Exam Card sample

The Exam Card contains 8 problems of varying complexity that cover topics in Analysis, Linear Algebra, Geometry and Differential Equations.

Card 6

1. Solve the differential equation $\dot{x}+\frac{1}{t} x=0$;
2. Find the general solution to the following system of differential equations:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=2 x_{2}, \\
\dot{x}_{2}=-2 x_{1}+1
\end{array}\right.
$$

3. Analyze the function $f(x)=x-e^{x}$ by using the first and second derivatives and plot the graph;
4. Calculate $\int_{0}^{\pi / 4} x \cos 2 x d x$;
5. Find eigenvalues and eigenvectors for the matrix $\left(\begin{array}{lll}1 & 2 & 3 \\ 6 & 5 & 4 \\ 0 & 0 & 0\end{array}\right)$;
6. Reduce the quadratic form $Q\left(x_{1}, x_{2}\right)=x_{1}^{2}-3 x_{1} x_{2}+2 x_{2}^{2}$ to the diagonal form, find out if this form is positively definite;
7. Find the equation of a line perpendicular to $x-4 y-7=0$ that passes through the center of the circle $x^{2}+x+y^{2}=15$;
8. Find the values of parameter p for which there is a plane passing through the line $\frac{x-1}{p}=\frac{y+3}{-1}=\frac{z+2}{5}$ in parallel to the plane $4 x+3 y-z+3=0$.

Evaluation criteria: Complete and correct answer to each of Problems 1 7 has a score of 12 points; Problem 8 has a score of 16 points. If the solution to a problem requires clarification of some facts or tools, then it is required to give a background of the solution by giving a proof or reference to the corresponding theorem. Partial solution will be evaluated in accordance with the content.

