ(AL) ⊇ ρ(A).
(2.8)

Let As and Ar be as in (ii) with �s and �r as defined following (2.7), then
As and Ar , being restrictions of the selfadjoint relation AL, are symmetric.
Moreover, (2.8) together with the decomposition L[⊥]/L = �s[+̇]�r implies
that ρ(As)∩C+, ρ(As)∩C−, ρ(Ar)∩C+ and ρ(Ar)∩C− are all non-empty.
Therefore As and Ar are selfadjoint relations; again cf. [4]. The last assertion
on the negative indices of the Pontryagin spaces is a consequence of the result
in (iii) combined with the fact that the negative index of the Pontryagin space
{L[⊥]/L, [·, ·]} is κm − dimL = κm − κL.
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(iii) Let �z be the γ -field associated with the realization {A,�} as in (2.3). Then
for every ωg, ωh ∈ L we have by definition of L that

[�zh+ ωh, �wg + ωg] = [�zh, �wg] = g∗F(z)− F(w)
∗

z− w h, g, h ∈ H.

Hence, {As, �L} realizes F , see (2.4). Moreover, this realization is minimal by
construction, see the proof of (ii). Therefore the negative index of {�s, [·, ·]}
is κ by Proposition 2.1 and the discussion preceding it.

(iv) In (i) it has been established that M[⊥] is A-invariant. The inclusion M[⊥] ⊆
ker�[∗] follows directly from the fact that ran� ⊆M. To prove the assertion it
therefore suffices to show that allA-invariant subspacesN contained in ker�[∗]
are orthogonal to M. Let N be any such subspace. Then for all h ∈ H and
z ∈ ρ(A)

[(I + (z− z0)(A− z)−1)�h,N] = (h, �[∗](I + (z− z0)(A− z)−1)N) = 0.

This shows that N ⊆M[⊥]. ��

Corollary 2.4 Let F ∈ Nκ (H) be realized by {A,�} and let κm denote the negative
index of the realizing Pontryagin space {�, [·, ·]}. Then

κm − κ = max
N
{dimN : N is A-invariant, N ⊆ ker�[∗]};

here the maximum is over all nonpositive subspaces N of {�, [·, ·]}.

Proof Using the notation as in Proposition 2.3, Proposition 2.3 (ii) shows that
κm − κ = dimL+ κr ; here κr is defined to be the negative index of the Pontryagin
space {�r, [·, ·]}. Since the negative index of the subspace M[⊥] of {�, [·, ·]} is
equal to dimL + κr and {N : N is A−invariant, N ⊆ ker�[∗]} ⊆ M[⊥] by
Proposition 2.3 (iv), the statement is proven if the existence of a nonpositive A-
invariant subspace of dimension dimL+ κr contained in ker�[∗] is established.

Since Ar , the restriction of A to {�r, [·, ·]} (see Proposition 2.3 (ii)), is a
selfadjoint relation in the Pontryagin space {�r, [·, ·]}, the invariant subspace
theorem states that there exists a κr -dimensional Ar -invariant nonpositive
subspace Lr of {Πr, [·, ·]}, see e.g. [9, Thm. 12.1’]. Therefore N := Lr + L
is a (dimL + κr)-dimensional nonpositive A-invariant subspace contained
in M[⊥]. ��

2.4 The Sum of Generalized Nevanlinna Functions

A particular situation where non-minimal realizations may be encountered is when
the sum of generalized Nevanlinna functions is considered; cf. [6]. Let Fi ∈ Nκi (H)
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be (minimally) realized by {Ai, �i}, for i = 1, 2. Then the sum F1 + F2 is realized
by {A1⊕̂A2, col (�1, �2)}, where

gr(A1⊕̂A2) = {{{f1, f2}, {f ′1, f ′2}} : {fi, f ′i } ∈ gr(Ai)};

col (�1, �2)h =
(
�1h

�2h

)
.

(2.9)

Here the realizing space is {�sum, [·, ·]sum} where �sum = �1 ×�2 and

[{f1, f2}, {g1, g2}]sum = [f1, g1]1 + [f2, g2]2, {f1, f2}, {g1, g2} ∈ �1 ×�2.

(2.10)

To see this note that

(col (�1, �2))
[∗](I + (z− z0)(A1⊕̂A2 − z)−1)col (�1, �2)

=
(
�1

�2

)[∗] (
I + (z − z0)(A1 − z)−1 0

0 I + (z− z0)(A2 − z)−1

)(
�1

�2

)

=�[∗]1 (I + (z− z0)(A1 − z)−1)�1 + �[∗]2 (I + (z− z0)(A2 − z)−1)�2

=F1(z)− F1(z0)

z − z0
+ F2(z)− F2(z0)

z− z0
= F1(z)+ F2(z)− (F1(z0)+ F2(z0))

z− z0
,

where in the third step (2.2) was used. In view of (2.2) this calculation shows that
{A1⊕̂A2, col (�1, �2)} realizes F1 + F2; cf. [6, Prop. 4.1]. In particular, F1 + F2 ∈
Nκsum(H) where κsum ≤ κ1 + κ2; cf. Proposition 2.3.

Notice, conversely, that if {A,�} realizes the function F ∈ Nκ(H) and there
exists a decomposing (regular) subspace �1 of �, i.e. � = �1[+̇]�2 with �2 =
�
[⊥]
1 , which also reduces A, A = A1⊕̂A2, then {A1, P1�} and {A2, P2�}, where

Pj with j = 1, 2 is the �-orthogonal projection onto �j , produce realizations for
generalized Nevanlinna functions F1 and F2 such that F = F1 + F2.

Proposition 2.5 below contains sufficient conditions for the index of F1 + F2 to
be the sum of the indices of F1 and F2; see [2, Prop. 3.2] for a similar statement for
matrix-valued generalized Nevanlinna functions.

Proposition 2.5 Let F1 ∈ Nκ1(H), F2 ∈ Nκ2(H) and assume that F1 and F2 do
not have a generalized pole in common. Then F1 + F2 ∈ Nκ1+κ2(H).

Proof Let {Ai, �i} be a minimal realization for Fi where the realizing space
is {�i, [·, ·]i}, for i = 1, 2. Then, as the discussion preceding this statement
demonstrated, F1 + F2 is realized by {A,�} := {A1⊕̂A2, col (�1, �2)} where
the realizing space is the Pontryagin space {�, [·, ·]} := {�sum, [·, ·]sum} whose
negative index is κ1 + κ2, see (2.10). Hence F1 + F2 is a generalized Nevanlinna
function. In order to establish that its index is κ1 + κ2, the non-minimal part of its
realization {A,�} should be investigated; cf. Proposition 3.1. But first note that if
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P1 and P2 are the orthogonal projections onto �1 and �2 in �sum, then

(A1⊕̂A2− z)−1Pi = (Ai − z)−1Pi = Pi(A1⊕̂A2− z)−1, i = 1, 2, (2.11)

see (2.9). Denote by M[⊥] the non-minimal part of the realization {A,�} as in
Proposition 2.3. If L := clos (M) ∩M[⊥] �= {0}, then L, being finite-dimensional
and A-invariant (see Proposition 2.3 (i)), contains an eigenvector x for A = A1⊕̂A2
such that x ∈ ker�[∗]. But, then (2.11) implies that P1x andP2x are eigenvectors for
A1 and A2, respectively. Since σp(A1) ∩ σp(A2) = ∅ by assumption, this implies
that either of the two vectors is zero; say P2x = 0. Thus P1x is an eigenvector
for A1, P2x = 0 and x ∈ ker�[∗]. The last two conditions together yield that
P1x ∈ ker�[∗]1 ; cf. (2.9). But then the realization {A1, �1} for F1 is not minimal by
Proposition 2.3; in contradiction to the assumption. I.e., L = {0}.

ThereforeM[⊥] isA-invariant and {M[⊥], [·, ·]} is a Pontryagin space, see Propo-
sition 2.3 (ii). The exact same argument as used in the preceding paragraph shows
that σp(A 	M[⊥]) = ∅. Hence Pontryagin’s invariant subspace theorem (applied
to the selfadjoint relation A 	M[⊥] in {M[⊥], [·, ·]}) implies that {M[⊥], [·, ·]} is
a Hilbert space, see e.g. [9, Thm. 12.1’]. Consequently, the statement holds by
Proposition 2.3 (ii); cf. Corollary 2.4. ��

The following extension of Proposition 2.5 shows when a minimal realization for
F1 + F2 is obtained when starting from minimal realizations for F1 and F2.

Proposition 2.6 Let {Ai, �i} minimally realize the generalized Nevanlinna func-
tion Fi ∈ Nκi (H), for i = 1, 2, and assume that

σp(A1) ∩ σp(A2) = ∅ and σ(A1) ∩ σ(A2) = {γ1, . . . , γn} ⊆ R ∪ {∞}.

Then F1 + F2 ∈ Nκ1+κ2(H) is minimally realized by {A1⊕̂A2, col (�1, �2)}.

Proof As the above discussion demonstrated, F1 + F2 is realized by {A,�} :=
{A1⊕̂A2, col (�1, �2)} where the realizing space is the Pontryagin space
{�, [·, ·]} := {�sum, [·, ·]sum} whose negative index is κ1 + κ2, see (2.10). To
prove the minimality of the realization for F1 + F2 let M be as in Proposition 2.3.

Since the index of F1 + F2 is equal to the negative index of {�, [·, ·]} by
Propositions 2.5, 2.3 yields that {M[⊥], [·, ·]} is a Hilbert space and that Ar , defined
via gr(Ar) = gr(A) ∩ (M[⊥] ×M[⊥]), is a selfadjoint relation in {M[⊥], [·, ·]}. In
particular, σ(Ar) ⊆ R ∪ {∞}. We claim that

σ(Ar) ⊆ σ(A1) and σ(Ar) ⊆ σ(A2). (2.12)
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If the first inclusion does not hold, then, since σ(A1) ∩ (R ∪ {∞}) and σ(Ar) are
closed subsets of R ∪ {∞}, there exists a closed interval� = [a, b] of R such that

� ∩ σ(Ar) �= ∅ and � ⊆ ρ(A1). (2.13)

Let Et be the spectral family of Ar and let Pi be the orthogonal projections onto
�i in �, for i = 1, 2. Then the assumption � ∩ σ(Ar) �= ∅ implies that

L := (Eb − Ea)M[⊥] �= {0}.

Consider L1 := P1L ⊆ �1. Then, on the one hand,

σ(A 	L1) ⊆ σ(A 	L) ⊆ � ⊆ ρ(A1).

On the other hand, the A1-invariance of L1 implies that σ(A 	L1) ⊆ σ(A1). The
preceding two results together imply that L1 = {0}; cf. (2.13). In other words, L ⊆
{0} ×�2. But then L ⊆ ker�[∗]2 , because L ⊆M[⊥] ⊆ ker�[∗]. Consequently, the
realization {A2, �2} is not minimal. This contradiction shows that the first inclusion
in (2.12) holds. By symmetry the second inclusion also holds.

Combining the inclusions from (2.12) together with the assumption on σ(A1) ∩
σ(A2) yields that σ(Ar) consists at most of isolated points. I.e., all the spectrum
of Ar is point spectrum. Let x be an eigenvector for Ar . Then P1x and P2x are
eigenvectors for A1 and A2, respectively. Since σp(A1) ∩ σp(A2) = ∅, either P1x

or P2x should be equal to zero. Assume the latter. Since x ∈M[⊥] ⊆ ker�[∗] (see
Proposition 2.3), it follows that x = P1x ⊆ ker�[∗]1 ; but this is in contradiction to
the assumed minimality of the realization {A1, �1} for F1. ��

3 Decompositions of Generalized Nevanlinna Functions

For α, β ∈ C ∪ {∞}, with α �= β, and for non-orthogonal vectors η and ξ in a
Hilbert space H define the operator-valued rational function R as:

R(z; α, β, η, ξ) = I − P + z− α
z− β P, P = ξη∗

η∗ξ , η∗ξ �= 0; (3.1)

hereR(z;∞, β, η, ξ) and R(z; α,∞, η, ξ) should be interpreted to be I −P + (z−
β)−1P and I − P + (z− α)P , respectively. Note that

(R(z;α, β, η, ξ))# = R(z;α, β, ξ, η) and (R(z;α, β, η, ξ))−1 = (R(z;β, α, η, ξ));

here for any operator-valued function Q(z), Q#(z) is defined to be Q(z)∗.
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With this notation, (realizations for) products of the form R#FR, where R(z) =
R(z; α, β, η, ξ), are investigated in the first subsection. In the second subsection
these considerations are combined with a factorization from [14] to decompose
generalized Nevanlinna functions with respect to their analytic behavior as stated
in Theorem 1.1. These results are in turn used to prove Theorem 1.2 in the third and
final subsection.

3.1 Multiplication with an Order One Term

Here an explicit realization for R#FR, where R is as in (3.1), is generated
from any given realization for F ∈ Nκ(H). This realization can be seen as a
modification and extension of [16, Thm. 1.3] from scalar-valued to operator-valued
functions. Note that the explicit resolvent formula in Proposition 3.1 reflects how the
invariant subspaces of the realizing relation forR#FR are connected to the invariant
subspaces of the realizing relation for the original function F .

Proposition 3.1 Let F ∈ Nκ(H) be realized by {A,�} at z0 ∈ ρ(A)\{β, β}, where
α, β ∈ C∪{∞} satisfy α �= β, and let ξ, η ∈ H satisfy η∗ξ �= 0. Then FR := R#FR,
whereR(z) = R(z; α, β, η, ξ) as in (3.1), is realized by {AR,�R} which are defined
for z ∈ ρ(A) \ {β, β} via

(AR − z)−1 =

⎛
⎜⎜⎝

1
β−z

ξ∗�[∗]
z

β−z
ξ∗F(z)ξ

(β−z)(β−z)
0 (A− z)−1 �zξ

β−z
0 0 1

β−z

⎞
⎟⎟⎠ , �R =

⎛
⎜⎝
ξ∗F(z0)

β−z0
R(z0)

�R(z0)
α−β
β−z0

η∗
η∗ξ

⎞
⎟⎠ .

(3.2)

Here the realizing space {�2, [·, ·]2} of {AR,�R} is defined as

[g, h]2 := [gc, hc]+grhl+glhr , g = {gl, gc, gr }, h = {hl, hc, hr } ∈ �2 := C×�×C,

where {�, [·, ·]} is the realizing space of {A,�}.
Recall that �z in Proposition 3.1 is the γ -field associated with the realization

{A,�} for F , see (2.3). Furthermore, if α = ∞, then �R should be interpreted to be

�R =
(
ξ∗F(z0)

β−z0
R(z0) �R(z0) − 1

β−z0

η∗
η∗ξ

)T
,

and if β =∞, then {AR,�R} should be interpreted to be

(AR − z)−1 =
⎛
⎜⎝

0 ξ∗�[∗]z ξ∗F(z)ξ
0 (A− z)−1 �zξ

0 0 0

⎞
⎟⎠ , �R =

⎛
⎜⎝
ξ∗F(z0)R(z0)

�R(z0)
η∗
η∗ξ

⎞
⎟⎠ .
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Proof Here only the case α, β ∈ C is treated; the cases α = ∞ or β = ∞ follow
by analogous arguments.

First the selfadjointness of AR is established. Therefore let H(z) := (AR − z)−1.
Then the formula in (3.2) shows that H(z) is an everywhere defined operator for
z ∈ ρ(A) \ {β, β}. In particular, since ρ(A) �= ∅, ρ(A) contains all of C \ R
except finitely many points; for all those points H(z) is an everywhere defined
bounded operator. Moreover, a direct calculation shows that H(z)[∗] = H(z). Next
we establish that H satisfies the resolvent identity. Therefore note that a calculation
shows that H(z)H(w) is equal to

⎛
⎜⎜⎜⎝

1
(β−z)(β−w)

ξ∗
β−z

(
�
[∗]
w

β−w + �
[∗]
z (A−w)−1

)
ξ∗

F(w)

β−w+�
[∗]
z
�w+ F(z)

β−z
(β−z)(β−w) ξ

0 (A− z)−1(A− w)−1
(
(A− z)−1�w + �z

β−z
)

ξ
β−w

0 0 1
(β−z)(β−w)

⎞
⎟⎟⎟⎠ .

Using (2.3) and the resolvent identity for A we have that

�
[∗]
z (A−w)−1 = �[∗]

(
I + (z− z0)(A− z)−1

)
(A−w)−1

= �[∗]
(
(A−w)−1 + z− z0

z −w
(
(A− z)−1 − (A− w)−1

))

= �[∗]

z −w
(
(z− z0)(A− z)−1 − (w − z0)(A−w)−1

)
= �

[∗]
z − �[∗]w
z− w .

Moreover, using (2.4) we have that

F(w)

β −w + �
[∗]
z �w + F(z)

β − z = F(z)
(

1

β − z +
1

z −w
)
+ F(w)

(
1

β −w −
1

z− w
)

= 1

z− w

(
β −w
β − z F (z)−

β − z
β − wF(w)

)
.

Combining the three preceding expressions and using the resolvent identity for A
yields that H(z)H(w) = H(z)−H(w)

z−w . Consequently, AR is a selfadjoint relation in
{�2, [·, ·]2}, see [4, Prop. 3.4 and Cor. on p. 162].

As the second step towards proving that {AR,�R} realizes FR , the γ -field
associated with {AR,�R} is determined. Using

z0 − α
z0 − β +

z − z0

β − z
α − β
β − z0

= α − β
β − z + 1 = z− α

z− β (3.3)
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and the identity (z − z0)�
[∗]
z � = F(z) − F(z0), see (2.4), a straight-forward

calculation shows that

(�R)z := (I + (z− z0)(AR − z)−1)�R =
(
ξ∗F(z)
β−z R(z) �zR(z)

α−β
β−z

η∗
η∗ξ

)�
.

Combining this last result with (3.3) and the identity (z−z0)�
[∗]�z = F(z)−F(z0)

from (2.4) leads to

(z− z0)�
[∗]
R (�R)z = z− z0

β − z
α − β
β − z0

ηξ∗

ξ∗η
F (z)R(z)+ R(z0)

∗F(z0)
z− z0

β − z0

α − β
β − z

ξη∗

η∗ξ

+
[
(I − P ∗)+ z0 − α

z0 − β
P ∗

]
(F (z)− F(z0))[(I − P )+ z − α

z − β P ]

= R#(z)F (z)R(z)− R#(z0)F (z0)R(z0) = FR(z)− FR(z0).

This shows that {AR,�R} realizes FR , see (2.4). ��

3.2 Decomposing Generalized Nevanlinna Functions

Recall that ρ(F ) and σ(F ) denote the set of holomorphy of a generalized Nevan-
linna functionF in C∪{∞} and its complement, respectively. When F is minimally
realized by {A,�}, then ρ(F ) and σ(F ) coincide with ρ(A) and σ(A), respectively,
see Theorem 2.2.

Proof Let z0 ∈ ρ(F ) ∩ (C \ R)( �= ∅), then there exists an everywhere defined
selfadjoint operator C in H such that ran (F (z0) + C) = H, i.e., that F + C is
boundedly invertible at z0. Since the statement clearly holds for F if it holds for
F + C, we may w.l.o.g. assume that F is boundedly invertible at a point z0 ∈
ρ(F ) ∩ (C \ R), cf. [14, Prop. 2.1]; such operator-valued generalized Nevanlinna
functions are called regular.

Let {α1, . . . , ακ } and {β1, . . . , βκ} be the sets of all GPNTs of F and −F−1

in C+ ∪ R ∪ {∞}, respectively; here each GPNT occurs in accordance with its
multiplicity. Since F is assumed to be regular, [14, Thm. 5.2 and Cor. 5.3] yield
the existence of η1, ξ1, η̃1, ξ̃1 ∈ H satisfying η∗1ξ1 �= 0 and η̃∗1 ξ̃1 �= 0 such that
F1 := R#

1FR ∈ Nκ−1(H), where

R1(z) = R(z; β1, γ , η̃1, ξ̃1)R(z; γ, α1, η1, ξ1);

here γ is an arbitrary element ofC\(R∪GPNT (F )∪GPNT (−F−1)). Moreover, the
cited statements yield that {α2, . . . , ακ } and {β2, . . . , βκ} are the sets of all GPNTs
of F1 and −F−1

1 in C+ ∪ R ∪ {∞}, respectively. Since F1 is evidently regular,
inductively applying this argument yields that F can be factorized as R#F0R, where
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F0 ∈ N0(H) and

R(z) =
κ∏
j=1

R(z; αi, γ, ηi , ξi )R(z; γ , βi, η̃i , ξ̃i ); (3.4)

here γ is any element of C\(R∪GPNT (F )∪GPNT (−F−1)) and ηi, ξi , η̃i , ξ̃i ∈ H
satisfy η∗i ξi �= 0 �= η̃∗i ξ̃i for i = 1, . . . , κ . For later usage introduce the set P0 as

P0 := {γ, γ } ∪ GPNT (F ) = {γ, γ } ∪ {α1, . . . , ακ , α1, . . . , ακ }. (3.5)

Let {A0, �0} realize F0 minimally, then the corresponding realizing space is a
Hilbert space {H, (·, ·)}, see e.g. [15]. Using the spectral family of A0, H can be
decomposed as H1⊕H2 such that, withAi defined via gr(Ai) = gr(A)∩(Hi×Hi ),
(a) {Hi , (·, ·)} is a Hilbert space and Hi is A-invariant for i = 1, 2;
(b) σ(A1) ⊆ clos� and int� ⊆ ρ(A2);
(c) σp(A1) ∩ σp(A2) = ∅.
For instance, if � = (a, b) ⊆ R, then the desired decomposition with the properties
(a)–(c) can be obtained by taking H1 to be Eb − Ea , where {Ex}x∈R is the spectral
family associated with the Hilbert space selfadjoint relation A0.

Since {A0, �0} is a minimal realization for F0, the decomposition with the
properties (a)–(c) induces an additive representation F0 = F1 + F2, where Fj
is an ordinary Nevanlinna function realized by {Aj , Pj�0}; here Pj is the �-
orthogonal projection onto Hj for j = 1, 2, see the discussion following (2.10).
Notice that the realizations {A1, P1�0} and {A2, P2�0} are automatically minimal,
because the realization {A0, �0} is assumed to be minimal. Inserting this additive
representation F0 = F1 + F2 into the factorization F = R#F0R produces the
following decomposition for F :

F(z) = R#(z)F0(z)R(z) = R#(z)F1R(z)+ R#(z)F2(z)R(z). (3.6)

Next the terms R#F1R and R#F2R are considered separately. In order to treat them,
divide P0, see (3.5), into the following three sets:

P� = P0 ∩ int�, Pc = P0 ∩ ∂� and Pr = P0 \ (P� ∪ Pc). (3.7)

R#F1R: By Proposition 3.1 there exist an extension A1,R of A1 in a Pontryagin
space {�1,R, [·, ·]1,R} (with at most 2κ negative squares since, in addition to the
poles αi , R in (3.4) can have at most κ additional poles located at γ ) and a mapping
�1,R such that {A1,R, �1,R} realizes R#F1R. Furthermore, Proposition 3.1 shows
that

σ(A1,R) ⊆ σ(A1) ∪ P0 = σ(A1) ∪ P� ∪ Pc ∪ Pr .
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By definition, see (b) and (3.7), Pr consists of (finitely many) isolated points of
the spectrum σ(A1,R). Therefore {�1,R, [·, ·]} can by means of Riesz projections
(contour integrals of the resolvent, see e.g. [1, Ch. 2: Thm. 2.20]) be decomposed as
�1

1,R[+]�2
1,R, such that, with A1,R,i defined by gr(A1,R,i) = gr(A1,R) ∩ (�i

1,R ×
�i

1,R), the following statements hold:

(a1) {�i
1,R, [·, ·]1,R} is a Pontryagin space and �i

1,R is A1,R-invariant for i = 1, 2;
(b1) σ(A1,R,1) ⊆ σ(A1) ∪ P� ∪ Pc ⊆ clos�;
(c1) σ(A1,R,2) ⊆ Pr and, hence, int� ⊆ ρ(A1,R,2).

R#F2R: By Proposition 3.1 there exist an extension A2,R of A2 in a Pontryagin
space {�2,R, [·, ·]2,R} (again with at most 2κ negative squares) and a mapping �2,R
such that {A2,R, �2,R} realizes R#F2R. Again Proposition 3.1 shows that

σ(A2,R) ⊆ σ(A2) ∪ P0 = σ(A2) ∪ P� ∪ Pc ∪ Pr .

Hence, by construction (see (b)) there exist an open neighborhood O (in C)
containing P� such that O \ P� ⊆ ρ(A2,R). Thus {�2,R, [·, ·]} can by means
of Riesz projections (see [1, Ch. 2: Thm. 2.20]) be decomposed as �1

2,R[+]�2
2,R,

where, withA2,R,i defined via gr(A2,R,i) = gr(A2,R)∩(�i
2,R×�i

2,R), the following
statements hold:

(a2) {�i
2,R, [·, ·]2,R} is a Pontryagin space and �i

2,R is A2,R-invariant for i = 1, 2;
(b2) σ(A2,R,1) ⊆ P� ⊆ �;
(c2) σ(A2,R,2) ⊆ σ(A2) ∪ Pc ∪ Pr and, hence, int� ⊆ ρ(A2,R,2).

Now we reconsiderF and decompose it as claimed in Theorem 1.1. Therefore let
Fi,j be the function realized by {Ai,R,j , �i,R,j } for i, j = 1, 2. By means of these
functions define F� and FR as

F� := F1,1 + F2,1 and FR := F1,2 + F2,2.

We claim that these functions satisfy all the criteria in Theorem 1.1. Indeed, by
construction the functions F� and FR are (possibly non-minimally) realized by
{A�,��} := {A1,R,1 ⊕ A2,R,1, col (�1,R,1, �2,R,1)} and {AR,�R} := {A1,R,2 ⊕
A2,R,2, col (�1,R,2, �2,R,2)}, see Sect. 2.4. Therefore (b)–(c), (b1)–(c1) and (b2)–(c2)
show that

σ(A�) ⊆ clos�, int (�) ⊆ ρ(AR) and σp(A�) ∩ σp(Ar) ⊆ Pc.

Since Pc is by definition equal to ({γ, γ }∪GPNT (F ))∩∂�, cf. (3.5) and (3.7), (2.5)
and Proposition 2.3 show that all the assertions in Theorem 1.1 hold except the
assertions about the sum of the indices κ� and κR of F� and FR . The fact that
κ� + κR ≥ κ is indicated in the discussion preceding (2.9). The final assertion
in Theorem 1.1 that κ� + κR = κ if GPNT (F ) ∩ (clos (�) \ �) = ∅ is now a
consequence of Proposition 2.5. ��
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Inductively applying the preceding statement to the case when� is an interval of
R ∪ {∞} containing precisely one GPNT in its interior yields Corollary 3.2 below.
Note in connection with Corollary 3.2 that since non-real poles of a generalized
Nevanlinna function are isolated, we can always write a generalized Nevanlinna
function as the sum of a generalized Nevanlinna function holomorphic in C \ R
with rational functions each having a pole only at a non-real point and its conjugate.

Corollary 3.2 Let F ∈ Nκ(H) and let GPNT (F ) = {α1, . . . , αn, α1, . . . , αn}
where α1, . . . , αn are distinct elements of C ∪ {∞}. Then F =∑n

i=1 Fi , where

(i) Fi ∈ Nκi (H), for i = 1, . . . , n, and
∑n

i=1 κi = κ;
(ii) GPNT (Fi) = {αi, αi}, for i = 1, . . . , n;

(iii) σ(Fi) ∩ σ(Fj ) contains at most two points and any point contained in the
intersection is not both a generalized pole for Fi and Fj , for 1 ≤ i �= j ≤ n.

3.3 Decomposing Selfadjoint Relations in Pontryagin Spaces

In order to prove Theorem 1.2, the result from the preceding section is lifted to
the setting of selfadjoint relations by associating to (the resolvent of) selfadjoint
relations an (operator-valued) generalized Nevanlinna function.

Proof Let J be any canonical symmetry for the Pontryagin space {�, [·, ·]}
appearing in Theorem 1.2. Then {H, (·, ·)} := {�, [J ·, ·]} defines a Hilbert space,
see e.g. [1, Ch. 1, § 3]. In addition to the given selfadjoint relation A in the
Pontryagin space � introduce the operator � : H (= �) → � as the identity
mapping. Then the pair {A,�} provides a minimal realization for the following
generalized Nevanlinna function:

F(z) = z0J + (z− z0)J
(
I + (z− z0)(A− z)−1

)
, z0, z ∈ ρ(A); (3.8)

cf. (2.2). Let F�+FR be the additive decomposition of F provided by Theorem 1.1
with respect to � as in Theorem 1.2. In particular,

σ(F�) ⊆ clos� and int� ⊆ ρ(FR). (3.9)

If {A�,��} and {AR,�R} are arbitrary minimal realizations for F� and FR ,
respectively, then {A�⊕̂AR, col (��,�R)} is a realization for F . Moreover, by
Theorem 2.2 σ(A�) = σ(F�) and ρ(AR) = ρ(FR). In view of (3.9), the first
statement in Theorem 1.2 now holds by Propositions 2.3 and 2.1.

Finally, if ∂�∩ENT (A) = ∅, then by definition ∂�∩GPNT (F ) = ∅. Thus the
additive decomposition F� + FR of F with respect to � provided by Theorem 1.1
has the following properties:

(a) σ(F�) ⊆ clos� and int� ⊆ ρ(FR);
(b) no point of clos (�) \� is both a generalized pole of F� and FR .
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Let {A�,��} and {AR,�R} be arbitrary minimal realizations for the function F�
and FR , respectively. By Theorem 2.2 and the definition of generalized poles (see
Sect. 2.2) the preceding two properties imply that

(a’) σ(A�) ⊆ clos� and int� ⊆ ρ(AR);
(b’) σp(A�) ∩ σp(AR) = ∅.
Thus Proposition 2.6 implies that {A�⊕̂AR, col (��,�R)}, see (2.9), is a minimal
realization for F in (3.8). Therefore the statement has been proven, because all
minimal realizations for the same generalized Nevanlinna function are unitarily
equivalent by Proposition 2.1. ��

The assumption ρ(A) �= ∅ in Theorem 1.2 is needed, because there exist
selfadjoint relations A (even in finite-dimensional) Pontryagin spaces for which
σp(A) = C ∪ {∞}; see [4, p. 155–156].

Applying Theorem 1.2 inductively leads to the following decomposition results
for selfadjoint relations. Note that from Corollary 3.3 the so-called canonical form
of selfadjoint operators in finite-dimensional Pontryagin spaces, see [5, Thm. 5.1.1.],
can be derived.

Corollary 3.3 Let A be a selfadjoint relation in a Pontryagin space {�, [·, ·]}
with σ(A) ∩ (C+ ∪ R ∪ {∞}) = {α1, . . . , αn}. Then there exists a decomposition
�1[+] . . . [+]�n of � such that

(i) {�i, [·, ·]} is a Pontryagin space for i = 1, . . . , n;
(ii) �i is A-invariant for i = 1, . . . , n;

(iii) σ(A 	�i ) = {αi, αi} for i = 1, . . . , n.

Corollary 3.4 Let A be a selfadjoint relation in a Pontryagin space {�, [·, ·]}
with ρ(A) �= ∅ and let ENT (A) = {α1, . . . , αn, α1, . . . , αn}. Then there exists a
decomposition�1[+] . . . [+]�n of � such that

(i) {�i, [·, ·]} is a Pontryagin space for i = 1, . . . , n;
(ii) �i is A-invariant for i = 1, . . . , n;

(iii) {α1, . . . , αi−1, αi+1, . . . αn} ∈ ρ(A 	�i ) for i = 1, . . . , n;
(iv) σp(A 	�i )∩σp(A 	�j ) = ∅ and σ(A 	�i )∩σ(A 	�j ) contains at most finitely

many points, for 1 ≤ i �= j ≤ n.

Observe that condition (iii) in Corollary 3.4 implies that αi and αi are the only
ENTs of A restricted to �i for i = 1, . . . , n.
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1 Introduction

Harold Widom discovered that the asymptotic behaviour of orthogonal polynomials
associated with a system of curves in the complex plane can be expressed in terms
of the reproducing kernels of the Hardy spaces of character automorphic functions
on the complementary domain (containing infinity component) [20]. Later on in
[21] he found a condition that guaranties non triviality of all these spaces on
infinitely connected domains. Essentially this created a foundation for the most
comprehensive currently available function theory on multiply connected domains
(and Riemann surfaces) [8].

In its turn the theory of character automorphic Hardy spaces appeared to be the
most efficient tool in solving inverse spectral and scattering problems for ergodic,
almost periodic difference/differential operators and for their perturbations, see e.g.
[16, 17], see also [22]. We mention here that a certain reverse influence also took
place, see [18].

Another broad field of research to be naturally mentioned here is the spectral
theory of commuting non-self adjoint operators and the interpolation theory on the
Riemann surfaces, see e.g. [1, 2, 12].

Viewing the Hardy spaces on the Riemann surfaces in terms of the universal
covering is extremely convenient for analysts, see e.g. [14]. Under this approach
we realize the corresponding Hilbert space on the Riemann surface as a subspace
of the standard H 2 in the disc consisting of the functions automorphic (character
automorphic with a prescribed character) with respect to the action of a certain
Fuchsian group �. Effectively, an essential part of the book [8] can be substituted
with a single paper [15] by Christian Pommerenke if one uses this approach.

In this paper we give precise conditions for non triviality of all subspaces H2(α)

(see Definition 1.6). Such spaces are natural in the context of the spectral theory of
differential operators and in the asymptotics of approximations by entire functions.

A naive idea: it should be completely parallel to the corresponding Widom
characterization with a minor modification, namely, one has to substitute the Green
function of the domain with the Martin function. Basically, this is correct . . . , but,
as we will see, one more condition (see condition (B) in our main Theorem 1.8)
should be surprisingly added to Widom type condition (A) in this case. Moreover,
in Remark 1.11 we will show why the approach of [15] cannot work here in principle
without essential modification.
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Going to the precise statement we will introduce some notations, recall defini-
tions and some facts. We restrict ourself to Denjoy domains (complements to real
closed sets), which are regular in the sense of the potential theory.

Let E = R \ ∪j∈Z(aj , bj ) be a closed subset of R, E �= R, unbounded in the
following sense

∀N > 0 ∃λ± ∈ E : λ+ > N and λ− < −N. (1.1)

Regularity of E means that there exists a positive harmonic function in � = C \ E
with the only singularity at a point λ0 ∈ � that is continuous up to the boundary of
� and vanishes there. This function is called the Green function and is denoted by
G(λ, λ0).

One can give a parametric description of regular Denjoy domains in terms of the
special conformal mappings that were introduced by Akhiezer and Levin, see [11],
and that are extensively used in the spectral theory, see [13]; for a modern point of
view see [6], in particular for the proofs of Theorem 1.1, Propositions 1.2 and 1.7.
Let

� = {ξ + iη, η > 0, ξ ∈ (0, π)} \ ∪j �=0{ωj + iη : η ∈ (0, hj )}, (1.2)

where {(ωk, hk)}k �=0 is any collection of numbers such that

ωk ∈ (0, π), ωk �= ωj for k �= j, (1.3)

and

hk > 0, lim
k→∞hk = 0. (1.4)

Domains � of this type are called the regular combs.

Theorem 1.1 Let (a0, b0) ⊂ R and λ∗ ∈ (a0, b0). Let � be an arbitrary comb of
the form (1.2)–(1.4) with parameters

(ωk, hk), k �= 0,

and let

θλ∗ : C+ → �

be the conformal mapping2 of C+ onto �, normalized as follows

θλ∗(λ∗) = ∞, θλ∗(b0) = 0, θλ∗(a0) = π. (1.5)

2Here C+ is considered as a subset of C \ E.
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Then θλ∗ can be extended by continuity to the real axis and the set E := θ−1
λ∗ ([0, π])

is regular. Moreover, Im θλ∗(λ) can be extended to the domain � := C \ E as a
single-valued function, and for this extension we have

Im θλ∗(λ) = G(λ, λ∗), (1.6)

where G(λ, λ∗) is the Green function of �. Due to normalization (1.5), θλ∗(∞) ∈
(0, π). If it does not coincide with the base point of a slit, i.e., θλ∗(∞) �= ωj , j ∈ Z,
then the set E has property (1.1).

Conversely, let E be a regular set, let (a0, b0) be a component of R \ E and let
λ∗ ∈ (a0, b0). Then there exists a comb�λ∗ of the form (1.2)–(1.4) with parameters

(ωλ∗,k, hλ∗,k), k �= 0,

such that E corresponds to the base [0, π] for the conformal mapping θλ∗ : C+ →
�λ∗, normalized as in (1.5). Moreover, (1.6) holds. If E has property (1.1), then
θλ∗(∞) does not coincide with the base point of a slit, i.e., θλ∗(∞) �= ωj , j ∈ Z.

The function θλ∗(λ) admits a Schwarz-Christoffel type representation (an infinite
analogue of the conformal mapping onto a polygon).

Proposition 1.2 Assume thatE is regular and that θλ∗(λ) is the conformal mapping
on the corresponding comb domain. Let

μλ∗,k := θ−1
λ∗ (ωλ∗,k + ihλ∗,k) ∈ (ak, bk).

Then for λ ∈ �

θ ′λ∗(λ) =
i

λ∗ − λ
√
(λ∗ − a0)(λ∗ − b0)√
(λ− a0)(λ− b0)

∏
k �=0

λ− μλ∗,k
λ∗ − μλ∗,k

√
(λ∗ − ak)(λ∗ − bk)√
(λ− ak)(λ− bk) .

(1.7)

In particular, {μλ∗,k}k �=0 is the complete list of the critical points of the function
G(λ, λ∗), that is, the points where ∇G(λ, λ∗) = 0.

Definition 1.3 A regular domain is said to be of the Widom type if

∑
μ:∇G(μ,λ∗)=0

G(μ, λ∗) =
∑
k �=0

G(μλ∗,k, λ∗) <∞. (1.8)

Note that, by (1.6), G(μλ∗,k, λ∗) = hλ∗,k and (1.8) is the same as

∑
k �=0

hλ∗,k <∞. (1.9)
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Thus, all Denjoy domains of the Widom type are represented by the conformal
mappings on the comb domains, where (1.4) should be substituted with a stronger
condition (1.9).

According to the uniformization theorem there exists an analytic function �(z)
on the upper half plane C+ that sets a one to one correspondence between the
domain � and the factor of C+ under the action of a discrete group � ⊂ SL2(R),
that is, �(z) ∈ �, and for every λ ∈ � there exists z ∈ C+ such that �(z) = λ.
Moreover,

�(γ (z)) = �(z), where γ (z) = γ 11z + γ 12

γ 21z + γ 22 for all γ =
[
γ 11 γ 12

γ 21 γ 22

]
∈ �,

and �(z1) = �(z2) implies that there exists γ ∈ � such that z1 = γ (z2).

In terms of the universal covering the Green function G(λ, λ∗) admits the
following representation. Let us fix z∗ such that �(z∗) = λ∗. Consider3

g(z, z∗) =
∏
γ∈�

z − γ (z∗)
z − γ (z∗)

Cγ , z ∈ C+, (1.10)

where C1� = 1 and for all γ �= 1�

Cγ =
∣∣∣∣z∗ − γ (z∗)
z∗ − γ (z∗)

∣∣∣∣ z∗ − γ (z∗)z∗ − γ (z∗) .

Then

G(�(z),�(z∗)) = − ln |g(z, z∗)|. (1.11)

For this reason g(z, z∗) is called the (complex) Green function of the group �, see
[15]. Combining (1.6) and (1.11), we get

θ�(z∗)(�(z)) = −i ln g(z, z∗). (1.12)

Therefore,

θ ′�(z∗)(�(z)) ·�′(z) = −i
g′(z, z∗)
g(z, z∗)

.

3If E is regular, then � is of the convergent type. That is, the orbit of every point in C+ satisfies
the Blaschke condition.
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From here we see that the critical points {μλ∗,k}k �=0 of the Green function G(λ, λ∗)
are images of the zeros of g′(z, z∗) under �. Then Widom condition (1.8) can be
written in terms of g(z, z∗) as follows

∏
k �=0

|g(cz∗,k, z∗)| > 0, (1.13)

where cz∗,k are zeros of g′(z, z∗) in the fundamental domain of �, which is the
Blaschke condition on all the zeros of g′(z, z∗) in the upper half plane.

By �∗ we denote the group of the unimodular characters of �, that is, the
functions

α : �→ T such that α(γ1γ2) = α(γ1)α(γ2), γj ∈ �.

Note g(z, z∗) is an example of the character automorphic function, that is, there
exists β∗ = βg(·,z∗) ∈ �∗ such that

g(γ (z), z∗) = β∗(γ )g(z, z∗),

respectively,

|g(γ (z), z∗)| = |g(z, z∗)|.

Passing by a linear fractional transformation from the unit disk D to the upper
half plane C+, we introduce the classical Hardy spaceH 2 of holomorphic functions
on C+, with the norm

‖f ‖2 = ‖f ‖2
H 2 =

∫
R

|f (x)|2dm(x), dm(x) = dx

1+ x2 . (1.14)

Definition 1.4 For a fixed character α ∈ �∗ we define

H 2(α) = {f ∈ H 2 : f (γ (z)) = α(γ )f (z),∀γ ∈ �}.

The following statement is the Pommerenke version [15] of the Widom theorem
(recall, in this paper we discuss only Denjoy domains).

Theorem 1.5 Let � = C \ E be a regular Denjoy domain and � : C+/� > � be
its uniformization. The following conditions are equivalent

(i) For every α ∈ �∗ the space H 2(α) contains a non constant function.
(ii) The derivative g′(z, z∗) of the Green function is a function of bounded

characteristic in C+ (a ratio of two bounded holomorphic functions)
(iii) Widom condition (1.8) (equivalently (1.13)) holds.
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Let now H2 be the standard Hardy space in the upper half plane, that is, Smirnov
class functions f with finite norm

‖f ‖2 = ‖f ‖2H2 =
∫
R

|f (x)|2dx.

Definition 1.6 For a fixed character α ∈ �∗ we introduce

H2(α) = {f ∈ H2 : f (γ (z)) = α(γ )f (z),∀γ ∈ �}.

We express a similar property of non triviality of all H2(α) spaces in terms of
the Martin functionM(λ) in � (associated to the infinity).

To be more precise, by M(λ), λ ∈ �, we denote the symmetric Martin function
with respect to the infinity, see e.g. [4, 6, 11], and the references therein. That is,
M(λ) is a positive harmonic in � function, continuous up to the boundary with the
only exception at the infinity and vanishing at every finite point of the boundary.
Symmetry means that

M(λ) = M(λ).

Such a function is unique up to a positive constant factor. It also admits a Schwarz-
Christoffel type representation.

Proposition 1.7 Assume that � is a regular Danjoy domain. All critical points μk
of the symmetric Martin function are real, moreover it has exactly one critical point
in each gap

μk ∈ (ak, bk), k ∈ Z.

Then for λ ∈ C+ and a fixed normalization point λ∗ ∈ (a0, μ0)

θ(λ) := i(∂xM)(λ∗)
∫ λ

a0

∏
k∈Z

ξ − μk
λ∗ − μk

√
(λ∗ − ak)(λ∗ − bk)√
(ξ − ak)(ξ − bk) dξ (1.15)

and M(λ) = Im θ(λ).

Note that θ(λ) also generates a conformal mapping of the upper half plane on a
special comb domain [6]. It can be extended to� as an (additive) character automor-
phic function. This property is convenient to state in terms of the uniformization: let
m(z) = θ(�(z)), then

M(�(z)) = Imm(z), m(γ (z)) = m(z)+ η(γ ), (1.16)

where η(γ ) ∈ R, η(γ1γ2) = η(γ1) + η(γ2). Similar to g(z, z∗), the function m(z)
can be called the (symmetric) complex Martin function of the group �.
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Now we can state our main result.

Theorem 1.8 Let � = C \ E be a regular Denjoy domain and � : C+/� > � be
its uniformization. The following conditions are equivalent

(i) For every α ∈ �∗ the space H2(α) �= {0}.
(ii) (a) The derivative m′(z) of the Martin function of the group � is a function of

bounded characteristic;
(b) The Riesz-Herglotz measure correspondent to m(z) is a pure point one.

(iii) The symmetric Martin function M(λ) of the domain� possesses the following
two properties

(A)
∑
j∈Z

G(μj , λ∗) < ∞, where μj are the critical points of the Martin

function;
(B) lim

η→+∞M(iη)/η > 0.

Remark 1.9 First of all we note that in our theorem condition (a), as an expected
counterpart of (ii) in the Pommerenke theorem, should be accompanied by the
second condition (b), respectively, the Widom type condition (A) in our case is
accompanied by condition (B) that characterizes a special behaviour of the Martin
function at infinity.

Remark 1.10 (B) is the well known Akhiezer-Levin condition, see e.g. [4]. As
soon as (B) holds M(λ) is also called the Phragmén-Lindelöf function, see [9] and
especially Theorem on p. 407 in this book. Condition (b) was discussed in [19], see
especially Theorem 5 and Lemma 1 there. It can be equivalently stated in a form
similar to condition (B)

(b1) lim
y→+∞M(�(iy))/y > 0. (1.17)

We point out that in condition (B) iη belongs to the upper half plane of the domain
C \ E, whereas in condition (b1) iy is in the universal cover. It appears that
the equivalence of the Akhiezer-Levin condition (B) and property (b), proved in
Sect. 4.2 below, is a new result.

Remark 1.11 Pommerenke’s proof of implication (iii) to (ii) in Theorem 1.5 is
based on an exhaustion of the given domain � by subdomains �ε: connected
components of the set

{λ : G(λ, λ∗) > ε},
containing λ∗. It is highly important in the proof that such domains are finitely
connected. To follow this line in our proof and to keep under control the critical
points of the Martin function one has to make a similar exhaustion generated by the
sets

{λ : M(λ) > ε}.
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But the simplest example

� :=
{
λ : | cosλ| > 1

2

}

shows that the corresponding domains �ε remain possibly infinitely connected for
all sufficiently small ε. Thus, another kind of approximation of the given domain is
needed, respectively the proof should be essentially reorganised.

In this paper we choose the approximation of the group� by its finitely generated
subgroups. The corresponding construction is discussed in Sect. 2. In Sect. 3 we
partially reprove Pommerenke Theorem 1.5 (equivalence of (ii) and (iii)) using this
approach. In this part, it is an essential simplification of his original construction.
Note, though, that we are restricted in our setting to Denjoy domains only, while
Pommerenke’s proof is valid for arbitrary Riemann surfaces. Section 4.1 describes
the Martin functions m(z) that possess property (b) (equivalently (b1) of (1.17),
by Proposition 4.1). In Sect. 4.2 we prove that condition (b1) and Akhiezer-Levin
condition (B) are equivalent. Finally, in Sect. 5 we prove our main Theorem 1.8.
The proof is broken into several steps, each one corresponds to a certain implication
between assertions (i)–(iii). For the reader’s convenience in the Appendix we give
proofs of the Carathéodory and Frostman theorems, that were essential components
of the original Pommernke’s proof [15] (given there as references).

2 Preliminaries

The Blaschke condition on a set {zk} for the upper half plane can be written as

∑
k

Im zk

|z− zk|2 <∞, Im zk > 0, (2.1)

where z is an arbitrary fixed point in the upper half plane. The convergence in (2.1)
is uniform in z on compact subsets of the open upper half plane, since

|z− w|
|̃z− w|

is continuous and, therefore, is bounded when z and z̃ are in a compact subset of the
open upper half plane and w is in the closed lower half plane (including infinity).
Hence, the corresponding Blaschke product

∏
k

z− zk
z− zk Ck,
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converges uniformly on the compact subsets of C+, where constants Ck are chosen
to make the factors positive at one point of the upper half plane.

Since � is of convergent type, the Blaschke condition holds for the orbit of an
arbitrary point z∗ in the upper half plane

∑
γ∈�

Im γ (z∗)
|z− γ (z∗)|2

<∞, Im z > 0. (2.2)

Hence, g(z, z∗) is well defined by this formula

g(z, z∗) =
∏
γ∈�

z − γ (z∗)
z − γ (z∗)

Cγ , z ∈ C+, (2.3)

and the convergence is uniform on the compact subsets of C+. Equivalently, g(z, z∗)
can be defined as

g(z, z∗) =
∏
γ∈�

γ (z)− z∗
γ (z)− z∗ C̃γ , z ∈ C+. (2.4)

For the logarithmic derivative of g(z, z∗) we get

g′(z, z∗)
g(z, z∗)

= (z∗ − z∗)
∑
γ∈�

γ ′(z)
(γ (z)− z∗)(γ (z)− z∗) , z ∈ C+. (2.5)

From here we see that

g′(z, z∗) = (z∗ − z∗)
∑
γ∈�

g(z, z∗)γ ′(z)
(γ (z)− z∗)(γ (z)− z∗) , z ∈ C+. (2.6)

The convergence in (2.6) is absolute and uniform on compact subsets of C+ due to
the uniform convergence in (2.2), see also (2.3), (2.4).

We consider domain F that is obtained from the universal covering space C+ by
removing countably (or finitely) many semi-disks with real centers. We choose one
of them to be of radius 1 with center at 0 and we label it with index 0. The universal
covering map carries F conformally onto the upper half plane in C \ E. The semi-
circles are mapped onto the gaps, the real part of the boundary of F is mapped onto
E. The fundamental domain of the group � can be obtained by taking the union of
F with its reflection about the 0-th semi-circle. We also mention here that generators
of the group � are the compositions of this reflection with the reflections about the
other boundary semi-circles of F .
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We consider domain Fn that is obtained from F by keeping a finite number of
the semi-circles and replacing the others with their diameters on the real line. We
have that

F =
⋂
n

Fn.

Group �n is generated by the compositions of pairs of the reflections about the
boundary semi-circles of Fn. �n is a subgroup of � and

� =
⋃
n

�n.

We consider the complex Green function for �n similar to the one for � with the
same z∗

gn(z, z∗) =
∏
γ∈�n

γ (z)− z∗
γ (z)− z∗ C̃γ , z ∈ C+.

gn is a divisor of g. Therefore,

|gn(z)| ≥ |g(z)|, z ∈ C+. (2.7)

We also mention here that

g′n(z, z∗)
gn(z, z∗)

= (z∗ − z∗)
∑
γ∈�n

γ ′(z)
(γ (z)− z∗)(γ (z)− z∗) , z ∈ C+,

and

g′n(z, z∗) = (z∗ − z∗)
∑
γ∈�n

gn(z, z∗)γ ′(z)
(γ (z)− z∗)(γ (z)− z∗) . (2.8)

Again, the convergence is absolute and uniform on the compact subsets of C+, since
this is true even for the whole group � (see (2.6)).

Lemma 2.1 As n goes to ∞, gn(z, z∗) converges to g(z, z∗) uniformly on the
compact subsets in C+ and g′n(z, z∗) converges to g′(z, z∗) uniformly on the

compact subsets in C+. Let c(n)z∗,k be the zero of g′n(z, z∗) on the k-th semicircle
and cz∗,k be the zero of g′(z, z∗) on the k-th semicircle. Then

c
(n)
z∗,k → cz∗,k

for every k �= 0. Moreover, gn(c
(n)
z∗,k, z∗) converges to g(cz∗,k, z∗) for every k �= 0.
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Proof The uniform convergence of gn(z, z∗) follows from the convergent type of
� (see (2.2), (2.3)). The uniform convergence of g′n(z, z∗) follows from the uniform
convergence of gn(z, z∗) (by local Cauchy integral formula). The convergence of
c
(n)
z∗,k follows from the regularity of E (g and gn vanish at the endpoints of the gaps)

and from the uniform convergence of g′n(z, z∗), by the Rouche’s Theorem. The last
assertion is obtained by combining the uniform convergence of gn(z, z∗) with the
convergence of c(n)z∗,k . ��

3 Pommerenke Theorem

Theorem 3.1 Let cz∗,k be the zeros of g′(z, z∗), one on each semicircle on the
boundary of F , except for the 0-th one. Assume that they satisfy the Widom
condition (1.13)

∏
k �=0

|g(cz∗,k, z∗)| > 0. (3.1)

Then g′(z, z∗) is of bounded characteristic, that is, it is a ratio of two bounded
analytic functions.

Proof Let Bk be the Blaschke product over the orbit of cz∗,k , k �= 0

Bk(z) =
∏
γ∈�

γ (z)− cz∗,k
γ (z)− cz∗,k

dγ , z ∈ C+,

where |dγ | = 1 are chosen so that the factors in Bk are positive at z∗. It converges
since � is of the convergent type. We now consider

B(z) =
∏
k �=0

Bk(z).

This product converges due to assumption (3.1). Moreover, it converges uniformly
on the compact subsets of C+.

The goal here is to prove that

1

(z− z∗)2
B(z)

g′(z, z∗)

is a bounded analytic function on C+. Then g′(z, z∗) will be the ratio of the
following two bounded analytic functions

1

(z− z∗)2B(z) and
1

(z− z∗)2
B(z)

g′(z, z∗)
.
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More precisely, we will prove that

∣∣∣∣ 1

(z− z∗)2
B(z)

g′(z, z∗)

∣∣∣∣ ≤ 1, z ∈ C+. (3.2)

It turns out that it is easier to prove even a stronger inequality

f(z) ≤ 1, z ∈ C+, where f(z) =
∣∣∣∣ B(z)

g′(z, z∗)

∣∣∣∣
∑
γ∈�

|γ ′(z)|
|γ (z)− z∗|2 . (3.3)

It is easier because of the automorphic property of the latter function. Note that
the series in (3.3) converges to a function continuous on C+ for any group � of
convergent type. So, we are going to prove that

f(z) =
∑
γ∈�

∣∣∣∣ B(z)γ ′(z)
g′(z, z∗)(γ (z)− z∗)2

∣∣∣∣ ≤ 1, z ∈ C+. (3.4)

Observe that

B(z)γ ′(z)
g′(z, z∗)(γ (z)− z∗)2

is holomorphic on C+. Therefore, its absolute value is a subharmonic function on
C+. Hence f(z) is a subharmonic function, which is automorphic with respect to �.

We consider first the finitely generated approximation described in Sect. 2. Let
�n be the Denjoy domain corresponding to the subgroup �n, �n : C+/�n > �n.
Let c(n)z∗,k be the zero of g′n(z, z∗) on the k-th semicircle. Let B(n)k be the Blaschke

product over the orbit of c(n)z∗,k under �n

B
(n)
k (z) =

∏
γ∈�n

γ (z)− c(n)z∗,k
γ (z)− c(n)z∗,k

dγ , z ∈ C+,

if k-th semicircle is a part of the boundary of Fn, and let B(n)k (z) = 1 otherwise. We
now consider

B(n)(z) =
∏
k �=0

B
(n)
k (z).

We are going to prove this approximative version of (3.4)

fn(z) ≤ 1, z ∈ C+, where fn(z) =
∑
γ∈�n

∣∣∣∣∣
B(n)(z)γ ′(z)

g′n(z, z∗)(γ (z)− z∗)2
∣∣∣∣∣ . (3.5)
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The advantage of the series in (3.5) over the series in (3.4) is that it converges also on
the boundary of the domain Fn and that the sum in (3.5) is continuous on Fn and up
to the boundary, since �n is finitely generated. The same is true for the fundamental
domain of �n, which is the union of Fn and the reflection of Fn about the 0-th
semicircle.

Due to the automorphic property of fn(z), it possesses the representation

fn(z) = Fn(�n(z)),

where Fn(λ) is still subharmonic in �n and continuous up to the boundary of the
domain. Therefore, its maximum is on the boundary of �n. Thus, going back to
the function fn(z), we get that its maximum is on the part of the boundary of
the fundamental domain that lies on the real axis. Recall that on the boundary of
the fundamental domain of �n all series below converge to continuous functions.
Therefore, for real z on the boundary of the fundamental domain of �n we have,
by (2.8),

|g′n(z, z∗)| =
∣∣∣∣∣∣gn(z, z∗)

∑
γ∈�n

γ ′(z)
(γ (z)− z∗)(γ (z)− z∗)

∣∣∣∣∣∣ =
∑
γ∈�n

γ ′(z)
|γ (z)− z∗|2 .

(3.6)

Here we used the fact that γ (z) is real for every real z and that γ ′(z) is positive for
every real z. Therefore, for every real z on the boundary of the fundamental domain

fn(z) =
∑
γ∈�n

∣∣∣∣∣
B(n)(z)γ ′(z)

g′n(z, z∗)(γ (z)− z∗)2
∣∣∣∣∣ =

1

|g′n(z, z∗)|
∑
γ∈�n

γ ′(z)
|γ (z)− z∗|2 = 1.

(3.7)

Hence, (3.5) follows. Thus we have this approximative version of (3.3)

∣∣∣∣∣
B(n)(z)

g′n(z, z∗)

∣∣∣∣∣
∑
γ∈�n

|γ ′(z)|
|γ (z)− z∗|2 ≤ 1, z ∈ C+. (3.8)

Now we want to pass to the limit in (3.8) for arbitrary fixed z ∈ C+ as n goes to
infinity. By Lemma 2.1, g′n(z, z∗) converges to g′(z, z∗). The sum over�n converges
to the sum over �. It remains to show that |B(n)(z)| converges to |B(z)|. Note
that |B(n)k (z)| = |gn(c(n)z∗,k, z)| converges to |g(cz∗,k, z)| = |Bk(z)|, by Lemma 2.1.
Further,

|B(n)k (z∗)| = |gn(c(n)z∗,k, z∗)| ≥ |g(c
(n)
z∗,k, z∗)| ≥ |g(cz∗,k, z∗)|.
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The first inequality holds since gn is a divisor of g, the second does since cz∗,k is the
point of minimum of |g| on the k-th semi-circle. By assumption (3.1) the product

∏
k �=0

|g(cz∗,k, z∗)|

converges (that is greater than 0). Then, by the Dominated Convergence theorem,4

lim
n→∞ |B

(n)(z∗)| = lim
n→∞

∏
k �=0

|B(n)k (z∗)| =
∏
k �=0

lim
n→∞ |B

(n)
k (z∗)|

=
∏
k �=0

|Bk(z∗)| = |B(z∗)|.

There exists a subsequence nj such that B(nj )(z) converges for all z ∈ C+. Let

B̃(z) = lim
j→∞B

(nj )(z).

Pick and hold any z ∈ C+. Then, by the Fatou’s lemma,5

|B̃(z)| = lim
j→∞ |B

(nj )(z)| = lim
j→∞

∏
k �=0

|B(nj )k (z)|

≤
∏
k �=0

lim
j→∞ |B

(nj )

k (z)| =
∏
k �=0

|Bk(z)| = |B(z)|.

Thus

|B̃(z)| ≤ |B(z)|, z ∈ C+.

Since

|B̃(z∗)| = |B(z∗)|,

the equality must hold

|B̃(z)| = |B(z)|, z ∈ C+. (3.9)

4This case reduces to the standard Dominated Convergence by applying (− log) to the products.
5Same explanation as in the previous footnote.
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Since (3.9) holds for every subsequential limit B̃(z) of B(n)(z), we get

B(z) = lim
n→∞B

(n)(z).

Thus, we get (3.3) and, therefore, (3.2). ��

Remark 3.2 Since the function

1

(z− z∗)2
B(z)

g′(z, z∗)

is bounded, it can be written as

1

(z− z∗)2
B(z)

g′(z, z∗)
= I (z) ·O2(z),

where I is an inner function and O2 is a bounded outer function. Moreover, I
is a singular inner function, since the left hand side does not have zeros in C+.
Therefore,

g′(z, z∗) = O1(z)

O2(z)

B(z)

I (z)
,

where O1(z) = 1
(z−z∗)2 is also a bounded outer function. Thus,

g′(z, z∗) = O(z)B(z)
I (z)

, (3.10)

where O(z) = O1(z)
O2(z)

is a ratio of two bounded outer functions.

Theorem 3.3 (Pommerenke) The function

1

(z− z∗)2
B(z)

g′(z, z∗)

is outer. That is, I (z) = 1.

Lemma 3.4 Let x ∈ R. The nontangential limits g(x, z∗) and g′(x, z∗) exist with
|g(x, z∗)| = 1, g′(x, z∗) finite if and only if

∑
γ∈�

|γ ′(x)|
|γ (x)− z∗|2 <∞. (3.11)
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In this case

1

i

g′(x, z∗)
g(x, z∗)

= |g′(x, z∗)| = 2Im z∗
∑
γ∈�

|γ ′(x)|
|γ (x)− z∗|2 . (3.12)

Hence, in our case (g is a Blaschke product, g′ is of bounded characteristic) (3.12)
holds almost everywhere on R.

Proof This lemma is Corollary 6.6 of the Appendix with w = g(z, z∗), which is a
product of these Blaschke factors

Bγ (z) = γ (z)− z∗
γ (z)− z∗ .

(3.12) follows since in this case

B ′γ (z) = 2iIm z∗
γ ′(z)

(γ (z)− z∗)2 .

��

Lemma 3.5 For every z ∈ C+ the following inequality holds

1

π

∫

R

log
∑
γ∈�

|γ ′(x)|
|γ (x)− z∗|2

Im z dx

|x − z|2 ≥ log
∑
γ∈�

|γ ′(z)|
|γ (z)− z∗|2 . (3.13)

Proof Since

γ ′(z) = 1

(γ 21z+ γ 22)2
,

one can write

∑
γ∈�

|γ ′(z)|
|γ (z)− z∗|2 =

∑
γ∈�

φγ (z)φγ (z),

where

φγ (z) = 1

γ 21z+ γ 22

1

γ (z)− z∗ .

We enumerate the elements of the group �, � = {γk}, and consider functions un(z)
defined by the finite sums

un(z) =
n∑
k=1

|γ ′k(z)|
|γk(z)− z∗|2 =

n∑
k=1

φγk (z)φγk (z), Im z > 0.
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From here we see that un is a subharmonic function since

∂2

∂z∂z
un(z) =

n∑
k=1

φ′γk (z)φ
′
γk
(z) ≥ 0.

Also logun(z) is subharmonic, since

∂2

∂z∂z
logun(z) = − 1

u2
n(z)

∂un

∂z

∂un

∂z
+ 1

un

∂2un

∂z∂z
=

1

u2
n(z)

{
n∑
k=1

φγk (z)φγk (z)

n∑
k=1

φ′γk (z)φ
′
γk
(z)−

n∑
k=1

φγk (z)φ
′
γk
(z)

n∑
k=1

φ′γk (z)φγk (z)
}
,

which is nonnegative by the Cauchy-Schwarz inequality. Therefore,

1

π

∫

R

log
n∑
k=1

|γ ′k(x)|
|γk(x)− z∗|2

Im z dx

|x − z|2 ≥ log
n∑
k=1

|γ ′k(z)|
|γk(z)− z∗|2 .

We now pass to the limit in this inequality. Since all integrands here have lower
summable bound log 1

|x−z∗|2 , the Monotone Convergence Theorem applies and we
get (3.13). ��

Proof (Theorem 3.3) It follows from

g′(z, z∗) = (z∗ − z∗)
∑
γ∈�

g(z, z∗)γ ′(z)
(γ (z)− z∗)(γ (z)− z∗)

that for z ∈ C+

|g′(z, z∗)| =2Im z∗

∣∣∣∣∣∣
∑
γ∈�

g(z, z∗)γ ′(z)
(γ (z)− z∗)(γ (z)− z∗)

∣∣∣∣∣∣
≤2Im z∗

∑
γ∈�

∣∣∣∣ g(z, z∗)γ ′(z)
(γ (z)− z∗)(γ (z)− z∗)

∣∣∣∣ ≤ 2Im z∗
∑
γ∈�

|γ ′(z)|
|γ (z)− z∗|2 .

(3.14)
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We used here only one of the factors of g(z, z∗) in every term. Now, by Lemmas 3.4
and 3.5,

1

π

∫

R

log
|g′(x, z∗)|

2Im z∗
Im z

|x − z|2 dx =
1

π

∫

R

log
∑
γ∈�

|γ ′(x)|
|γ (x)− z∗|2

Im z

|x − z|2 dx

≥ log
∑
γ∈�

|γ ′(z)|
|γ (z)− z∗|2 .

That is,

1

π

∫

R

log |g′(x, z∗)| Im z

|x − z|2 dx ≥ log

⎛
⎝2Im z∗

∑
γ∈�

|γ ′(z)|
|γ (z)− z∗|2

⎞
⎠ .

On the other hand

1

π

∫

R

log |g′(x, z∗)| Im z

|x − z|2 dx =
1

π

∫

R

log |O(x)| Im z

|x − z|2 dx = log |O(z)|,

since O is a ratio of two bounded outer functions. Thus,

2Im z∗
∑
γ∈�

|γ ′(z)|
|γ (z)− z∗|2 ≤ |O(z)|, z ∈ C+. (3.15)

Combining (3.15) and (3.14), we get

|g′(z, z∗)| ≤ |O(z)|, z ∈ C+.

That is, in view of (3.10),
∣∣∣∣B(z)I (z)

∣∣∣∣ =
∣∣∣∣g
′(z, z∗)
O(z)

∣∣∣∣ ≤ 1.

The latter implies that I (z) = 1. ��

4 Conditions (b) and (B) in Theorem 1.8

4.1 Martin Function with a Pure Point Measure

Recall that (see (1.15), (1.16)) M(λ) = Im θ(λ), λ ∈ � and that m(z) = θ(�(z)).
Thus,

M(�(z)) = Imm(z).
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m(z) is a single-valued holomorphic function defined in C+, additively character
automorphic with respect to �. Imm(z) ≥ 0 for all z ∈ C+. Therefore,m(z) admits
a Riesz-Herglotz representation

m(z) = az+ b +
∫

R

(
1

x − z −
x

1+ x2

)
σ(dx),

where a ≥ 0, b is real and σ is a singular measure on R with

∫

R

σ(dx)

1+ x2
<∞.

Let us mention that ei�m(z) is a singular inner character automorphic function, for
all � > 0.

We observe (see, e.g. [19]) that for Martin functions in Denjoy domains there
are two options: either a > 0 (that is, (b1) of (1.17) holds) and σ is a pure point
measure (that is, (b) of Theorem 1.8 holds), supported by orbits of ∞ and 0; or
a = 0 (that is, (b1) of (1.17) fails) and σ is a continuous singular measure (that is,
(b) of Theorem 1.8 fails). For further references we state it as

Proposition 4.1 Properties (b) of Theorem 1.8 and (b1) of (1.17) are equivalent.

We point out that the orbits {γ (0)}γ∈� and {γ (∞)}γ∈� cannot intersect due to the
structure of the generators of the group �.

We start with a singular function supported by the orbit of∞,

m+(z) = z+
∑

γ∈� γ �=1

(
1

γ (∞)− z −
γ (∞)

1+ γ (∞)2
)
σγ (4.1)

where

∑
γ∈� γ �=1

σγ

1+ γ (∞)2 <∞. (4.2)

Lemma 4.2 The functionm+(z) defined in (4.1) is additive character automorphic
with respect to the group � if and only if

σγ = 1

(γ 21)2
. (4.3)

Respectively,

∑
γ∈�

σγ

1+ γ (∞)2 =
∑
γ∈�

1

(γ 11)2 + (γ 21)2
<∞, (4.4)
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and

m+(z) =
∑
γ∈�

(γ (z)− Re γ (i)) . (4.5)

Proof Since

γ (z) = γ 11z+ γ 12

γ 21z+ γ 22 , γ ∈ SL2(R),

we have γ (∞) = γ 11/γ 21. Note that for every γ ∈ �, γ 11 �= 0 (since ∞ is not
carried to 0) and γ 22 �= 0 (since 0 is not carried to ∞); also for γ �= 1, γ 12 �= 0
(since 0 is not a fixed point) and γ 21 �= 0 (since ∞ is not a fixed point). So, let
m+(z) be defined by (4.1)

m+(z) = z +
∑

γ̃∈� γ̃ �=1

(
1

γ̃ (∞)− z −
γ̃ (∞)

1+ γ̃ (∞)2
)
σγ̃ . (4.6)

Let γ ∈ �, then m+(γ (z)) is the same as m+(z) up to a real additive constant. Let
γ �= 1� . We substitute γ (z) instead of z in (4.6) and we consider the term with
γ̃ = γ . We have

1

γ (∞)− γ (z) =
(
γ 11

γ 21
− γ 11z+ γ 12

γ 21z+ γ 22

)−1

= (γ 21)2z + γ 21γ 22.

Since the coefficient of z in m(γ (z)) must be equal to 1, we get (4.3); then (4.4)
follows from (4.2). Thus, we can write

m+(z) = z+
∑

γ∈� γ �=1

(
1

γ (∞)− z −
γ (∞)

1+ γ (∞)2
)

1

(γ 21)2
(4.7)

= z+
∑

γ∈� γ �=1

(
1

γ 11 − γ 21z

1

γ 21 −
γ (∞)

1+ γ (∞)2
1

(γ 21)2

)
.

Since γ ∈ SL2(R), we have

γ−1 =
[
γ 22 −γ 12

−γ 21 γ 11

]
for γ =

[
γ 11 γ 12

γ 21 γ 22

]
.
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Then we can further rewrite

m+(z) = z+
∑

γ∈� γ �=1

(
γ−1(z)− γ−1(∞)− γ (∞)

1+ γ (∞)2
1

(γ 21)2

)

=
∑
γ∈�

(
γ−1(z)− c(γ−1)

)
=

∑
γ∈�

(γ (z)− c(γ )) , (4.8)

where c(1�) = 0 and for γ �= 1�

c(γ ) = γ (∞)+ γ−1(∞)
1+ γ−1(∞)2

1

(−γ 21)2
= γ 11

γ 21 −
γ 22

γ 21 ·
1

(γ 22)2 + (γ 21)2
.

Actually, since

Re

(
1

γ (∞)− i −
γ (∞)

1+ γ (∞)2
)
= Re

(
γ (∞)+ i

1+ γ (∞)2 −
γ (∞)

1+ γ (∞)2
)
= 0,

we get from (4.7) and (4.8) that

c(γ ) = Re γ (i) = γ 12γ 22 + γ 11γ 21

(γ 22)2 + (γ 21)2
.

That is, we get (4.5). The fact that the function m+(z) is additively character
automorphic follows directly from representation (4.5). ��

The convergence in (4.5) is absolute and uniform as long as z is bounded away
from the orbit of∞. We also see that

m′+(z) =
∑
γ∈�

γ ′(z).

the convergence here is also absolute and uniform as long as z is bounded away
from the orbit of∞. By (4.5), we get

Imm+(z) =
∑
γ∈�

Im γ (z) =
∑
γ∈�

Im z

|γ 21z+ γ 22|2 = Im z
∑
γ∈�
|γ ′(z)|.

Thus

Imm+(z)
Im z

=
∑
γ∈�

1

|γ 21z+ γ 22|2 =
∑
γ∈�
|γ ′(z)|. (4.9)
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The antiholomorphic automorphism λ 
→ λ on � acts as z 
→ 1/z on the
universal covering C+. Thus, the symmetric Martin function m(z) of the group �
possesses the following property

Imm(1/z) = Imm(z).

Let us define m−(z) so that

Imm−(z) = Imm+(1/z)

In this case,

Imm−(z) = Imm+(1/z) =
∑
γ∈�

Im 1/z∣∣∣∣γ
21

z
+ γ 22

∣∣∣∣
2 =

∑
γ∈�

Im z

|γ 21 + γ 22z|2 . (4.10)

Lemma 4.3 Group � has the following symmetry. Let

τ (z) = 1

z
. (4.11)

This is a reflection about the unit circle. Also τ : C+ → C+. Then

γ 
→ γ̃ = τγ τ (4.12)

is an automorphism (one-to-one and onto) of �. In the matrix form this automor-
phism reads as follows

γ =
[
γ 11 γ 12

γ 21 γ 22

]

→ γ̃ =

[
γ 22 γ 21

γ 12 γ 11

]
. (4.13)

Proof Lemma follows from the observation that every generator of the group � is
a composition of two reflections about the boundary semicircles of F . ��

In view of this lemma, we may continue (4.10) (compare with (4.9)) as

Imm−(z) =
∑
γ∈�

Im z

|γ 21 + γ 22z|2 = −
∑
γ∈�

Im
1

γ̃ (z)
= −

∑
γ∈�

Im
1

γ (z)
.

Therefore,

m−(z) = −
∑
γ∈�

(
1

γ (z)
− Re

1

γ (i)

)
.
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This function also admits representation of type (4.1)

m−(z) =
∑
γ∈�

(
1

γ (0)− z −
γ (0)

1+ γ (0)2
)
βγ , where βγ = 1

(γ 22)2
. (4.14)

The corresponding convergence condition reads as follows

∑
γ∈�

βγ

1+ γ (0)2 =
∑
γ∈�

1

(γ 12)2 + (γ 22)2
<∞, (4.15)

which is equivalent to (4.4) in view of Lemma 4.3. Finally, we arrive at the following
proposition.

Proposition 4.4 (b) in Theorem 1.8 holds if and only if

∑
γ∈�

Im γ (i) =
∑
γ∈�
|γ ′(i)| <∞. (4.16)

In this case the symmetric Martin function of the group � is given by

m(z) = m+(z)+m−(z) =
∑
γ∈�

(
γ (z)− 1

γ (z)

)
− Re

(
γ (i)− 1

γ (i)

)
. (4.17)

Moreover,

m′(z) =
∑
γ∈�

γ ′(z)+
∑
γ∈�

γ ′(z)
γ 2(z)

=
∑
γ∈�

1

(γ 21z+ γ 22)2
+

∑
γ∈�

1

(γ 11z+ γ 12)2

(4.18)

and

Imm(z)

Im z
=

∑
γ∈�
|γ ′(z)| +

∑
γ∈�

∣∣∣∣ γ
′(z)

γ 2(z)

∣∣∣∣ =
∑
γ∈�

1

|γ 21z+ γ 22|2 +
∑
γ∈�

1

|γ 11z + γ 12|2 .
(4.19)

Proof We consider

γ =
[
γ 11 γ 12

γ 21 γ 22

]
, γ̃ =

[
γ 22 γ 21

γ 12 γ 11

]
,

γ−1 =
[
γ 22 −γ 12

−γ 21 γ 11

]
, γ̃−1 =

[
γ 11 −γ 21

−γ 12 γ 22

]
.
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The meaning of γ̃ is explained in (4.11)–(4.13). By looking at the first columns of
those matrices, we can conclude that one of the four convergence conditions below
implies the others

∑
γ∈�

1

(γ 11)2 + (γ 21)2
<∞,

∑
γ∈�

1

(γ 12)2 + (γ 22)2
<∞, (4.20)

∑
γ∈�

1

(γ 22)2 + (γ 21)2
<∞,

∑
γ∈�

1

(γ 11)2 + (γ 12)2
<∞. (4.21)

In particular, (4.15) and (4.4) are equivalent. Equation (4.16) corresponds to the
first condition in (4.21). Due to Lemma 4.2 we get representation (4.5) for m+(z).
By (4.15) we have (4.14) for m−(z), and therefore (4.17)–(4.19). Also in this
formulas γ can be replaced with γ−1, γ̃ or γ̃−1 if needed. ��

Lemma 4.5 Assume that convergence condition (4.15) (or any equivalent) holds.
Let m be the symmetric Martin function of the group � defined as in (4.17). Let
mn(z) be the symmetric Martin function of the group �n. All critical points of m(z)
and mn(z) are located on the boundary semi-circles of F and Fn, respectively. Let
c
(n)
k be the zero of m′n(z) on the k-th semicircle and let ck be the zero of m′(z) on

the k-th semicircle. Then, as n goes to ∞, mn(z) converges to m(z) uniformly on
the compact subsets in C+ and m′n(z) converges to m′(z) uniformly on the compact
subsets in C+. Also

c
(n)
k → ck

for every k. Moreover, mn(c
(n)
k ) converges to m(ck) and gn(c

(n)
k , z∗) converges to

g(ck, z∗) for every k.

Proof Completely parallel to the proof of Lemma 2.1. ��

4.2 Akhiezer–Levin Condition

In this subsection we prove

Theorem 4.6 Properties (B) of Theorem 1.8 and (b1) of (1.17) are equivalent.

We start with the following lemma.

Lemma 4.7 Let u(z) be a function with positive imaginary part on the upper half
plane. We assume that u is not a real constant. Let

f (z) = u(z)− i
u(z)+ i , respectively, u(z) = i 1+ f (z)

1− f (z) .
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Let

ζ = z− i
z+ i , respectively, z = i 1+ ζ

1− ζ .

Let also

w(ζ ) = f
(
i
1+ ζ
1− ζ

)
. (4.22)

Then

a := lim
z=iy,y→∞

Imu(z)

Im z
> 0

if and only if

lim
ζ>0,ζ→1

w(ζ ) = 1 and d := lim
ζ>0,ζ→1

1− |w(ζ )|2
1− |ζ |2 <∞.

In this case

a = 1

d
.

Proof Note that ζ → 1 as z→∞. Compute

Imu(z)

Im z
= 1− |f (z)|2
|1− f (z)|2

|1− ζ |2
1− |ζ |2 =

1− |w(ζ )|2
1− |ζ |2

∣∣∣∣ 1− ζ
1− w(ζ )

∣∣∣∣
2

.

The backwards computation gives

1− |w(ζ )|2
1− |ζ |2 = Imu(z)

Im z

|z+ i|2
|u(z)+ i|2 . (4.23)

The limit

a = lim
z=iy,y→∞

Imu(z)

Im z
≥ 0

always exists and is finite (a is the coefficient of z in the Riesz-Herglotz representa-
tion of u). Assume that a > 0. Then

lim
z=iy,y→∞u(z) = ∞ and, therefore, lim

ζ>0,ζ→1
w(ζ ) = 1.
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Further,

d = lim
ζ>0,ζ→1

1− |w(ζ )|2
1− |ζ |2 = lim

z=iy,y→∞
Imu(z)

Im z

|z+ i|2
|u(z)+ i|2

= lim
z=iy,y→∞

Imu(z)

Im z

(Im z+ 1)2

(Imu(z)+ 1)2 + (Re u(z))2

≤ lim
z=iy,y→∞

Imu(z)

Im z

(Im z+ 1)2

(Imu(z)+ 1)2
= 1

a
<∞.

Conversely, let

lim
ζ>0,ζ→1

w(ζ ) = 1 and lim
ζ>0,ζ→1

1− |w(ζ )|2
1− |ζ |2 = d <∞.

d > 0, since w is not a unimodular constant (since u is not a real constant). Then,
by the Julia Theorem (see Theorem 6.1 in Appendix),

1− |w(ζ )|2
1− |ζ |2

∣∣∣∣ 1− ζ
1− w(ζ )

∣∣∣∣
2

≥ 1

d
> 0.

Therefore,

Imu(z)

Im z
= 1− |w(ζ )|2

1− |ζ |2
∣∣∣∣ 1− ζ
1−w(ζ )

∣∣∣∣
2

≥ 1

d
> 0

and

a = lim
z=iy,y→∞

Imu(z)

Im z
≥ 1

d
> 0.

��

Combining Lemma 4.7 and the Carathéodory–Julia theorem (Theorem 6.1 in
Appendix) we get

Corollary 4.8 Assume that u(z) is not a real constant, then the following are
equivalent

(1) There exists a sequence zk, Im zk > 0, lim zk = ∞ such that

limu(zk) = ∞ and d1 := lim
Imu(zk)

Im zk

|zk + i|2
|u(zk)+ i|2 <∞;

(2) lim
z=iy,y→∞u(z) = ∞ and d2 := lim

z=iy,y→∞
Imu(z)

Im z

|z+ i|2
|u(z)+ i|2 <∞;

(3) a = lim
z=iy,y→∞

Imu(z)

Im z
> 0;
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When these conditions hold, we have d1 = d2 = 1
a

. Function u is a real constant if
and only if d1 = d2 = 0.

Proof (Theorem 4.6) Note first that, in view of formulas (4.22) and (4.23), (1) and
(2) are equivalent, respectively, to

(1′) There exists a sequence ζk, |ζk| < 1, lim ζk = 1 such that

limw(ζk) = 1 and lim
1− |w(ζk)|2

1− |ζk|2 <∞;

(2′) lim
ζ>0,ζ→1

w(ζ ) = 1 and lim
ζ>0,ζ→1

1− |w(ζ )|2
1− |ζ |2 <∞.

By Lemma 4.7, (3) is equivalent to (2’) and, therefore (3) and (2) are equivalent. (2)
obviously implies (1). It remains to show that (1) implies (2), equivalently, that (1’)
implies (2’). By Theorem 6.1, the second part of (1’) implies the second part of (2’).
Also (1’) implies (6.1) of Theorem 6.1 with w0 = 1. Hence, w0 = 1 is the limit of
w(ζ ) as ζ , |ζ | < 1, approaches t0 = 1 nontangentially. ��

Proof First we show that (B) of Theorem 1.8 implies (b1) of (1.17). Property (B)
of Theorem 1.8 says that

lim
λ=iη,η→∞

Im θ(λ)

Imλ
> 0. (4.24)

By Corollary 4.8, we have that

lim
λ=iη,η→∞ θ(λ) = ∞. (4.25)

and

lim
λ=iη,η→∞

Im θ(λ)

Imλ

|λ+ i|2
|θ(λ)+ i|2 <∞. (4.26)

Consider z = �−1(λ) as a mapping from C+ ⊂ C \ E to the fundamental domain
(in C+). Since �−1(λ) is a nonconstant function with positive imaginary part, we
get, by Corollary 4.8, that

lim
λ=iη,η→∞

Im�−1(λ)

Imλ

|λ+ i|2
|�−1(λ)+ i|2 > 0. (4.27)

Combining (4.26) and (4.27), we get

lim
λ=iη,η→∞

Im θ(λ)

Im�−1(λ)

|�−1(λ)+ i|2
|θ(λ)+ i|2 <∞. (4.28)
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Substituting λ = �(z), we get that

lim
Imm(z)

Im z

|z+ i|2
|m(z)+ i|2 <∞ (4.29)

as z goes to∞ along �−1({iη, η > 0}). We also have from (4.25) that

limm(z) =∞

as z goes to∞ along �−1({iη, η > 0}). By Corollary 4.8,

lim
z=iy,y→∞

Imm(z)

Im z
> 0,

which is (b1) of (1.17).
Now we will show that condition (b1) of (1.17) implies (B) of Theorem 1.8. In

� = C \ E we have two different Martin functions M± such that M+(�(z)) =
Imm+(z), where the measure of m+ is supported by the orbit {γ (∞)}, and
M−(λ) = M+(λ). It is known that if the cone of Martin functions in the domain is
two dimensional, then (B) of Theorem 1.8 holds. Indeed, consider functionsM±(λ)
on the upper half plane in C \ E. As positive harmonic functions continuous up
to the real line, they admit Poisson representations in terms of their values on the
real line. On E they both vanish, on R \ E they coincide. Therefore, coefficients
a± ≥ 0 of Imλ in their Poisson representations are not equal. Hence at least one
of them is positive. Finally we conclude that the coefficient a+ + a− of Imλ in the
Poisson representation of the symmetric Martin functionM(λ) = M+(λ)+M−(λ)
is positive, that is, (B) holds. ��

Remark 4.9 Observe that actually a− = 0, for otherwise, by Corollary 4.8,

lim
z=iy,y→∞

Imm−(z)
Im z

> 0,

which is not the case. Therefore, a+ > 0. Now we can write

M+(λ)−M−(λ) = a+Imλ

or, after substituting λ = �(z),
Imm+(z)− Imm−(z) = a+Im�(z).

Hence,

1

lim
z=iy,y→∞

Im�(z)

Im z

= a+ > 0.
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5 Proof of the Main Theorem (Theorem 1.8)

In this section we will use restatement of condition (A) in terms of the universal
cover

(A)
∏
k �=0

|g(ck, z∗)| > 0, (5.1)

where ck are the zeros of m′(z) (one on each boundary semicircle of F ). This is the
Blaschke condition on all the zeros of m′(z) in the upper half plane (orbits of ck
under the action of the group �).

5.1 Proof of the Implication (ii) ⇒ (iii)

By Proposition 4.1, (b) is equivalent to (b1) of (1.17) and, by Theorem 4.6, (b1) is
equivalent to (B) of Theorem 1.8. Property (a) implies (A), since zeros of a function
of bounded characteristic satisfy the Blaschke condition.

5.2 Proof of the Implication (iii) ⇒ (ii)

Theorem 5.1 Assume that condition (iii) holds. That is, we assume that (5.1) holds
and that (B) of Theorem 1.8 (equivalently (b1) of (1.17)) holds. Then m′(z) is of
bounded characteristic, that is, it is a ratio of two bounded analytic functions.

Proof Let Bk be the Blaschke product over the orbit of ck

Bk(z) =
∏
γ∈�

γ (z)− ck
γ (z)− ck dγ , z ∈ C+,

where |dγ | = 1 are chosen so that the factors in Bk are positive at z∗. It converges
since � is of convergent type. We now consider

B(z) =
∏
k

Bk(z).

This product converges due to the assumption (5.1). Moreover, it converges
uniformly on compact subsets of C+.
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Our goal is to prove that B(z)
m′(z) is a bounded analytic function on C+. More

precisely, that

∣∣∣∣ B(z)m′(z)

∣∣∣∣ ≤ 1, z ∈ C+. (5.2)

It turns out that it is easier to prove even stronger inequality

∣∣∣∣ B(z)m′(z)

∣∣∣∣
∑
γ∈�
|γ ′(z)|

(
1+ 1

|γ (z)|2
)
≤ 1, z ∈ C+. (5.3)

Easier because of the automorphic property of the latter function. Recall here that
the series in (5.3) converges to a function continuous on C+, due to the assumption
(B) of Theorem 1.8 (equivalently (b1) of (1.17)). In other words we will prove that

∑
γ∈�

∣∣∣∣B(z)γ
′(z)

m′(z)

∣∣∣∣+
∣∣∣∣ B(z)γ

′(z)
m′(z)γ 2(z)

∣∣∣∣ ≤ 1, z ∈ C+. (5.4)

Observe that

B(z)γ ′(z)
m′(z)

and
B(z)γ ′(z)
m′(z)γ 2(z)

are holomorphic on C+. Therefore, their absolute values are subharmonic functions
on C+. Hence, the sum in (5.4) is a subharmonic function. Also the sum is
automorphic with respect to �.

We consider first the finitely generated approximation described in Sect. 2. Recall
that

�n : C+/�n > �n.

Let c(n)k be the zero ofm′n(z) on the k-th semicircle. LetB(n)k be the Blaschke product

over the orbit of c(n)k under �n

B
(n)
k (z) =

∏
γ∈�n

γ (z)− c(n)k
γ (z)− c(n)k

dγ , z ∈ C+,

if k-th semicircle is a part of the boundary of Fn, and B(n)k (z) = 1 otherwise. We
now consider

B(n)(z) =
∏
k

B
(n)
k (z).
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We are going to prove this approximative version of (5.4)

fn(z) :=
∑
γ∈�n

∣∣∣∣∣
B(n)(z)γ ′(z)

m′n(z)

∣∣∣∣∣+
∣∣∣∣∣
B(n)(z)γ ′(z)
m′n(z)γ 2(z)

∣∣∣∣∣ ≤ 1, z ∈ C+. (5.5)

Advantage of the function in (5.5) over the function in (5.4) is that the series in (5.5)
converges in Fn and also on the boundary of Fn to a function continuous on Fn
and up to the boundary of Fn (including infinity), since �n is finitely generated. The
same is true for the fundamental domain of �n, which is the union of Fn and the
reflection of Fn about the 0-th semicircle.

Similar to what we did in Sect. 3, we define a subharmonic function Fn(λ), λ ∈
�n, by

fn(z) = Fn(�n(z)).

The function Fn(λ) is continuous in �n = C \ En and also up to En. By
subharmonicity, it attains its maximum on the boundary of �n. Thus, the maximum
of fn(z) is attained on the part of the boundary of the fundamental domain that lies
on the real axis. Recall that on the boundary of the fundamental domain all the series
below converge to continuous functions. Therefore, for real z on the boundary of the
fundamental domain of �n we have, by (4.18), (4.17), (4.1) and (4.14), that

1

|m′n(z)|
∑
γ∈�n
|B(n)(z)γ ′(z)| +

∣∣∣∣∣
B(n)(z)γ ′(z)

γ 2(z)

∣∣∣∣∣ = 1.

Here we used the fact that γ (z) is real for real z and that γ ′(z) is positive for real z.
Hence, (5.5) follows, which is the approximative version of (5.4).

Now we want to pass to the limit in (5.5) for arbitrary fixed z ∈ C+ as n goes
to infinity. By Lemma 4.5, m′n(z) converges to m′(z). The sum over �n converges
to the sum over �. It remains to show that |B(n)(z)| converges to |B(z)|. Note that
|B(n)k (z)| = |gn(c(n)k , z)| converges to |g(ck, z)| = |Bk(z)|, by Lemmas 2.1 and 4.5.
Further, k �= 0,

|B(n)k (z∗)| = |gn(c(n)k , z∗)| ≥ |g(c(n)k , z∗)| ≥ |g(ck, z∗)|.

By assumption (5.1) the product

∏
k �=0

|g(ck, z∗)|
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converges (that is, it is greater than 0). Then, by the Dominated Convergence
theorem,6

lim
n→∞ |B

(n)(z∗)| = lim
n→∞

∏
k �=0

|B(n)k (z∗)| =
∏
k �=0

lim
n→∞ |B

(n)
k (z∗)|

=
∏
k �=0

|Bk(z∗)| = |B(z∗)|.

There exists a subsequence nj such that B(nj )(z) converges for all z ∈ C+. Let

B̃(z) = lim
j→∞B

(nj )(z).

Fix any z ∈ C+. Then by Fatou’s lemma,7

|B̃(z)| = lim
j→∞ |B

(nj )(z)| = lim
j→∞

∏
k

|B(nj )k (z)|

≤
∏
k

lim
j→∞ |B

(nj )

k (z)| =
∏
k

|Bk(z)| = |B(z)|.

Thus

|B̃(z)| ≤ |B(z)|, z ∈ C+.

Since

|B̃(z∗)| = |B(z∗)|,

the equality must hold

|B̃(z)| = |B(z)|, z ∈ C+. (5.6)

Thus we get (5.3) and, therefore, (5.2). Since (5.6) holds for every subsequential
limit B̃(z) of B(n)(z), we get

B(z) = lim
n→∞B

(n)(z).

��

6This case reduces to the standard Dominated Convergence by applying (− log) to the products.
7Same explanation as in the previous footnote.
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Corollary 5.2 m′(z) is of bounded characteristic as the ratio of the following two
bounded analytic functions

B(z) and
B(z)

m′(z)
.

Remark 5.3 Since function B(z)/m′(z) is bounded, it can be written as

B(z)

m′(z)
= I (z) ·O(z),

where I (z) is an inner function and O is a bounded outer function. Moreover, I (z)
is a singular inner function, since the left hand side does not have zeros in C+.
Therefore,

m′(z) = B(z)

O(z)I (z)
. (5.7)

Theorem 5.4 Function B(z)/m′(z) is outer. That is, I (z) = 1.

The following facts are used to prove Theorem 5.4.

Lemma 5.5 (Corollary 6.7 of Appendix) Let x ∈ R. Then a finite nontangential
limits m(x) and m′(x) exist, m(x) is real, if and only if

∑
γ∈�

γ ′(x)+ γ ′(x)
γ 2(x)

<∞.

In this case

m′(x) =
∑
γ∈�

γ ′(x)
(

1+ 1

γ 2(x)

)
. (5.8)

Hence, in our case (m is a pure point and m′ is of bounded characteristic) (5.8)
holds almost everywhere on R.

Lemma 5.6 For every z ∈ C+ the following inequality holds

1

π

∫

R

log
∑
γ∈�

(
γ ′(x)+ γ ′(x)

γ (x)2

)
Im z

|x − z|2 dx ≥ log
∑
γ∈�

(
|γ ′(z)| + |γ

′(z)|
|γ (z)|2

)
.

(5.9)

Proof Since

γ ′(z) = 1

(γ 21z+ γ 22)2
,
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one can write

∑
γ∈�
|γ ′(z)|

(
1+ 1

|γ (z)|2
)
=

∑
γ∈�

φγ (z)
∗φγ (z),

where

φγ (z) =

⎡
⎢⎢⎢⎣

1

γ 21z+ γ 22

1

γ 21z+ γ 22 ·
1

γ (z)

⎤
⎥⎥⎥⎦ .

We consider functions

un(z) =
n∑
k=1

|γ ′k(z)|
(

1+ 1

|γk(z)|2
)
=

n∑
k=1

φγk (z)
∗φγk (z), Im z > 0.

From here we see that un is a subharmonic function since

∂2

∂z∂z
un(z) =

n∑
k=1

φ′γk (z)
∗φ′γk (z) ≥ 0.

Also logun(z) is subharmonic, since

∂2

∂z∂z
log un(z) = − 1

u2
n(z)

∂un

∂z

∂un

∂z
+ 1

un

∂2un

∂z∂z
=

1

u2
n(z)

{
n∑
k=1

φγk (z)
∗φγk (z)

n∑
k=1

φ′γk (z)
∗φ′γk (z)−

n∑
k=1

φγk (z)
∗φ′γk (z)

n∑
k=1

φ′γk (z)
∗φγk (z)

}
,

which is nonnegative by Cauchy-Schwarz inequality. Therefore,

1

π

∫

R

log
n∑
k=1

(
γk
′(x)+ γk

′(x)
γk(x)2

)
Im z

|x − z|2 dx ≥ log
n∑
k=1

(
|γk ′(z)| + |γk

′(z)|
|γk(z)|2

)
.

We now pass to the limit in this inequality. Since all integrands are nonnegative, the
Monotone Convergence Theorem applies and we get (5.9). ��

Proof (Theorem 5.4) By (4.18), for z ∈ C+ we have

|m′(z)| ≤
∑
γ∈�
|γ ′(z)| + |γ

′(z)|
|γ (z)|2 . (5.10)
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Now, by Lemmas 5.5 and 5.6,

1

π

∫

R

logm′(x) Im z

|x − z|2 dx =
1

π

∫

R

log
∑
γ∈�

(
γ ′(x)+ γ ′(x)

γ (x)2

)
Im z

|x − z|2 dx

≥ log
∑
γ∈�

(
|γ ′(z)| + |γ

′(z)|
|γ (z)|2

)
.

On the other hand (see (5.7))

1

π

∫

R

logm′(x) Im z

|x − z|2 dx = −
1

π

∫

R

log |O(x)| Im z

|x − z|2 dx = − log |O(z)|,

since O is a bounded outer function. Thus,

∑
γ∈�
|γ ′(z)| + |γ

′(z)|
|γ (z)|2 ≤

1

|O(z)| , z ∈ C+. (5.11)

Combining (5.11) with (5.10) and (5.7), we get

∣∣∣∣ B(z)

O(z)I (z)

∣∣∣∣ = |m′(z)| ≤ 1

|O(z)| , z ∈ C+.

That is,

∣∣∣∣B(z)I (z)

∣∣∣∣ ≤ 1.

The latter implies that I (z) = 1. ��

5.3 Proof of the Implication (i) ⇒ (iii)

Let H2(α) be non trivial for all α ∈ �∗. Then H 2(α) is non trivial for all α, that is,
the Widom condition holds

∑
μ:∇G(μ,λ∗)=0

G(μ, λ∗) <∞.

This in turn implies (A) of condition (iii) in Theorem 1.8, since if μλ∗ is the critical
point of G(λ, λ∗) in the k-th gap and μ is any point in this gap, then

G(μ, λ∗) ≤ G(μλ∗, λ∗).
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Now, since the Widom condition holds, � acts on R dissipatively, that is, there exists
a measurable fundamental set E ⊂ R. Let f be a non trivial function from H2(α).
Then ∫

R

|f (x)|2dx =
∑
γ∈�

∫

E

|f (x)|2γ ′(x)dx =
∫

E

∑
γ∈�
|f (x)|2γ ′(x)dx,

the latter equality is due to Fubini’s theorem. Therefore,

|f (x)|2
∑
γ∈�

γ ′(x) <∞

almost everywhere on E. Since f �= 0 (almost everywhere) we have

∑
γ∈�

γ ′(x) <∞ for a.e. x ∈ E.

We fix one such x, then for z0 = x + i we obtain
∑
γ∈�
|γ ′(z0)| <∞.

By the Harnack inequality we have (4.16). By Proposition 4.4, (b) holds and it is
equivalent to condition (B) of Theorem 1.8.

5.4 Proof of the Implication (ii) ⇒ (i)

Lemma 5.7 If (a) and (b) hold, then H 2(α) are non trivial for all α ∈ �∗.

Proof By Lemma 5.5, we have that under assumptions (a) and (b)

m′(x) =
∑
γ∈�

γ ′(x)
(

1+ 1

γ 2(x)

)

almost everywhere on R and that

0 <
∫

R

logm′(x)
1+ x2 dx <∞.

Then

ρ(x) =
∑
γ∈�

γ ′(x).
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also converges almost everywhere on R and

0 <
∫

R

logρ(x)

1+ x2 dx <∞. (5.12)

Consider the following function on R (compare to (2.3), (2.5), also to (3.7))

ρi(x) =
∑
γ∈�

γ ′(x)
1+ γ (x)2 .

Since

1

1+ x2
≤ ρi(x) ≤ ρ(x),

we have

−∞ <

∫
logρi(x)dx

1+ x2
<∞. (5.13)

Combining inequality (3.13) of Lemma 3.5 with inequality (3.14), we conclude that
log+ |g′(z, i)| has a harmonic majorant in the upper half plane. This means that
g′(z, i) is of bounded type on the upper half plane. Therefore, by Theorem 1.5, all
H 2(α) are non-trivial. ��

Inequalities (5.12) and (5.13) allow to define an outer function φ(z) by

|φ(x)|2 = ρi(x)

ρ(x)
≤ 1. (5.14)

We denote by αφ the character associated to this function.

Proposition 5.8 If (a) and (b) hold, then H2(α) = φH 2(α−1
φ α).

Proof We first show that H2(α) ⊆ φH 2(α−1
φ α). If f ∈ H2(α), then h = f/φ is

of Smirnov class. Recall that E is the fundamental measurable set for the action of
� on R. In view of (5.14), we have

∫
R

|h|2 dx

1+ x2 =
∫
E

|h(x)|2ρi(x)dx =
∫
E

|f (x)|2ρ(x)dx =
∫
R

|f |2dx.

Then, by the Smirnov maximum principle, h ∈ H 2, and, therefore, h ∈ H 2(α−1
φ α).

The converse inclusion is proved the same way. ��

Corollary 5.9 If (a) and (b) hold, then H2(α) are non trivial for all α ∈ �∗.
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Proof This is a straightforward combination of Lemma 5.7 and Proposition 5.8.
��

Remark 5.10 We point out that an analogue of the space H2(α) still can be defined
for Widom domains (see the definition below) even if condition (b) is violated.
Indeed, the density outer function (compare to (5.14))

|�(λ)|2 = θ ′λ∗(λ)
θ ′(λ)

, λ ∈ E,

where θλ∗ and θ are defined in (1.7) and (1.15), is always well defined in Widom
domains due to Theorem D [16]. This suggests the following

Definition 5.11 Let� be of Widom type. Let π1(�) > � be the fundamental group
of this domain. For a character α ∈ π1(�)

∗ we say that a function F belongs to
H2
�(α) if it is a character-automorphic multivalued function in the domain, i.e.,

F(γ̃ (λ)) = α(γ̃ )F (λ), γ̃ ∈ π1(�),

and |F(λ)/�(λ)|2 possesses a harmonic majorant in �.

6 Appendix: Carathéodory and Frostman Theorems

Theorems of Carathéodory and Frostmant that are used in the proofs of Pommerenke
theorem (Theorem 3.1) and in the most important part (Theorem 5.1) of our main
theorem depend on the following theorem due to Carathéodory and Julia [5], for a
modern exposition see, e.g., [3] and further references there.

Theorem 6.1 (Carathéodory–Julia [5]) Let functionw be analytic in the unit disk
and bounded in modulus by 1. Let t0 be a point on the unit circle. The following are
equivalent:

(1) d1 := lim inf
z→t0

1− |w(z)|2
1− |z|2 <∞ (|z| < 1, z approaches t0 in an arbitrary way);

(2) d2 := lim
z→t0

1− |w(z)|2
1− |z|2 <∞ (z approaches t0 nontangentially);

(3) Finite nontangential limits

w(t0) := lim
z→t0

w(z) and d3 := lim
z→t0

1− w(z)w(t0)
1− zt̄0

exist, |w(t0)| = 1.
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(4) Finite nontangential limits

w(t0) := lim
z→t0

w(z) and w′(t0) = lim
z→t0

w(z)− w(t0)
z− t0

exist, |w(t0)| = 1. w′(t0) is called the angular derivative at t0.

(5) Finite nontangential limits

w(t0) := lim
z→t0

w(z) and w′0 := lim
z→t0

w′(z)

exist, |w(t0)| = 1.

(6) There exist a constant w0, |w0| = 1 and a constant d ≥ 0

such that the boundary Schwarz-Pick inequality holds
∣∣∣∣w(z)− w0

z − t0

∣∣∣∣
2
≤ d · 1− |w(z)|2

1− |z|2 , |z| < 1; (6.1)

inequality (6.1) implies that the following nontangential limit

w(t0) := lim
z→t0

w(z) exists and w(t0) = w0;

we denote the smallest constant d that works for (6.1) by d4.

When these conditions hold, we have w′0 = w′(t0) and

d1 = d2 = d3 = d4 = t0w
′(t0)
w(t0)

= |w′(t0)|.

This number is equal to 0 if and only if w is a unimodular constant.

Theorem 6.2 (Carathéodory [5]) Let w, wn be analytic functions bounded in
modulus by 1 on the unit disk. Assume that wn(z) converges to w(z) for every
|z| < 1. Let |t0| = 1. Assume that nontangential boundary values wn(t0), w′n(t0)
exist and that |wn(t0)| = 1, w′n(t0) are finite. We assume that

lim |w′n(t0)| <∞.

Then the nontangential boundary values w(t0), w′(t0) exist, |w(t0)| = 1 and

|w′(t0)| ≤ lim |w′n(t0)|. (6.2)

Proof Let |w′nk (t0)| converge to lim |w′n(t0)|. By (6.1), we have

∣∣∣∣wnk (z)− wnk(t0)z− t0
∣∣∣∣
2

≤ |w′nk (t0)| ·
1− |wnk(z)|2

1− |z|2 , |z| < 1.
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wnk (t0) is a sequence of complex numbers of modulus one. Therefore, there exists
a convergent subsequence wnkj (t0). We denote the limit by w0, |w0| = 1. Since
wnkj

(z) converge to w(z) for every |z| < 1, we get (by passing to the limit as
j →∞)

∣∣∣∣w(z)−w0

z− t0
∣∣∣∣
2

≤ lim |w′n(t0)| ·
1− |w(z)|2

1− |z|2 , |z| < 1.

From here we see that w0 = w(t0) and we get

∣∣∣∣w(z)−w(t0)z− t0
∣∣∣∣
2

≤ lim |w′n(t0)| ·
1− |w(z)|2

1− |z|2 , |z| < 1.

By Theorem 6.1, the latter inequality implies that w′(t0) exists and that it is finite.
Since the smallest constant that works for this inequality is |w′(t0)|, (6.2) follows.

��

Theorem 6.3 (Frostman [7]) In addition to assumptions of Theorem 6.2, assume
that |wn(z)| ≥ |w(z)| for every z, |z| < 1. Then

w(t0) = limwn(t0) and w′(t0) = limw′n(t0).

Proof By assumption,

1− |wn(z)|2
1− |z|2 ≤ 1− |w(z)|2

1− |z|2 .

Therefore,

lim
z→t0

1− |wn(z)|2
1− |z|2 ≤ lim

z→t0

1− |w(z)|2
1− |z|2 .

That is, in view of Theorem 6.1,

|w′n(t0)| ≤ |w′(t0)|.

Hence, we get

lim|w′n(t0)| ≤ |w′(t0)|.

Combining this with Theorem 6.2, we get

|w′(t0)| = lim |w′n(t0)|.
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The first assertion of the theorem follows from the observation that now one does
not need to choose a subsequence at the beginning of the proof of Theorem 6.2.
This implies that every subsequential limit of wn(t0) is w(t0). After that, the second
assertion is a consequence of the relation

|w′(t0)| = t0w
′(t0)
w(t0)

.

��

By a simple substitution

z := z− i
z+ i ,

that maps upper half plane onto the unit disk, Theorems 6.1 and 6.3 can be restated
for functions on the upper half plane.

Theorem 6.4 (Carathéodory–Julia) Let w be analytic on the upper half plane
and bounded in modulus by 1. Let x ∈ R be a point on the real axis. The following
are equivalent:

(1) d1 := lim inf
z→x

1− |w(z)|2
2Im z

<∞ (Im z > 0, z approaches x in an arbitrary way);

(2) d2 := lim
z→x

1− |w(z)|2
2Im z

<∞ (Im z > 0, z approaches x nontangentially);

(3) Finite nontangential limits

w(x) := lim
z→x

w(z) and d3 := lim
z→x

1− w(z)w(x)
i(x − z)

exist, |w(x)| = 1.

(4) Finite nontangential limits

w(x) := lim
z→x

w(z) and w′(x) = lim
z→x

w(z)− w(x)
z− x

exist, |w(x)| = 1. w′(x) is called the angular derivative at x.

(5) Finite nontangential limits

w(x) := lim
z→x

w(z) and w′0 := lim
z→x

w′(z)

exist, |w(x)| = 1.
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(6) There exist a constant w0, |w0| = 1 and a constant d ≥ 0

such that the boundary Schwarz-Pick inequality holds
∣∣∣∣w(z)− w0

z − x
∣∣∣∣
2
≤ d · 1− |w(z)|2

2Im z
, Im z > 0; (6.3)

inequality (6.3) implies that the following nontangential limit

w(x) := lim
z→x

w(z) exists and w(x) = w0;

we denote the smallest constant that works for (6.3) by d4.

When these conditions hold, we have w′0 = w′(x) and

|w′(x)| = 1

i

w′(x)
w(x)

= d1 = d2 = d3 = d4.

The next theorem is a version of Theorem 6.3 for the upper half plane.

Theorem 6.5 (Frostman [7]) Let w, wn be analytic functions on the upper half
plane bounded in modulus by 1. Assume that wn converge to w for every z ∈ C+
and that |wn(z)| ≥ |w(z)| for every z ∈ C+. Let x ∈ R. Let wn(x), and w′n(x) be
the nontangential boundary values, |wn(x)| = 1, w′n(x) is finite. Assume that

lim |w′n(x)| <∞.

Then nontangential boundary values w(x) and w′(x) exist, |w(x)| = 1, w′(x) is
finite and

w(x) = limwn(x), w′(x) = limw′n(x).

Corollary 6.6 (Frostman [7]) Letw be a Blaschke product on the upper half plane

w(z) =
∏
k

Bk(z).

Let x ∈ R. Then w(x) and w′(x) exist with |w(x)| = 1, w′(x) finite if and only if

∑
k

|B ′k(x)| <∞.

In this case

|w′(x)| =
∑
k

|B ′k(x)|.
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Proof Let wn be a finite Blaschke product

wn(z) =
n∏
k=1

Bk(z).

Then

w′n(z)
wn(z)

=
n∑
k=1

B ′k(z)
Bk(z)

.

Observe that (compare to Theorem 6.4)

|Bk(x)| = 1, and
1

i
· B
′
k(x)

Bk(x)
= |B ′k(x)|.

Same is true for wn at point x. Therefore, we get

|w′n(x)| =
n∑
k=1

|B ′k(x)|.

Since wn is a divisor of w the following inequality holds

|wn(z)| ≥ |w(z)|

for every z ∈ C+. Also wn(z) converge to w(z) for every z ∈ C+. If |w(x)| = 1,
w′(x) exists and it is finite, then (like in Theorem 6.3)

|w′n(x)| ≤ |w′(x)|.

Therefore, for every n

∞ > |w′(x)| ≥ |w′n(x)| =
n∑
k=1

|B ′k(x)|

and

∞∑
k=1

|B ′k(x)| <∞.

Conversely, if the latter sum converges, then |w′n(x)| are bounded and we are in
the situation of Theorem 6.5. ��
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Corollary 6.7 Let m(z) be the symmetric Martin function with a pure point
measure, defined as in (4.17)

m(z) =
∑
γ∈�

(
γ (z)− 1

γ (z)

)
− Re

(
γ (i)− 1

γ (i)

)
.

Recall that by (4.18)

m′(z) =
∑
γ∈�

γ ′(z)+ γ ′(z)
γ 2(z)

Let x ∈ R. Then a finite nontangential limits m(x) and m′(x) exist, m(x) is real, if
and only if

∑
γ∈�

γ ′(x)+ γ ′(x)
γ 2(x)

<∞.

In this case

m′(x) =
∑
γ∈�

γ ′(x)+ γ ′(x)
γ 2(x)

.

Proof Consider the following inner function

w(z) = eim(z).

Observe that

w′(z)
w(z)

= im′(z).

Consider

mn(z) =
n∑
k=1

(
γk(z)− 1

γk(z)

)
− Re

(
γk(i)− 1

γk(i)

)

and the corresponding inner function

wn(z) = eimn(z).
Then

w′n(z)
wn(z)

= im′n(z).
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In view of formula (4.19), Immn(z) increases in n for every Im z > 0. Therefore,
|wn(z)| decreases in n. If finite nontangential limits m(x) and m′(x) exist, m(x) is
real, then finite nontangential limits w(x) and w′(x) exist, |w(x)| = 1. Therefore,
we are in the situation of Theorem 6.5. Hence,

m′(x) = 1

i

w′(x)
w(x)

= |w′(x)| = lim |w′n(x)| = lim
1

i

w′n(x)
wn(x)

= limm′n(x) = lim
n∑
k=1

γ ′k(x)+
γ ′k(x)
γ 2
k (x)

=
∑
γ∈�

γ ′(x)+ γ ′(x)
γ 2(x)

.

Conversely, if

∑
γ∈�

γ ′(x)+ γ ′(x)
γ 2(x)

<∞,

then |w′n(x)| = m′n(x) are bounded and we are again in the situation of Theorem 6.5.
��
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