Gefter Sergey Leonidovich

Address

Gefter Sergey Leonidovich

Department of Mathematical Analysis
V.N.Karazin Kharkiv National University
4, Svobody sqr.
Kharkiv, 61022, Ukraine
Tel: +38 057 7075135
E-mail: gefter@univer.kharkov.ua


Diploma in Mathematics, June, 1983, Kharkov State University.
Post-Graduate Cours (1983-1986), Kharkov State University, "Property T in the orbit theory and in the von Neumann algebras", 1987, Kharkov
Fields of research: Ergodic theory, C*-algebras and von Neumann algebras, topological groups

List of principal publications (last updated November 2008)

1. Gefter S.L., Golodets V.Ya. and Nessonov N.I. Actions of T-groups on von Neumann algebras and factors with countable fundamental groups, Functional Anal. Appl., 119 (1985), 64-65.

2. Gefter S.L., Golodets V.Ya. Fundamental groups for ergodic actions and actions with unit fundamental group, Publ. RIMS, Kyoto Univ. 24 (1988), 821-847.

3. Gefter S.L., Golodets V.Ya. and Nessonov N.I. Countable T-groups and von Neumann algebras, Journal of Soviet Math., 48 (1990), ь 4, 367-376.

4. Gefter S.L., Ergodic equivalence relation without outer automorphisms, Dokl. Acad. Sci of Ukraine, 11 (1993), 25-27.

5. Gefter S.L., Outer automorphism group of the ergodic equivalence relation generated by translations of dense subgroup of compact group on its homogeneous space, Publ. RIMS, Kyoto Univ. 32 (1996), 517-538.

6. Gefter, Sergey L.; Kulagin, Konstantin M. On dense embeddings of discrete abelian groups into locally compact groups. Bull. Belg. Math. Soc. Simon Stevin 9 (2002), no. 2, 161--165.

7. Boyko, Maxim S.; Gefter, Sergey L.; Kulagin, Konstantin M. On dense embeddings of discrete groups into locally compact groups. Qual. Theory Dyn. Syst. 4 (2003), no. 1, 31--37.

8. Gefter, Sergey L. Fundamental groups of some ergodic equivalence relations of type II. Qual. Theory Dyn. Syst. 4 (2003), no. 1, 115--124.

9. Gefter, S. L.; Mokrenyuk, V. N. The power series $\sum\sb {n=0}\sp \infty n!z\sp n$ and holomorphic solutions of some differential equations in a Banach space. (Russian) Zh. Mat. Fiz. Anal. Geom. 1 (2005), no. 1, 53--70.

10. Gefter, S.L.; Shcherbina, T.S. On a certain property of a family of unitary operators commuting to within a constant. Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh. 711, No. 55, 3-7 (2005).

11. Gefter, Sergey; Vershynina, Anna On holomorphic solutions of the heat equation with a Volterra operator coefficient. Methods Funct. Anal. Topology 13 (2007), no. 4, 329--332.

12. Gefter S. and Vershynina A. On analytic solutions of the heat equation with an operator coefficient. "Zapiski Nauchnyh Seminarov POMI", Investigations on Linear Operators and Function Theory 355 (2008), Part 36, 139—163.



Department ("MatAn") counters:       Different visitors (IP) since December 1, 2013: Flag Counter